

CLS-212 CAMERA LINK SIMULATOR

ユーザーマニュアル

Document # 200483, Rev 1.0, 06/30/2010

© Vivid Engineering 418 Boston Turnpike #104 • Shrewsbury, MA 01545 Phone 508.842.0165 • Fax 508.842.8930 Email <u>info@vividengineering.com</u> Web <u>www.vividengineering.com</u>

目次

1.	はじめに	1
1.1.	概要	1
1.2.	特徵	3
1.3.	機能の説明	5
1.3.	1. クロックシンセサイザー	6
1.3.	2. タイミングジェネレーター	8
1.3.	3. ウィンドウジェネレーター	11
1.3.	4. パターンジェネレーター	13
1.3.	5. Data Valid (DVAL) シグナル	18
1.3.	6. 槓算タイマー	19
1.3.	7. マイクロコントローラー	19
1.3.	8. RS-232シリアルホート	20
1.3.	9. USB対応(オフション)	. 20
1.3.	10. カメフコントロール入力	. 20
1.3.	11. チャンネルリンクトランスミッター	. 21
1.3.	12. Power over Camera Link (PoCL) の機能	22
1.4.	コマンドラインインターフェース (CLI)	24
1.4.	1. Line Valid Low (LVAL_LO)	26
1.4.	2. Line Valid High (LVAL_HI)	26
1.4.	3. Frame Valid Low (FVAL_LO)	27
1.4.	4. Frame Valid High (FVAL_HI)	27
1.4.	5. Frame Valid Setup (FVAL_SETUP)	28
1.4.	6. Frame Valid Hold (FVAL_HOLD)	28
1.4.	7. X Offset (X_OFFSET)	29
1.4.	8. X Active (X_ACTIVE)	29
1.4.	9. Y Offset (Y_OFFSET)	30
1.4.	10. Y Active (Y_ACTIVE)	30
1.4.	11. Pixel "A" Pattern Select (A_PATSEL)	31
1.4.	12. Pixel "B" Pattern Select (B_PATSEL)	31
1.4.	13. Pixel "C" Pattern Select (C_PATSEL)	32

1.4.14.	Pixel "D" Pattern Select (D_PATSEL)	. 32
1.4.15.	Pixel "E" Pattern Select (E_PATSEL)	. 32
1.4.16.	Pixel "F" Pattern Select (F_PATSEL)	33
1.4.17.	Pixel "G" Pattern Select (G_PATSEL)	. 33
1.4.18.	Pixel "H" Pattern Select (H_PATSEL)	. 34
1.4.19.	Pixel "I" Pattern Select (I_PATSEL)	. 34
1.4.20.	Pixel "J" Pattern Select (J_PATSEL)	34
1.4.21.	Pixel "A" Fixed Value (A_FIXED)	36
1.4.22.	Pixel "B" Fixed Value (B FIXED)	36
1.4.23.	Pixel "C" Fixed Value (C_FIXED)	37
1.4.24.	Pixel "D" Fixed Value (D FIXED)	37
1.4.25.	Pixel "E" Fixed Value (E FIXED)	38
1.4.26.	Pixel "F" Fixed Value (F FIXED)	38
1.4.27.	Pixel "G" Fixed Value (G FIXED)	39
1.4.28	Pixel "H" Fixed Value (H_FIXED)	39
1.4.29.	Pixel "I" Fixed Value (I FIXED)	40
1.4.30.	Pixel "J" Fixed Value (J FIXED)	. 40
1.4.31.	Pixel "A" Background Value (A BACK)	41
1 4 32	Pixel "B" Background Value (R_BACK)	41
1 4 33	Pixel "C" Background Value (C BACK)	42
1 4 34	Pixel "D" Background Value (D_BACK)	42
1 4 35	Pixel "E" Background Value (E_BACK)	43
1 4 36	Pixel "F" Background Value (F BACK)	43
1 4 37	Pixel "G" Background Value (G BACK)	44
1 4 38	Pixel "H" Background Value (H BACK)	44
1 4 39	Pixel "I" Background Value (I_BACK)	45
1 4 40	Pixel "I" Background Value (I_Briek)	45
1 4 41	Pixel "A" Pattern Sten (A STEP)	46
1 4 42	Pixel "B" Pattern Step (R_STEP)	47
1 4 43	Pixel "C" Pattern Step (C_STEP)	48
1 4 44	Pixel "D" Pattern Step (D_STEP)	49
1 4 45	Pixel "F" Pattern Step (E_STEP)	50
1 4 46	Pixel "F" Pattern Step (E_STEP)	51
1 4 47	Pixel "G" Pattern Step (G_STEP)	52
1 4 48	Pixel "H" Pattern Step (H_STEP)	53
1 4 49	Pixel "I" Pattern Step (I_STEP)	54
1 4 50	Pixel "I" Pattern Step (I_STEP)	55
1 4 51	Pixel "A" Init Value (A INIT)	56
1 4 52	Pixel "B" Init Value (B_INIT)	56
1 4 53	Pixel "C" Init Value (C_INIT)	57
1 4 54	Pixel "D" Init Value (D_INIT)	57
1 4 55	Pixel "F" Init Value (F_INIT)	58
1 4 56	Pixel "F" Init Value (E_INIT)	58
1.4.57	Pixel "G" Init Value (G_INIT)	59
1 4 58	Pixel "H" Init Value (H INIT)	59
1 4 50	Pixel "I" Init Value (I_INIT)	60
1. 1 .59.	Pixel "I" Init Value (I_INIT)	60
1/61	Camera Link Mode (CL MODE)	61
1.4.01.	Pattern Roll (ROLL)	62
1 / 63	Clock Synthesizer Code (SVNTH CODE)	62
1.4.03.		05

1.4.64.	Clock Frequency (FREQUENCY)	
1.4.65.	Continuous Mode (CONTINUOUS)	
1.4.66.	Exsync Enable (EXSYNC_ENB)	
1.4.67.	Exsync Select (EXSYNC_SEL)	
1.4.68.	Integration Time (INTEG_TIME)	
1.4.69.	Linescan Mode (LINESCAN)	
1.4.70.	DVAL State (DVAL)	
1.4.71.	DVAL Mode (DVAL_MODE)	
1.4.72.	Clock Disable (CLK_DIS)	
1.4.73.	PoCL Power Presence (POCL)	
1.4.74.	CC State (CC)	
1.4.75.	FPGA Version (VERSION)	
1.4.76.	One Shot Trigger (ONE SHOT)	
1.4.77.	Parameter Save (SAVE)	
1.4.78.	Parameter Recall (RECALL)	
1.4.79.	Echo Control (ECHO)	
1.4.80	Parameter Dump (DUMP)	72
1111001		
1.5. –	-船的なアプリケーション	
1.6. H	├様	
	= 1997	
2. イン	ンターフェース	80
2.1. 前	〕面パネルの接続	80
2.1.1.	カメラコネクタシグナル	
2.1.2.	ケーブルシールドの接地	
2.2. 賀	『面パネル	86
2.2.1.	DB9コネクタシグナル	
. ماند ا		
3. 懱	悔江俅	
3.1. 5	「法	88
3.2. 夕	▶部電源	89
A (++	¢3.	00
4. 19	鍥	
4.1. 7	/ルコンフィキュレーションの例	
4.1.1.	8ビット 8タッフ 水平ワェッジの例	
4.1.2.	8ヒット 8タッフ 垂直ワェッジの例	
4.1.3.		
111	8ビット 8タップ 傾斜ウェッジの例#1	
4.1.4.	8ビット 8タップ 傾斜ウェッジの例#1 8ビット 8タップ 傾斜ウェッジの例#2	
4.1.4.	8ビット 8タップ 傾斜ウェッジの例#1 8ビット 8タップ 傾斜ウェッジの例#2	92 93 94
4.1.4. 4.2. 80	8ビット 8タップ 傾斜ウェッジの例#1 8ビット 8タップ 傾斜ウェッジの例#2 0ビットの例	92 93 94 94

5. 改訂履歴	100
4.2.4. 8ビット 10タップ 傾斜ウェッジの例#2	
 4.2.2. 8ビット 10タップ 垂直ウェッジの例	

1. はじめに

1.1. 概要

CLS-212 Camera Link 」シミュレーターは、Camera Linkのすべてのコンフ ィギュレーション(「ベース」、「ミディアム」、「フル」)と80ビッ トモードに対応した高性能ビデオテストパターンジェネレーターです。 ビデオタイミングが完全にプログラム可能なCLS-212は、事実上いかなる Camera Linkカメラのタイミング特性も85 MHzまでのビデオクロックレー トで模倣することができます。CLS-212は、Power over Camera Link (PoCL)アプリケーションに広く使用されているMiniature Camera Link (miniCL)コネクタを備えています。

CLS-212は、標準のRS-232シリアルポートを備えたPCを使用してコント ロールされます。代わりに、CLS-212はオプションのアダプターを使用し てPCのUSBポートに接続することもできます。CLS-212のコントロールは、 簡単に扱えるコマンドラインインターフェース(CLI)を通じて実行されま す。特別なソフトウェアは不要です。コンフィギュレーションファイル はユーザーパラメーターを用いて簡単に作成してCLS-212にダウンロード することができます。CLS-212の初期設定(電源投入時)コンフィギュレー ションはユーザーがプログラム可能です。これによって保存しているパ ラメーターを都合よく呼び出すことができ、ホストコンピュータなしで CLS-212の操作が可能になります。

CLS-212 Camera LinkシミュレーターはCamera Link製品およびシステムの 開発、試験、組込みに非常に便利です。CLS-212は、PoCLケーブルと PoCLフレームグラバーのSafePower機能のテストに特に役立ちます。CLS-212は、頑丈なアルミニウムケースに収容されています。

¹ Camera Linkインターフェース規格は、メーカーの如何にかかわらずカメラとフレームグラバーとの相互運用性を可能にしたものです。Automated Imaging Association(AIA)は、Camera Link委員会の管理、自己証明プログラム、製品登録 を含むCamera Linkプログラムを支援しています。Camera Linkの仕様はAIAのウェプサイト<u>www.machinevisiononline.org</u>でダウンロードできます。

⁻ Camera LinkはAutomated Imaging Associationの商標です。

⁻ WindowsはMicrosoftの商標です。

⁻ HyperTerminalはHilgraeveの商標です。

1.2. 特徴

- 高性能ビデオテストパターンジェネレーター
- すべてのCamera Linkコンフィギュレーションに対応(ベース、ミディアム、フル)
- 80ビットモードに対応; 10の8ビットタップ、8つの10ビットタップ
- Power over Camera Link (PoCL)に対応
- 完全にプログラム可能なビデオタイミング;カメラの特性を模倣
- 新型チップセットによって85MHzまでのビデオクロックレートに対応
- エリアおよびラインスキャンフォーマットで、64K x 64Kまでの画像サイズ
- ボックス、ライン、水平/垂直/傾斜、ウェッジテストパターン
- プログラム可能なビデオパターンの初期値とステップサイズ
- パターンに動きを加える「ロール」機能
- トリガー(外部同期)モードと積算タイマー
- フレームグラバーとケーブルのPoCL SafePower機能のテスト/実行
- PoCLアプリケーションに広く使用されるMiniature Camera Link (miniCL)コネ クタ搭載
- ホストPCのシリアルポート(RS-232)またはオプションのアダプターでUSBポ ートに接続
- 簡単なコマンドラインインターフェース(CLI)によるコントロール、非PoCL CLS-211シミュレーターと互換性のあるコマンドセット
- ダウンロード可能なコンフィギュレーションファイルはユーザー設定によっ て容易に作成と変更が可能
- ユーザー設定の不揮発性保存/呼び出し
- 単独で動作可能
- 取り付けフランジ付きの丈夫でコンパクトなアルミニウムケース

- 各国対応外部電源とRS-232ケーブルが付属
- 3年間の保証期間

1.3. 機能の説明

CLS-212 Camera Linkシミュレーターは、Camera Linkのすべてのコンフィ ギュレーション(「ベース」、「ミディアム」、「フル」)と80ビット モードに対応するプログラム可能ビデオテストパターンジェネレーター です。CLS-212のブロックダイヤグラムは図1-1に示されています。機能 ブロックの詳細な説明は以下のセクションにあります。

CLS-212は、Field Programmable Gate Array(FPGA)技術で実行されるビデオ テストパターン生成回路をオンボードマイクロコントローラーに結合し ています。FPGAベースのビデオテストパターン回路によって、必要とさ れるビデオタイミング、アクティブウィンドウ、テストパターン特性が 提供されています。マイクロコントローラーがパターン生成回路をホス トコンピュータにリンクし、簡単に扱えるコマンドラインインターフェ ース(CLI)が組み込まれています。これによってCLS-212は、標準のRS-232シリアルポートを備えたいかなるコンピュータを使用してもコントロ ールが可能になります。オプションのアダプターを使用してPCのUSBポ ートに接続することもできます。ユーザーは、CLIを通じて対話的に設定 を割り当てるか、またはあらかじめ作成したコンフィギュレーションフ ァイルをダウンロードすることができます。CLS-212は、ユーザーコンフ ィギュレーション設定を格納するための不揮発性メモリを備えています。 保存された設定は電源投入時に自動的に読み込まれ、ホストコンピュー タなしで以前に保存されたパラメーターを使用してCLS-212の操作をする ことが可能になります。

CLS-212 Camera Linkシミュレーターは、ユーザーがCamera Linkの20-85MHzの範囲内で事実上いかなるテストパターンクロック周波数も選択 できるクロックシンセサイザーを備えています。Camera Linkインターフ ェースのカメラコントロール入力は、外部同期入力として使用するため にタイミングジェネレーターに送られて、フレームグラバーがパターン 生成を開始するのを可能にし、積算タイマーがカメラ露光特性に加わり ます。Camera Linkインターフェースのシリアルリンクは、フレームグラ バーにループバックされて、シリアルインターフェースのループバック テストを可能にします。

CLS-212は、Power over Camera Link (PoCL)インターフェースのテストお よび実行用の機能を備えています。これによってCLS-212は、PoCLケー ブルとPoCLフレームグラバーのSafePower機能のテストに特に役立ちます。 CLS-212のビデオコネクタは、PoCLアプリケーションに広く使用される Miniature Camera Link (miniCL)タイプです。

CLS-212カメラインターフェースは、Camera Link仕様に準拠するコネク タ、シグナル、ピンアウト、チップセットを備えています。CLS-212は、 ビデオデータ、カメラコントロール、シリアル通信からなる「ベース」、 「ミディアム」、「フル」コンフィギュレーションのシグナルセットを 備えています。CLS-212は、2つの80ビットモードにも対応しています;10 の8ビットタップおよび8つの10ビットタップです。

CLS-212は、付属の各国対応外部電源で動作します。RS-232シリアルケーブルも付属しています。

図1-1: CLS-212ブロックダイヤグラム

1.3.1. クロックシンセサイザー

CLS-212 Camera Linkシミュレーターは、ビデオテストパターン用の参 照クロックを発生させるためにクロックシンセサイザー回路を備えて います。クロックシンセサイザーは、Camera Linkの20-85MHzの範囲 内で事実上いかなる参照クロック周波数も生成できます。参照クロッ クは、タイミング、ウィンドウ、パターン生成回路で使用され、また、 Camera Linkインターフェースを介してフレームグラバーへ送られます。 CLS-212のユーザーパラメーターすべてについて言えるように、クロ ック周波数の設定はパラメーター保存コマンドに応じて不揮発性メモ リに格納されます。保存されたクロック設定は、電源投入時またはパ ラメーター呼び出しコマンドに応じてメモリから自動的に呼び出され ます。CLS-212クロックシンセサイザーチップは、Integrated Device Technology (IDT)社製の307M-02LFです。

CLS-212コマンドラインインターフェース(CLI)は、参照クロック周波 数を選択するために2つのコマンドを備えています。「*frequency*」コ マンドでユーザーは20~85MHzの整数周波数(すなわち20、21、22 ...85)を簡単に指定できます。

端数のある周波数(すなわち27.375MHz)の場合は「synth_code」コマン ドによってクロックシンセサイザーチップにプログラミングコードを 直接入力できます。オンラインシンセサイザーコード生成ツールは Integrated Device Technology (IDT)のウェブサイト <u>http://www.idt.com/?app=calculators&device=307_02</u>から得ることができ ます。リンクに従ってウィンドウに以下のパラメーターを入力しま す:

- 「Input Frequency」 ボックスに"14.31818"と入力します。
- 望みの出力周波数を入力します。
- 望みの精度を入力します。
- 「Clock 2 Output」ボックスで"OFF"を選択します。
- 「Output Driver」ボックスで"CMOS"を選択します。
- 「Crystal Load Capacitance」ボックスで"00"を選択します。
- $\int Calculate \ J \ \pi \phi \to \phi \to \phi$

例: 望みの周波数27.375MHzでツールを動作させると、最良の精度、 最低のジターなどに基づくいくつかのコードが返されます。最良 の精度のコードは 0×248939 です。このコードをCLS-212にロード するために、コマンドラインプロンプトで「SYNTH_CODE 0x248939」とタイプします。

1.3.2. タイミングジェネレーター

CLS-212 Camera Linkシミュレーターのタイミングジェネレーターは、 Line Valid(LVAL)とFrame Valid(FVAL)タイミングシグナルを生成する ことによって基本的なビデオタイミングの特性を確立します。回路は クロックシンセサイザーにプログラムされた参照クロック周波数で動 作します。

LVALはビデオデータの「ライン」の区切りに使用されるもので、 Camera Link仕様では有効なラインデータは「high」と定義されていま す。2つのCLS-201タイミングパラメーター、LVAL_LOおよび LVAL_HIは、それぞれピクセルクロックサイクルのLVALのローと八 イの状態の持続時間を決定します。ピクセルクロックの周波数はクロ ックシンセサイザーによって決定されます。CLS-212は1から65535ま でのピクセルクロックの範囲の「LVAL low」と「LVAL high」に対応 しています。LVALのタイミング特性は図1-2に示されています。

注意: CLS-212がフレームスキャンモードで動作する場合は、LVALタ イミングシグナルが連続して出力されます。ラインスキャンモードで は、「連続」モードで動作する場合にLVALは連続します。外部同期 トリガーによるラインスキャンモードの場合は、各トリガーイベント に対応して1つのLVALパルスが発行されます。

図1-2: Line Valid (LVAL)タイミング特性

FVALはビデオデータの「フレーム」の区切りに使用されるもので、 Camera Link仕様では有効なフレームデータは「high」と定義されてい ます。2つのCLS-212タイミングパラメーター、FVAL_LOおよび FVAL_HIは、それぞれビデオラインのFVALのローと八イの状態の持 続時間を決定します。CLS-212は1から65535までのラインの範囲の 「FVAL low」と「FVAL high」に対応しています。FVALのタイミン グ特性は図1-3に示されています。

図1-3: Frame Valid (FVAL)タイミング特性

FVALとLVALタイミングシグナルの相対的な位置はプログラム可能 で、Frame Valid Setup(FVAL_SETUP)とFrame Valid Hold(FVAL_HOLD) パラメーターを使用することによって指定されます。

FVAL_SETUPとFVAL_HOLDがいずれも0に設定されると、初期設定の条件が発生して、LVALシグナルの立ち下がりエッジ(水平ブランク期間の開始)に一致してFVALシグナルの移行が起こります。この関係は図1-4に示されています。

図1-4: 初期設定のLVAL/FVALタイミングの関係

FVAL_SETUPおよびFVAL_HOLDパラメーターによって、カメラの特性の模倣やフレームグラバーの機能の確認などのためにCLS-212のタイミング特性を微調整することができます。

図1-5は、FVAL_SETUPに値を入れると、FVALの立ち上がりエッジが LVALの立ち下がりエッジの「前に」起こるようになることを示して います。またこの図は、FVAL_HOLDの値によってFVALの立ち下が リエッジがLVALの立ち下がりエッジの「後に」起こるようになるこ とも示しています。

1.3.3. ウィンドウジェネレーター

CLS-212 Camera Linkシミュレーターは、ビデオテストパターンのサイ ズと位置を決定するプログラム可能なウィンドウジェネレーターを備 えています。ウィンドウジェネレーターは、セクション1.3.2で説明し たFVALおよびLVALタイミングシグナルに関連してビデオテストパ ターンの位置とサイズを決定するために4つのパラメーターを受け付 けます。

ビデオテストパターンの開始位置は、X Offset(XOFF)とY Offset(YOFF)パラメーターによって決定されます。XOFFはラインの 中での開始位置(「x」位置)を決定し、YOFFパラメーターは開始の行 (「y」位置)を決定します。

テストパターン画像サイズは、XACTおよびXOFFパラメーターを使用して定義されます。X Active(XACT)は水平テストパターンサイズを ピクセル単位で決定し、Y Active(YACT)は垂直パターンサイズをライン単位で決定します。

図1-6は、LVALに関連して位置を決定されるテストパターンラインを 示しています。図1-7は、XOFF、YOFF、XACT、YACTに基づくウィ ンドウ生成特性を示しています。

図1-6: 水平(X) Offset/Activeパラメーター

Total Pixels per Line = LVAL_HI

図1-7: ウィンドウ生成特性

1.3.4. パターンジェネレーター

CLS-212 Camera Linkシミュレーターは、様々なテストパターンを生成 するためのプログラム可能なパターンジェネレーターを備えています。 CLS-212は、図1-8から図1-11で示すように四角形固定値、水平ウェッ ジ、垂直ウェッジ、傾斜ウェッジといったパターンを生成できます。 四角形固定値パターンは、任意の幅または高さ(すなわち、垂直線、 水平線、ドット、正方形など)、任意の位置が可能で、前景と背景の ピクセル値も選択できます。

CLS-212では、ユーザーはマルチタップおよびカラーモードにおいて 10までのピクセル出力(A/B/C/D/E/F/G/H/I/J/I/J)についてテストパター ンを個別に選択できます。この機能のために、10のPattern Select(A_PATSEL、B_PATSEL、C_PATSEL、D_PATSEL、E_PATSEL、 F_PATSEL、G_PATSEL、H_PATSEL、I_PATSEL、J_PATSEL)パラメ ーターが提供されています。PATSELパラメーターは表1-1のように定 義されています。

パターン選択値 (A_PATSEL, B_PATSEL, C_PATSEL, D_PATSEL (E_PATSEL, F_PATSEL, G_PATSEL, H_PATSEL, I_PATSEL, J_PATSEL)	ピデオテストパターン		
0	固定値(四角形)		
1	水平ウェッジ		
2	垂直ウェッジ		
3	傾斜ウェッジ		

表1-1: PATSELパラメーターの定義

固定値パターンでは、同時に出力される10までの静的ピクセル値を個 別に選択するために10のPixel Fixed Value(A_FIXED、B_FIXED、 C_FIXED、D_FIXED、E_FIXED、F_FIXED、G_FIXED、H_FIXED、 I_FIXED、J_FIXED)パラメーターが提供されています。

CLS-212では、ユーザーはバックグラウンドピクセル値を選択できま す。これらは常に、ウィンドウジェネレーターによって定義される有 効ビデオ領域の外側の初期設定出力ピクセル値です。CLS-212では、 ユーザーは10までのピクセル出力(A/B/C/D/E/F/G/H/I/J/I/J)のそれぞれ について個別にバックグラウンド値を選択できます。この機能のため に、10のPixel Background Value (A_BACK、B_BACK、C_BACK、 D_BACK、E_BACK、F_BACK、G_BACK、H_BACK、I_BACK、 J_BACK)パラメーターが提供されています。

CLS-212は、ウェッジ(水平、垂直、傾斜)を生成させる場合にピクセ ルステップサイズが選択可能です。ステップサイズは、テストパター ンのピクセルごとにピクセル値が増加する量を決定します。初期設定 値の「1」ではピクセル値は1ずつ増加します。2、4、8、16、32、64、 128のステップサイズも使用できます。高解像度(すなわち12または16 ビット)ビデオを扱っている場合に、ピクセルステップサイズ機能は 特に貴重です。CLS-212は、ユーザーが10までのピクセル出力 (A/B/C/D/E/F/G/H/I/J)について個別にステップサイズを選択できます。 この機能のために、10のPixel Step Size (A_STEP、B_STEP、C_STEP、 D_STEP、E_STEP、F_STEP、G_STEP、H_STEP、I_STEP、J_ STEP)パラメーターが提供されています。ステップサイズは、水平方 向(すなわちピクセルごと)と垂直方向(ラインごと)の両方に適用され ます。

ウェッジ(水平、垂直、傾斜)パターンを生成させる場合に、CLS-212 はユーザーが各ピクセルの初期設定値を選択することができます。こ れはビデオフレームの最初のピクセルに関連付けられた値です。それ から値は選択されたウェッジパターンに従って増加します。初期設定 値は「0」です。ピクセルの最初の値を設定する機能は、マルチタッ プカメラのシミュレートをする場合に特に貴重です。CLS-212はユー ザーが10までのピクセル出力(A/B/C/D/E/F/G/H/I/J)のそれぞれについ て最初の値を個別に選択できます。この機能に対応するために、10の 最初の値(A_INIT、B_INIT、C_INIT、D_INIT、E_INIT、F_INIT、 G_INIT、H_INIT、I_INIT、J_INIT)のパラメーターが提供されてい ます。

CLS-212の「ロール」機能は、テストパターンに動きを付けるために ウェッジパターン(水平、垂直、傾斜)に関連して使用されます。ロー ルが有効の場合、ビデオテストパターンの開始ピクセル値は各フレー ムについて増加します。これは、各フレームのパターン内のすべての ピクセル値を変化させて、表示されるパターンに「段階的な」動きを 付けます。この機能は、テスト中と画像取り込み問題のデバッグに特 に役立ちます。

CLS-212は、「ベース」、「ミディアム」、「フル」コンフィギュレ ーションについてCamera Link仕様に定義されているすべてのモードに 対応しています。これらのモードは、単純な8ビットのシングルタッ プから、4タップによる12ビット、8タップによる8ビットにまで及び ます。望みのモードはCamera Link Mode(CL_MODE)パラメーターを使 用して選択されます。CL_MODEパラメーターは表1-2のように定義さ れています。

CLS-212は、Camera Link仕様に追加されている2つの80ビットフォー マットに対応するようにアップデートされました。「DECA」モード とも呼ばれる8ビットの10タップモードに対応しています。また、提 案されている10ビットの8タップモードにも対応しています。

簡単にするために、CLS-212はA-B-C-D-E-F-G-H-I-Jで「ポート」では なく「ピクセル」を示しています。Camera Linkモードに従ってCLS-212は10までのピクセルを同時に出力します。ピクセル値はCamera Link仕様に定義されているように対応するポートに割り当てられて自 動的にマッピングされます。

CL_MODEパラメーター設定 (十進数)	Camera Linkモード		
0	8-bit x 1~3 (ベースコンフィギュレーション)		
1	10-bit x 1~2 (ベースコンフィギュレーション)		
2	12-bit x 1~2 (ベースコンフィギュレーション)		
3	14-bit x 1 (ベースコンフィギュレーション)		
4	16-bit x 1 (ベースコンフィギュレーション)		
5	24-bit RGB (ベースコンフィギュレーション)		
8	8-bit x 4 (ミディアムコンフィギュレーション)		
9	10-bit x 3~4 (ミディアムコンフィギュレーション)		
10	12-bit x 3~4 (ミディアムコンフィギュレーション)		
11	30-bit RGB (ミディアムコンフィギュレーション)		
12	36-bit RGB (ミディアムコンフィギュレーション)		
13	8-bit x 10 (フルコンフィギュレーション, 80-bit, "DECA")		
14	10-bit x 8 (フルコンフィギュレーション, 80-bit)		
15	8-bit x 8 (フルコンフィギュレーション)		

表1-1:	CL_MODEパラメーター	の定義
-------	---------------	-----

図1-8: 固定(四角形)テストパターン

図1-9: 水平ウェッジテストパターン

図1-10: 垂直ウェッジテストパターン

図1-11: 傾斜ウェッジテストパターン

1.3.5. Data Valid (DVAL) シグナル

CLS-212は、Camera LinkインターフェースでData Valid(DVAL)シグナ ルを利用する低速カメラを模倣する機能を備えています。Camera Link は、最低20MHzのピクセルクロックレートを必要とします。ピクセル レートが20MHz未満のカメラとセンサーに対応するために、Camera Linkインターフェースはカメラから受け取られるデータを有効にする Data Validシグナルを供給します。この機能によってカメラは少なく とも20MHzのピクセルクロックを供給できるようになりますが、実際 は補助の20MHzのピクセルクロックを供給することで送られるデータ の一部だけを有効にします。

Data Validの機能は、DVALおよびDVAL_MODE制御レジスタを使用 してコントロールされます。DVAL_MODEが0に設定されると、 DVALシグナルの動作は無効になり、DVALはDVAL制御レジスタに よって指定される静的状態にとどまります。DVAL_MODEが1-3に設 定されると、DVALシグナルは2、4、8番目のクロックサイクルごと に有効(八イ)になります。DVALシグナルの八イの状態に一致してデ ータの変化が起こります。CLS-212からのビデオテストパターンデー タとタイミングシグナルは、DVALシグナルを利用しているカメラか ら送られるオーバーサンプリングデータをシミュレートするために 2/4/8のクロックサイクルで自動的に模写されます(すなわち区切られ ます)。これは、Camera Linkシステムで低ピクセルクロック周波数の カメラに対応するためのDVALの典型的な使用法です。

詳しくはDVALおよびDVAL制御レジスタの定義を参照してください。

1.3.6. 積算タイマー

CLS-212は、カメラ露光特性をシミュレートするのに使用される場合 がある積算タイマーを組み込んでいます。積算タイマーは、固定クロ ック参照から作動して、1msのステップで0~65秒の範囲があります。

積算タイマーは、積算区間を表す期間についてビデオフレームの生成 を遅らせることによってカメラ積算(露光)の特性を模倣するのに使用 されます。積算タイマーは連続またはトリガー(外部同期)モードに関 連して使用される場合があります。

連続モードでは、積算タイマーはビデオフレームレートを決定し、非 常に長い(65秒までの)積算期間を模倣するように設定することができ ます。

トリガー(外部同期)モードでは、トリガーイベントに対応したビデオ フレームの生成は、積算区間を模倣するためにカウンターにプログラ ムされた時間まで遅らされます。

1.3.7. マイクロコントローラー

CLS-212 Camera Linkシミュレーターは、コマンドラインインターフェ ース(CLI)を実行するのにマイクロコントローラーデバイスを利用し ます。CLIによって、PCまたはワークステーションでCLS-212ファン クションのコントロールとモニターができます。マイクロコントロー ラーは、CLIによって受け取られたコマンドを解釈して、それに従っ てCLS-212回路を設定します。PC/ワークステーションとCLS-212との 間のシリアル通信プロトコルは、マイクロコントローラーに内蔵され た万能非同期送受信機(UART)によってサポートされます。

マイクロコントローラーは、ユーザーが選択したパラメーターを格納 するための不揮発性コンフィギュレーションメモリを備えています。 電源投入時の初期化で、CLS-212はメモリに格納されたパラメーター セットを自動的に呼び出します。この機能によって、コントロールポ ートを接続しなくてもCLS211の操作が可能になります。CLIパラメー ターSave(SAVE)コマンドは、現在のパラメーターセットをコンフィギ ュレーションメモリに格納するのに使用されます。CLIパラメーター Recall(RECALL)コマンドは、現在格納されているパラメーターセット を使用してCLS-212を設定します。

1.3.8. RS-232シリアルポート

CLS-212 Camera Linkシミュレーターは、CLS-201をホストPCまたはワ ークステーションにリンクするために業界標準のRS-232シリアルポー トを備えています。シリアルポートは、RS-232シグナル特性と標準の 9ピンD-Sub(DB9)コネクタを備えています。シリアルポートプロトコ ルの設定は一般的なもので、表1-3のように定義されています。コネ クタに関する情報はセクション2.2で示しています。

ポート特性	設定
伝送速度(ビット/秒)	9600
データビット	8
パリティ	なし
ストップビット	1
フローコントロール	なし

表1-3:	RS-232シ	リアルポー	トの設定
-------	---------	-------	------

1.3.9. USB対応 (オプション)

代わりに、CLS-212 Camera Linkシミュレーターは、オプションの外部 USBシリアルアダプターを使用してホストコンピュータのUSBポート に接続することもできます。これでシリアルポートが備わっていない 新しいデスクトップおよびラップトップコンピュータを使用するのに 問題がなくなります。USBシリアルアダプターの片側はPCのUSBポー トに挿入します。アダプターの他方はCLS-212に付属のRS-232シリア ルケーブルに接続します。接続したら、PCは標準のRS-232シリアル ポートと同様にPCを使用してアクセスされる新しいシリアルCOMポ ートを作成します。ドライバーソフトウェアのインストールが必要な 場合があります。

USBシリアル変換器はVivid Engineeringから手ごろな価格で入手できます。このような変換器はコンピュータ販売店からも入手できます。

1.3.10. カメラコントロール入力

CLS-212 Camera Linkシミュレーターは、Camera Link仕様に定義され ているようにフレームグラバーから4つのCamera Control(CC1、CC2、 CC3、CC4)を受け取ります。

カメラコントロールシグナルの状態はCLIを使用してモニターでき、 フレーム/ライン出力を開始させる外部同期入力として使用できます。

CLS-212は、外部同期トリガーとして使用するためのカメラコントロ ール入力(CC1、CC2、CC3、CC4)の選択をプログラムできます。また、 外部同期トリガーの極性(立ち上がりエッジまたは立ち下がりエッジ) もプログラム可能です。設定されると、CLS-212は受け取ったそれぞ れの外部同期トリガーに対応してシングルフレーム(または、ライン スキャンモードの場合はライン)を送ります。

1.3.11. チャンネルリンクトランスミッター

CLS-212 Camera Linkシミュレーターは、Camera Link仕様に準拠して ビデオタイミング、データ、クロックを出力するためのチャンネルリ ンクトランスミッターデバイスを備えています。3台のチャンネルリ ンクトランスミッターデバイスが使用され、1台は「ベース」コネク タ用、もう2台は「ミディアム/フル」コネクタ用です。最大85MHzの 「拡張」カメラリンクピクセルクロック周波数に対応するために高性 能デバイスが利用されています。

CLS-212は、チャンネルリンクトランスミッターチップを個別に無効 にする機能を備えています。これは、関連するCamera Linkインターフ ェースシグナルのすべての動作を停止させて、ケーブルのテストと PoCLフレームグラバーのSafePowerの機能をテストするのに役立ちま す。CLS-212 PoCLの機能について詳しくはセクション1.3.12を参照し てください。

チャンネルリンクトランスミッターチップはナショナルセミコンダク 夕製DS90CR287MTDです。

1.3.12. Power over Camera Link (PoCL)の機能

Camera Link仕様には、Cable Linkケーブルを通してフレームグラバー を経てカメラに電力を供給するタイプも含まれています。これは Power over Camera Linkという名称で、略してPoCLと呼ばれます。 PoCLカメラへ安全に通電するためのSafePowerの機能を含むPoCLの機 能についてはCamera Link仕様書に詳しく述べられています。以下のセ クションでは、ユーザーがすでにCamera Link、PoCL、SafePowerにつ いてよく知っているものと仮定して説明します。

CLS-211シミュレーターがベースになっていますが、CLS-212はPower Over Camera Link (PoCL)インターフェースのテストと実行のために以 下の機能が追加されています。これらの機能は、PoCLケーブルと PoCLフレームグラバーのSafePowerの機能をテストする場合に特に役 立ちます:

- Miniature Camera Link (miniCL)コネクタ
- 10Kオームの負荷抵抗
- 電源検出
- クロック無効化

CLS-212 Camera Linkシミュレーターは、PoCLカメラに一般的に使用 されるMiniature Camera Link (miniCL)コネクタを備えています。これ によってPoCLフレームグラバーとカメラをフレームグラバーに接続 するのに使用されるPoCLケーブルのテストが楽になります。

CLS-212のCamera Linkインターフェースは、Camera Linkカメラを識別 するためにCamera Link仕様に指定されている10Kオームの負荷抵抗を 含んでいます。こうしてCLS-212は、PoCLに対応するフレームグラバ ーへのPoCLカメラのようになります。10Kの負荷は常に存在します。 CLS-212は、CLS-212を非PoCLカメラのようにするための10Kオーム の負荷を無効にする機能は含んでいません。

CLS-212は、フレームグラバーからの電力の存在を検出します。PoCL 電力はCLIを経てホストコンピュータに得られるようになります。電 力の存在は前面パネルのインディケータによって示されます。

カメラに安全に通電するのに使用されるPoCL SafePower機能はカメラ からのクロックの存在をモニターします。通電されたカメラからのク ロックシグナルが消えると、SafePower PoCLフレームグラバーは電力 を切断します(つまり、SafePowerカメラが切断された場合のようにで す)。

CLS-212は、ユーザーが3つのチャンネルリンクトランスミッター(つ まりベース、ミディアム、フル)デバイスのどれかを無効にできるよ うにしてこの機能の実行/テストに対応しています。トランスミッタ ーチップが無効になると、関連するクロックが止まります。CLS-212 Channel Linkトランスミッターデバイスについてはさらにセクション 1.3.11を参照してください。

1.4. コマンドラインインターフェース (CLI)

CLS-212 Camera Linkシミュレーターは、PC、Mac、ワークステーション、 ターミナルなどでCLS-201のコントロールとモニターが可能になるコマン ドラインインターフェース(CLI)を備えています。CLS-201は、特別なソ フトウェアは不要です。

CLS-212をホストコンピュータのRS-232ポート(またはオプションのアダ プターを使用してUSBポート)に接続すると、標準の通信ソフトウェアを 使用してCLS-212にアクセスできます。Windowsソフトウェアに含まれる HyperTerminalは、ほとんどの基本的な通信ソフトウェアパッケージと同 様にうまく動作します。初期設定では、CLS-212は受信したすべての文字 を反映します。Echo Control(ECHO)コマンドによって、反映(Echo)の有効/ 無効が可能です。特に大きなコンフィギュレーションファイルをCLS-212 にダウンロードする場合など、反映を無効にしたほうがよい場合があり ます。シリアルポートの設定はセクション1.3.7に挙げています。

<u>HyperTerminal</u> 備考:

CLS-212シリアルポートインターフェースはフローコントロールを組み込 んでいません。データバッファリングが実行されている間に、特に大き いコンフィギュレーションファイルをダウンロードする場合に、CLS-212 受信バッファーはオーバーランする可能性があります。これは、コンソ ールの文字が失われるか/またはCLS-212から「invalid entry」が返される ので目でわかります。これらの問題を避けるのに以下のメソッドが使用 されることがあります:

- 大きいコンフィギュレーションファイルをダウンロードするときにメ ッセージエコーをオフにします。エコーのターニングはEcho Control(ECHO)コマンドで実行されます。
- HyperTerminalで「*Files*」メニューをクリックします。それから 「*Properties* - *Settings* -*ASCII Setup*」をクリックします-「*character delay*」および/または「*line delay*」に「1」を入力します。

電源投入時に、CLS-212はシステムの初期化を実行して以下のようなメッセージを返します:

初期化の後でCLS-212は以下のようなメッセージをPCへ送ります:

CLS212 Camera Link Simulator CLI Vivid Engineering Rev 1.00

CLS-212は、以下のセクションで定義されているコマンドを認識します。 DUMP、SAVE、RECALLコマンドは特に便利です。シンタックスが無効の場合、CLS-212は以下のような反応を返します:

invalid entry

数値入力はすべて、小数または16進法(0x...)を使用して行われます。唯一 の例外は、常に16進法で入力される長いClock Synthesizer Code(SYNTH_CODE)コマンドです。

CLS-212パラメーターは、キーボードから手で入力することも、コンフィ ギュレーションファイルとしてCLS-212へダウンロードすることもできま す。コンフィギュレーションファイルは、プレーンテキスト形式(すなわ ち「.txt」ファイル)なので、エディタ、ワードプロセッサなどでも作成で きます。読みやすくするためにスペースや改行を挿入することは自由で す。コメントはバックスラッシュ「/」を使用して示され、ラインの始め かコマンドの後に置かれます。以下はコンフィギュレーションファイル にコメントを付けた例です。すべての数値情報は少数または16進(0x...)形 式なので注意してください。コンフィギュレーションファイルの例はセ クション1-5にあります。

11	Camera	Link Confi	gur	ation	File	
11	- synta	ax example				
LVAL	_LO	0x0020	//	hexade	ecimal	notation
LVAL	HI	500	11	decima	l nota	tion
Fval	lo	0x20	//	hexade	ecimal	notation

テキスト(.txt)ファイルをCLS-212にダウンロードする方法は、使用する通信 ソフトウェアによって異なります。(Windows に含まれる) HyperTerminalの場合は、「Transfer」ツールバーをクリックして「Send Text File」を選択します。するとHyperTerminalはファイルの位置を求めて きます。

CLS-212コマンドセットは以下のセクションで定義されています。

1.4.1. Line Valid Low (LVAL_LO)

Line Valid Low(LVAL_LO)コマンドは、クロック周期でのCamera Link Line Validタイミングシグナルの「ロー」(論理0)部分の持続時間を設 定するのに使用されます。さらに詳しくはセクション1.3.2を参照して ください。

パラメーター: LVAL_LO 範囲: 1-65535 クロック (*hex 0x1 - 0xFFFF*) タイプ: 読み出し/書き込み

書き込み例: LVAL_LO 0xA000 *読み出し例*: LVAL_LO ?

1.4.2. Line Valid High (LVAL_HI)

Line Valid High (LVAL_HI)コマンドは、クロック周期でのCamera Link Line Validタイミングシグナルの「ハイ」(論理1)部分の持続時間を設 定するのに使用されます。さらに詳しくはセクション1.3.2を参照して ください。

パラメーター: LVAL_HI 範囲: 1-65535 クロック (hex 0x1 - 0xFFFF) タイプ: 読み出し/書き込み

書き込み例: LVAL_HI 0xB000 *読み出し例*: LVAL_HI ?

1.4.3. Frame Valid Low (FVAL_LO)

Frame Valid Low (FVAL_LO)コマンドは、ラインでのCamera Link Frame Validタイミングシグナルの「ロー」(論理0)部分の持続時間を設 定するのに使用されます。さらに詳しくはセクション1.3.2を参照して ください。

パラメーター: FVAL_LO 範囲: 1-65535 ライン (*hex 0x1 - 0xFFFF*) タイプ: 読み出し/書き込み

書き込み例: FVAL_LO 0xC000 *読み出し例*: FVAL_LO ?

1.4.4. Frame Valid High (FVAL_HI)

Frame Valid High (FVAL_HI)コマンドは、ラインでのCamera Link Frame Validタイミングシグナルの「ハイ」(論理1)部分の持続時間を設 定するのに使用されます。さらに詳しくはセクション1.3.2を参照して ください。

パラメーター: FVAL_HI 範囲: 1-65535 ライン (*hex 0x1 - 0xFFFF*) タイプ: 読み出し/書き込み

書き込み例: FVAL_HI 0xD000 *読み出し例*: FVAL_HI ?

1.4.5. Frame Valid Setup (FVAL_SETUP)

Frame Valid Setup(FVAL_SETUP)コマンドは、Camera Link FVALシグ ナルの立ち上がりエッジがLVALシグナルの立ち下がりエッジの前に 現れるクロック周期の数を決定します。FVAL_SETUPを0に設定する と、FVALの立ち上がりエッジはLVALの立ち下がりエッジに一致し ます。さらに詳しくはセクション1.3.2を参照してください。

パラメーター: FVAL_SETUP 範囲: 0-65535 クロック (*hex 0x0 - 0xFFFF*) タイプ: 読み出し/書き込み

書き込み例: FVAL_SETUP 0xE000 *読み出し例*: FVAL_SETUP ?

1.4.6. Frame Valid Hold (FVAL_HOLD)

Frame Valid Hold (FVAL_HOLD)コマンドは、Camera Link FVALシグナ ルの立ち下がりエッジがLVALシグナルの立ち下がりエッジの後に現 れるクロック周期の数を決定します。FVAL_HOLDを0に設定すると、 FVALの立ち下がりエッジはLVALの立ち下がりエッジに一致します。 さらに詳しくはセクション1.3.2を参照してください。

パラメーター: FVAL_HOLD 範囲: 0-65535 クロック (hex 0x0 - 0xFFFF) タイプ: 読み出し/書き込み

書き込み例: FVAL_HOLD 0x1000

読み出し例: FVAL_HOLD ?

1.4.7. X Offset (X_OFFSET)

X Offset(X_OFFSET)コマンドは、Camera Link LVALシグナルの立ち上 がりエッジからテストパターンデータの開始(すなわち水平開始位置) までのクロック周期の数を決定します。X_OFFSETを0に設定すると、 ラインテストパターンデータはLVALの立ち上がりエッジに続いてす ぐに開始します。さらに詳しくはセクション1.3.3を参照してください。

パラメーター: X_OFFSET 範囲: 0-65535 クロック (hex 0x0 - 0xFFFF) タイプ: 読み出し/書き込み

書き込み例: X_OFFSET 0x2000 *読み出し例*: X_OFFSET ?

1.4.8. X Active (X_ACTIVE)

X Active(X_ACTIVE)コマンドは、クロック周期におけるテストパターンの水平サイズ(x寸法)を決定します。さらに詳しくはセクション1.3.3 を参照してください。

パラメーター: X_ACTIVE 範囲: 1-65535 クロック (*hex 0x1 - 0xFFFF*) タイプ: 読み出し/書き込み

書き込み例: X_ACTIVE 0x3000 *読み出し例*: X_ACTIVE ?

1.4.9. Y Offset (Y_OFFSET)

Y Offset (Y_OFFSET)コマンドは、Camera Link FVALシグナルの立ち 上がりエッジからテストパターンデータの開始(すなわち垂直開始位 置)までのラインの数を決定します。Y_OFFSETを0に設定すると、テ ストパターンデータは次のラインから開始します。さらに詳しくはセ クション1.3.3を参照してください。

パラメーター: Y_OFFSET 範囲: 0-65535 クロック (*hex 0x0 - 0xFFFF*) タイプ: 読み出し/書き込み

書き込み例: Y_OFFSET 0x4000 *読み出し例*: Y_OFFSET ?

1.4.10. Y Active (Y_ACTIVE)

Y Active (Y_ACTIVE)コマンドは、ラインにおけるテストパターンの 垂直サイズ(y寸法)を決定します。さらに詳しくはセクション1.3.3を参 照してください。

パラメーター: Y_ACTIVE 範囲: 1-65535 ライン (*hex 0x1 - 0xFFFF*) タイプ: 読み出し/書き込み

書き込み例: Y_ACTIVE 0x5000 *読み出し例*: Y_ACTIVE ?

1.4.11. Pixel "A" Pattern Select (A_PATSEL)

Pixel "A" Pattern Select (A_PATSEL)コマンドは、テストパターンをビ デオデータピクセル「A」に割り当てます。出力モードに応じて、 CLS-212は10までのピクセルを同時(A、B、C、D、E、F、G、H、I、 J)に出力します(CL_MODEコマンドを参照してください)。さらに詳し くはセクション1.3.4を参照してください。

書き込み例: A_PATSEL 0x0 読み出し例: A_PATSEL ?

1.4.12. Pixel "B" Pattern Select (B_PATSEL)

Pixel "B" Pattern Select (B_PATSEL)コマンドは、テストパターンをビデオデータピクセル「B」に割り当てます。出力モードに応じて、 CLS-212は10までのピクセルを同時(A、B、C、D、E、F、G、H、I、J)に出力します(CL_MODEコマンドを参照してください)。さらに詳し くはセクション1.3.4を参照してください。

パラメーター: B_PATSEL 設定: 0 (0x0) = 固定値 1 (0x1) = 水平ウェッジ 2 (0x2) = 垂直ウェッジ 3 (0x3) = 傾斜ウェッジ タイプ: 読み出し/書き込み

書き込み例: B_PATSEL 0x2 読み出し例: B_PATSEL ?

1.4.13. Pixel "C" Pattern Select (C_PATSEL)

Pixel "C" Pattern Select (C_PATSEL)コマンドは、テストパターンをビ デオデータピクセル「C」に割り当てます。出力モードに応じて、 CLS-212は10までのピクセルを同時(A、B、C、D、E、F、G、H、I、 J)に出力します(CL_MODEコマンドを参照してください)。さらに詳し くはセクション1.3.4を参照してください。

パラメーター: C_PATSEL

設定: 0 (0x0) = 固定値

 1 (0x1) = 水平ウェッジ
 2 (0x2) = 垂直ウェッジ
 3 (0x3) = 傾斜ウェッジ

タイプ: 読み出し/書き込み

書き込み例: C_PATSEL 0x2 *読み出し例*: C_PATSEL ?

1.4.14. Pixel "D" Pattern Select (D_PATSEL)

Pixel "D" Pattern Select (D_PATSEL)コマンドは、テストパターンをビ デオデータピクセル「D」に割り当てます。出力モードに応じて、 CLS-212は10までのピクセルを同時(A、B、C、D、E、F、G、H、I、 J)に出力します(CL_MODEコマンドを参照してください)。さらに詳し くはセクション1.3.4を参照してください。

パラメーター: D_PATSEL

設定:	0(0x0)= 固定値
	1(0x1) = 水平ウェッジ
	2(0x2)= 垂直ウェッジ
	3(0x3)= 傾斜ウェッジ
タイプ:	読み出し/書き込み

書き込み例: D_PATSEL 0x3 *読み出し例*: D_PATSEL ?

1.4.15. Pixel "E" Pattern Select (E_PATSEL)

Pixel "E" Pattern Select (E_PATSEL)コマンドは、テストパターンをビ デオデータピクセル「E」に割り当てます。出力モードに応じて、 CLS-212は10までのピクセルを同時(A、B、C、D、E、F、G、H、I、 J)に出力します(CL_MODEコマンドを参照してください)。さらに詳し くはセクション1.3.4を参照してください。

パラメーター: E_PATSEL 設定: 0 (0x0) = 固定値 1 (0x1) = 水平ウェッジ

2(0x2) = 垂直ウェッジ 3(0x3) = 傾斜ウェッジ タイプ: 読み出し/書き込み

書き込み例: E_PATSEL 0x3 *読み出し例*: E_PATSEL ?

1.4.16. Pixel "F" Pattern Select (F_PATSEL)

Pixel "F" Pattern Select (F_PATSEL)コマンドは、テストパターンをビデ オデータピクセル「F」に割り当てます。出力モードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、F、G、H、I、J)に 出力します(CL_MODEコマンドを参照してください)。さらに詳しく はセクション1.3.4を参照してください。

パラメーター: F_PATSEL

設定:	0(0x0)= 固定値
	1(0x1) = 水平ウェッジ
	2(0x2)= 垂直ウェッジ
	3(0x3)= 傾斜ウェッジ
タイプ:	読み出し/書き込み

書き込み例: F_PATSEL 0x3 *読み出し例*: F_PATSEL ?

1.4.17. Pixel "G" Pattern Select (G_PATSEL)

Pixel "G" Pattern Select (G_PATSEL)コマンドは、テストパターンをビデオデータピクセル「G」に割り当てます。出力モードに応じて、 CLS-212は10までのピクセルを同時(A、B、C、D、E、F、G、H、I、J)に出力します(CL_MODEコマンドを参照してください)。さらに詳し くはセクション1.3.4を参照してください。

パラメーター: G_PATSEL

設定:	0(0x0)= 固定値
	1(0x1)= 水平ウェッジ
	2(0x2)= 垂直ウェッジ
	3(0x3)= 傾斜ウェッジ
タイプ:	読み出し/書き込み

書き込み例: G_PATSEL 0x3 *読み出し例*: G_PATSEL ?

1.4.18. Pixel "H" Pattern Select (H_PATSEL)

Pixel "H" Pattern Select (H_PATSEL)コマンドは、テストパターンをビ デオデータピクセル「H」に割り当てます。出力モードに応じて、 CLS-212は10までのピクセルを同時(A、B、C、D、E、F、G、H、I、 J)に出力します(CL_MODEコマンドを参照してください)。さらに詳し くはセクション1.3.4を参照してください。

パラメーター: H_PATSEL

設定: 0(0x0) = 固定値

 1(0x1) = 水平ウェッジ
 2(0x2) = 垂直ウェッジ
 3(0x3) = 傾斜ウェッジ

タイプ: 読み出し/書き込み

書き込み例: H_PATSEL 0x3 読み出し例: H_PATSEL ?

1.4.19. Pixel "I" Pattern Select (I_PATSEL) Pixel "I" Pattern Select (I_PATSEL)コマンドは、テストパターンをビデ オデータピクセル「I」に割り当てます。出力モードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、F、G、H、I、J)に 出力します(CL_MODEコマンドを参照してください)。さらに詳しく はセクション1.3.4を参照してください。

パラメーター: I_PATSEL

設定:	0(0x0)= 固定値
	1(0x1) = 水平ウェッジ
	2(0x2)= 垂直ウェッジ
	3(0x3)= 傾斜ウェッジ
タイプ:	読み出し/書き込み

書き込み例: I_PATSEL 0x3 読み出し例: I_PATSEL ?

1.4.20. Pixel "J" Pattern Select (J_PATSEL)

Pixel "J" Pattern Select (J_PATSEL)コマンドは、テストパターンをビデ オデータピクセル「J」に割り当てます。出力モードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、F、G、H、I、J)に 出力します(CL_MODEコマンドを参照してください)。さらに詳しく はセクション1.3.4を参照してください。

パラメーター: J_PATSEL 設定: 0 (0x0) = 固定値 1 (0x1) = 水平ウェッジ

2 (0x2) = 垂直ウェッジ 3 (0x3) = 傾斜ウェッジ 詰ひ出し(またいひ

タイプ: 読み出し/書き込み

書き込み例:	J_PATSEL	0x3
読み出し例:	J_PATSEL	?

1.4.21. Pixel "A" Fixed Value (A_FIXED)

Pixel "A" Fixed Value (A_FIXED)コマンドは、固定パターンが選択され る場合の(A_PATSEL = 0)、ピクセル「A」の値を決定します。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: A_FIXED

範囲: ピクセルサイズによる。0-65535 (hex 0x0 - 0xFFFF) 最大。タイプ: 読み出し/書き込み

書き込み例: A_FIXED 0xA5A5 *読み出し例*: A_FIXED ?

1.4.22. Pixel "B" Fixed Value (B_FIXED)

Pixel "B" Fixed Value (B_FIXED)コマンドは、固定パターンが選択され る場合の(B_PATSEL = 0)、ピクセル「B」の値を決定します。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: B_FIXED 範囲: ピクセルサイズによる。0-4095 (*hex 0x0 - 0xFFF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: B_FIXED 0x5A5 *読み出し例*: B_FIXED ?

1.4.23. Pixel "C" Fixed Value (C_FIXED)

Pixel "C" Fixed Value (C_FIXED)コマンドは、固定パターンが選択され る場合の(C_PATSEL = 0)、ピクセル「C」の値を決定します。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: C_FIXED 範囲: ピクセルサイズによる。0-4095 (*hex 0x0 - 0xFFF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: C_FIXED 0x3C3 *読み出し例*: C_FIXED ?

1.4.24. Pixel "D" Fixed Value (D_FIXED)

Pixel "D" Fixed Value (D_FIXED)コマンドは、固定パターンが選択され る場合の(D_PATSEL = 0)、ピクセル「D」の値を決定します。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: D_FIXED 範囲: ピクセルサイズによる。0-4095 (*hex 0x0 - 0xFFF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: D_FIXED 0xC3C 読み出し例: D_FIXED ?

1.4.25. Pixel "E" Fixed Value (E_FIXED)

Pixel "E" Fixed Value (E_FIXED)コマンドは、固定パターンが選択され る場合の(E_PATSEL = 0)、ピクセル「E」の値を決定します。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: E_FIXED 範囲: ピクセルサイズによる。0-1023 (*hex 0x0 - 0x3FF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: E_FIXED 0x23C *読み出し例*: E_FIXED ?

1.4.26. Pixel "F" Fixed Value (F_FIXED)

Pixel "F" Fixed Value (F_FIXED)コマンドは、固定パターンが選択され る場合の(F_PATSEL = 0)、ピクセル「F」の値を決定します。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: F_FIXED 範囲: ピクセルサイズによる。0-1023 (*hex 0x0 - 0x3FF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: F_FIXED 0x23C *読み出し例*: F_FIXED ?

1.4.27. Pixel "G" Fixed Value (G_FIXED)

Pixel "G" Fixed Value (G_FIXED)コマンドは、固定パターンが選択され る場合の(G_PATSEL = 0)、ピクセル「G」の値を決定します。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: G_FIXED 範囲: ピクセルサイズによる。0-1023 (*hex 0x0 - 0x3FF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: G_FIXED 0x23C *読み出し例*: G_FIXED ?

1.4.28. Pixel "H" Fixed Value (H_FIXED)

Pixel "H" Fixed Value (H_FIXED)コマンドは、固定パターンが選択され る場合の(H_PATSEL = 0)、ピクセル「H」の値を決定します。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: H_FIXED 範囲: ピクセルサイズによる。0-1023 (*hex 0x0 - 0x3FF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: H_FIXED 0x23C *読み出し例*: H_FIXED ?

1.4.29. Pixel "I" Fixed Value (I_FIXED)

Pixel "I" Fixed Value (I_FIXED)コマンドは、固定パターンが選択され る場合の(I_PATSEL = 0)、ピクセル「I」の値を決定します。出力モー ドに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、F、 G、H、I、J)に出力します(CL_MODEコマンドを参照してください)。 さらに詳しくはセクション1.3.4を参照してください。

パラメーター: I_FIXED 範囲: 0-255 (hex 0x0 - 0xFF) タイプ: 読み出し/書き込み *き込み例:* I_FIXED 0x3C *読み出し例:* I_FIXED ?

1.4.30. Pixel "J" Fixed Value (J_FIXED)

Pixel "J" Fixed Value (J_FIXED)コマンドは、固定パターンが選択され る場合の(J_PATSEL = 0)、ピクセル「J」の値を決定します。出力モー ドに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、F、 G、H、I、J)に出力します(CL_MODEコマンドを参照してください)。 さらに詳しくはセクション1.3.4を参照してください。

パラメーター: J_FIXED 範囲: 0-255 (*hex 0x0 - 0xFF*) タイプ: 読み出し/書き込み

書き込み例: J_FIXED 0x3C 読み出し例: J_FIXED ?

1.4.31. Pixel "A" Background Value (A_BACK)

Pixel "A" Background Value (A_BACK)コマンドはビデオデータピクセ ル「A」の初期設定値を決定します。CLS-212がビデオテストパター ンデータを出力しない場合は常に初期設定値が出力されます。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: A_BACK 範囲: ピクセルサイズによる。0-65535 (hex 0x0 - 0xFFFF) 最大。 タイプ: 読み出し/書き込み

書き込み例: A_BACK 0xA5A5 *読み出し例*: A_BACK ?

1.4.32. Pixel "B" Background Value (B_BACK)

Pixel "B" Background Value (B_BACK)コマンドはビデオデータピクセ ル「B」の初期設定値を決定します。CLS-212がビデオテストパター ンデータを出力しない場合は常に初期設定値が出力されます。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

範囲: ピクセルサイズによる。0-4095 (hex 0x0 - 0xFFF) 最大。タイプ: 読み出し/書き込み

書き込み例: B_BACK 0x5A5 *読み出し例*: B_BACK ?

1.4.33. Pixel "C" Background Value (C_BACK)

Pixel "C" Background Value (C_BACK)コマンドはビデオデータピクセ ル「C」の初期設定値を決定します。CLS-212がビデオテストパター ンデータを出力しない場合は常に初期設定値が出力されます。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: C_BACK 範囲: ピクセルサイズによる。0-4095 (hex 0x0 - 0xFFF) 最大。 タイプ: 読み出し/書き込み

書き込み例: C_BACK 0xC3C *読み出し例*: C_BACK ?

1.4.34. Pixel "D" Background Value (D_BACK)

Pixel "D" Background Value (D_BACK)コマンドはビデオデータピクセ ル「D」の初期設定値を決定します。CLS-212がビデオテストパター ンデータを出力しない場合は常に初期設定値が出力されます。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: D_BACK 範囲: ピクセルサイズによる。0-4095 (*hex 0x0 - 0xFFF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: D_BACK 0x3C3 *読み出し例*: D_BACK ?

1.4.35. Pixel "E" Background Value (E_BACK)

Pixel "E" Background Value (E_BACK)コマンドはビデオデータピクセ ル「E」の初期設定値を決定します。CLS-212がビデオテストパター ンデータを出力しない場合は常に初期設定値が出力されます。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: E_BACK 範囲: ピクセルサイズによる。0-1023 (*hex 0x0 - 0x3FF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: E_BACK 0x2C3 *読み出し例*: E_BACK ?

1.4.36. Pixel "F" Background Value (F_BACK)

Pixel "F" Background Value (F_BACK)コマンドはビデオデータピクセル 「F」の初期設定値を決定します。CLS-212がビデオテストパターンデ ータを出力しない場合は常に初期設定値が出力されます。出力モード に応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、F、 G、H、I、J)に出力します(CL_MODEコマンドを参照してください)。 さらに詳しくはセクション1.3.4を参照してください。

パラメーター: F_BACK 範囲: ピクセルサイズによる。0-1023 (*hex 0x0 - 0x3FF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: F_BACK 0x2C3 *読み出し例*: F_BACK ?

1.4.37. Pixel "G" Background Value (G_BACK)

Pixel "G" Background Value (G_BACK)コマンドはビデオデータピクセ ル「G」の初期設定値を決定します。CLS-212がビデオテストパター ンデータを出力しない場合は常に初期設定値が出力されます。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: G_BACK 範囲: ピクセルサイズによる。0-1023 (*hex 0x0 - 0x3FF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: G_BACK 0x2C3 *読み出し例*: G_BACK ?

1.4.38. Pixel "H" Background Value (H_BACK)

Pixel "H" Background Value (H_BACK)コマンドはビデオデータピクセ ル「H」の初期設定値を決定します。CLS-212がビデオテストパター ンデータを出力しない場合は常に初期設定値が出力されます。出力モ ードに応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、 F、G、H、I、J)に出力します(CL_MODEコマンドを参照してくださ い)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: H_BACK 範囲: ピクセルサイズによる。0-1023 (*hex 0x0 - 0x3FF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: H_BACK 0x2C3 *読み出し例*: H_BACK ?

1.4.39. Pixel "I" Background Value (I_BACK)

Pixel "I" Background Value (I_BACK)コマンドはビデオデータピクセル 「I」の初期設定値を決定します。CLS-212がビデオテストパターンデ ータを出力しない場合は常に初期設定値が出力されます。出力モード に応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、F、 G、H、I、J)に出力します(CL_MODEコマンドを参照してください)。 さらに詳しくはセクション1.3.4を参照してください。

パラメーター: I_BACK 範囲: 0-255 (*hex 0x0 - 0xFF*) タイプ: 読み出し/書き込み

書き込み例: I_BACK 0xC3 *読み出し例*: I BACK ?

1.4.40. Pixel "J" Background Value (J_BACK)

Pixel "J" Background Value (J_BACK)コマンドはビデオデータピクセル 「J」の初期設定値を決定します。CLS-212がビデオテストパターンデ ータを出力しない場合は常に初期設定値が出力されます。出力モード に応じて、CLS-212は10までのピクセルを同時(A、B、C、D、E、F、 G、H、I、J)に出力します(CL_MODEコマンドを参照してください)。 さらに詳しくはセクション1.3.4を参照してください。

パラメーター: J_BACK 範囲: 0-255 (*hex 0x0 - 0xFF*) タイプ: 読み出し/書き込み

書き込み例: J_BACK 0xC3 *読み出し例*: J_BACK ?

1.4.41. Pixel "A" Pattern Step (A_STEP)

Pixel "A" Pattern Step(A_STEP)コマンドは、ウェッジ(水平、垂直、傾 斜)ビデオテストパターンで「A」ピクセル値が増加する量を決定しま す。出力モードに応じて、CLS-212は10までのピクセルを同時(A、B、 C、D、E、F、G、H、I、J)に出力します(CL MODEコマンドを参照し てください)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: A_STEP

- 設定: 1 (0x1) = 増加量は1 (0,1,2...) 2 (0x2) = 増加量は2 (0,2,4...) 4 (0x2) = 増加量は4 (0,4,8...) 8 (0x8) = 増加量は8 (0,8,16...) 16 (0x10) = 増加量は16 (0,16,32...) 32 (0x20) = 増加量は32 (0,32,64...) 64 (0x40) = 増加量は64 (0,64,128...) 128 (0x80) = 増加量は128 (0,128,256...) タイプ:
- 読み出し/書き込み
- 書き込み例: A_STEP 0x2
- 読み出し例: A STEP ?

1.4.42. Pixel "B" Pattern Step (B_STEP)

Pixel "B" Pattern Step(B_STEP)コマンドは、ウェッジ(水平、垂直、傾 斜)ビデオテストパターンで「B」ピクセル値が増加する量を決定しま す。出力モードに応じて、CLS-212は10までのピクセルを同時(A、B、 C、D、E、F、G、H、I、J)に出力します(CL_MODEコマンドを参照し てください)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: B_STEP

- 設定: 1 (0x1) = 増加量は1 (0,1,2...) 2 (0x2) = 増加量は2 (0,2,4...) 4 (0x2) = 増加量は4 (0,4,8...) 8 (0x8) = 増加量は8 (0,8,16...) 16 (0x10) = 増加量は16 (0,16,32...) 32 (0x20) = 増加量は32 (0,32,64...) 64 (0x40) = 増加量は64 (0,64,128...)128 (0x80) = 増加量は128 (0,128,256...)
- タイプ: 読み出し/書き込み
- *書き込み例*: B_STEP 0x2
- *読み出し例*: B_STEP ?

1.4.43. Pixel "C" Pattern Step (C_STEP)

Pixel "C" Pattern Step(C_STEP)コマンドは、ウェッジ(水平、垂直、傾 斜)ビデオテストパターンで「C」ピクセル値が増加する量を決定しま す。出力モードに応じて、CLS-212は10までのピクセルを同時(A、B、 C、D、E、F、G、H、I、J)に出力します(CL_MODEコマンドを参照し てください)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: C_STEP

- 設定: 1 (0x1) = 増加量は1 (0,1,2...) 2 (0x2) = 増加量は2 (0,2,4...) 4 (0x2) = 増加量は4 (0,4,8...) 8 (0x8) = 増加量は8 (0,8,16...) 16 (0x10) = 増加量は16 (0,16,32...) 32 (0x20) = 増加量は32 (0,32,64...) 64 (0x40) = 増加量は64 (0,64,128...) 128 (0x80) = 増加量は128 (0,128,256...) $54 \sqrt{-7}$
- タイプ: 読み出し/書き込み
- 書き込み例: C_STEP 0x2
- *読み出し例*: C_STEP ?

1.4.44. Pixel "D" Pattern Step (D_STEP)

Pixel "D" Pattern Step(D_STEP)コマンドは、ウェッジ(水平、垂直、傾 斜)ビデオテストパターンで「D」ピクセル値が増加する量を決定しま す。出力モードに応じて、CLS-212は10までのピクセルを同時(A、B、 C、D、E、F、G、H、I、J)に出力します(CL MODEコマンドを参照し てください)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: D_STEP

- 設定: 1 (0x1) = 増加量は1 (0,1,2...) 2 (0x2) = 増加量は2 (0,2,4...) 4 (0x2) = 増加量は4 (0,4,8...) 8 (0x8) = 増加量は8 (0,8,16...) 16 (0x10) = 増加量は16 (0,16,32...) 32 (0x20) = 増加量は32 (0,32,64...) 64 (0x40) = 増加量は64 (0,64,128...) 128 (0x80) = 増加量は128 (0,128,256...) タイプ:
- 読み出し/書き込み
- 書き込み例: D_STEP 0x2
- 読み出し例: D STEP ?

1.4.45. Pixel "E" Pattern Step (E_STEP)

Pixel "E" Pattern Step(E_STEP)コマンドは、ウェッジ(水平、垂直、傾 斜)ビデオテストパターンで「E」ピクセル値が増加する量を決定しま す。出力モードに応じて、CLS-212は10までのピクセルを同時(A、B、 C、D、E、F、G、H、I、J)に出力します(CL_MODEコマンドを参照し てください)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: E_STEP

- 設定: 1 (0x1) = 増加量は1 (0,1,2...) 2 (0x2) = 増加量は2 (0,2,4...) 4 (0x2) = 増加量は4 (0,4,8...) 8 (0x8) = 増加量は8 (0,8,16...) 16 (0x10) = 増加量は16 (0,16,32...) 32 (0x20) = 増加量は32 (0,32,64...) 64 (0x40) = 増加量は64 (0,64,128...)128 (0x80) = 増加量は128 (0,128,256...)
- タイプ: 読み出し/書き込み
- *書き込み例*: E_STEP 0x2
- *読み出し例*: E_STEP ?

1.4.46. Pixel "F" Pattern Step (F_STEP)

Pixel "F" Pattern Step(F_STEP)コマンドは、ウェッジ(水平、垂直、傾 斜)ビデオテストパターンで「F」ピクセル値が増加する量を決定しま す。出力モードに応じて、CLS-212は10までのピクセルを同時(A、B、 C、D、E、F、G、H、I、J)に出力します(CL MODEコマンドを参照し てください)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: F_STEP

- 設定: 1 (0x1) = 増加量は1 (0,1,2...) 2 (0x2) = 増加量は2 (0,2,4...) 4 (0x2) = 増加量は4 (0,4,8...) 8 (0x8) = 増加量は8 (0,8,16...) 16 (0x10) = 増加量は16 (0,16,32...) 32 (0x20) = 増加量は32 (0,32,64...) 64 (0x40) = 増加量は64 (0,64,128...) 128 (0x80) = 増加量は128 (0,128,256...) タイプ:
- 読み出し/書き込み
- 書き込み例: F_STEP 0x2
- 読み出し例: F STEP ?

1.4.47. Pixel "G" Pattern Step (G_STEP)

Pixel "G" Pattern Step(G_STEP)コマンドは、ウェッジ(水平、垂直、傾 斜)ビデオテストパターンで「G」ピクセル値が増加する量を決定しま す。出力モードに応じて、CLS-212は10までのピクセルを同時(A、B、 C、D、E、F、G、H、I、J)に出力します(CL MODEコマンドを参照し てください)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: G_STEP

- 設定: 1 (0x1) = 増加量は1 (0,1,2...) 2(0x2) = 増加量は2(0,2,4...) 4 (0x2) = 増加量は4 (0,4,8...) 8 (0x8) = 増加量は8 (0,8,16...) 16 (0x10) = 増加量は16 (0,16,32...) 32 (0x20) = 増加量は32 (0,32,64...) 64 (0x40) = 増加量は64 (0,64,128...) 128 (0x80) = 増加量は128 (0,128,256...) タイプ:
- 読み出し/書き込み
- 書き込み例: G_STEP 0x2
- 読み出し例: G STEP ?

1.4.48. Pixel "H" Pattern Step (H_STEP)

Pixel "H" Pattern Step(H_STEP)コマンドは、ウェッジ(水平、垂直、傾 斜)ビデオテストパターンで「H」ピクセル値が増加する量を決定しま す。出力モードに応じて、CLS-212は10までのピクセルを同時(A、B、 C、D、E、F、G、H、I、J)に出力します(CL_MODEコマンドを参照し てください)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: H_STEP

- 設定: 1 (0x1) = 増加量は1 (0,1,2...) 2 (0x2) = 増加量は2 (0,2,4...) 4 (0x2) = 増加量は4 (0,4,8...) 8 (0x8) = 増加量は8 (0,8,16...) 16 (0x10) = 増加量は16 (0,16,32...) 32 (0x20) = 増加量は32 (0,32,64...) 64 (0x40) = 増加量は64 (0,64,128...) 128 (0x80) = 増加量は128 (0,128,256...) $54 \sqrt{-7}$
- タイプ: 読み出し/書き込み
- *書き込み例*: H_STEP 0x2
- *読み出し例*: H_STEP ?

1.4.49. Pixel "I" Pattern Step (I_STEP)

Pixel "I" Pattern Step(I_STEP)コマンドは、ウェッジ(水平、垂直、傾斜) ビデオテストパターンで「I」ピクセル値が増加する量を決定します。 出力モードに応じて、CLS-212は10までのピクセルを同時(A、B、C、 D、E、F、G、H、I、J)に出力します(CL_MODEコマンドを参照して ください)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: I_STEP

- 設定: 1 (0x1) = 増加量は1 (0,1,2...) 2 (0x2) = 増加量は2 (0,2,4...) 4 (0x2) = 増加量は4 (0,4,8...) 8 (0x8) = 増加量は8 (0,8,16...) 16 (0x10) = 増加量は16 (0,16,32...) 32 (0x20) = 増加量は32 (0,32,64...) 64 (0x40) = 増加量は64 (0,64,128...)128 (0x80) = 増加量は128 (0,128,256...)
- タイプ: 読み出し/書き込み
- *書き込み例*: I_STEP 0x2
- 読み出し例: I_STEP ?

1.4.50. Pixel "J" Pattern Step (J_STEP)

Pixel "J" Pattern Step(J_STEP)コマンドは、ウェッジ(水平、垂直、傾斜) ビデオテストパターンで「J」ピクセル値が増加する量を決定します。 出力モードに応じて、CLS-212は10までのピクセルを同時(A、B、C、 D、E、F、G、H、I、J)に出力します(CL_MODEコマンドを参照して ください)。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: J_STEP

- 設定: 1 (0x1) = 増加量は1 (0,1,2...) 2 (0x2) = 増加量は2 (0,2,4...) 4 (0x2) = 増加量は4 (0,4,8...) 8 (0x8) = 増加量は8 (0,8,16...) 16 (0x10) = 増加量は16 (0,16,32...) 32 (0x20) = 増加量は32 (0,32,64...) 64 (0x40) = 増加量は64 (0,64,128...)128 (0x80) = 増加量は128 (0,128,256...)
- タイプ: 読み出し/書き込み
- *書き込み例*: J_STEP 0x2
- 読み出し例: J_STEP ?

1.4.51. Pixel "A" Init Value (A_INIT)

Pixel "A" Init Value (A_INIT)コマンドは、ウェッジパターンのどれか が選択された場合(A_PATSEL = 1-3)の、ピクセル「A」の初期設定の 値を決定します。出力モードに応じて、CLS-212は10までのピクセル を同時(A、B、C、D、E、F、G、H、I、J)に出力します(CL_MODEコ マンドを参照してください)。さらに詳しくはセクション1.3.4を参照 してください。

パラメーター: A_INIT 範囲: ピクセルサイズによる。0-65535 (hex 0x0 - 0xFFFF) 最大。 タイプ: 読み出し/書き込み

書き込み例: A_INIT 0xA5A5 *読み出し例*: A INIT ?

1.4.52. Pixel "B" Init Value (B_INIT)

Pixel "B" Init Value (B_INIT)コマンドは、ウェッジパターンのどれかが 選択された場合(B_PATSEL = 1-3)の、ピクセル「B」の初期設定の値 を決定します。出力モードに応じて、CLS-212は10までのピクセルを 同時(A、B、C、D、E、F、G、H、I、J)に出力します(CL_MODEコマ ンドを参照してください)。さらに詳しくはセクション1.3.4を参照し てください。

パラメーター: B_INIT 範囲: ピクセルサイズによる。0-4095 (*hex 0x0 - 0xFFF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: B_INIT 0x5A5 *読み出し例*: B_INIT ?

1.4.53. Pixel "C" Init Value (C_INIT)

Pixel "C" Init Value (C_INIT)コマンドは、ウェッジパターンのどれかが 選択された場合(C_PATSEL = 1-3)の、ピクセル「C」の初期設定の値 を決定します。出力モードに応じて、CLS-212は10までのピクセルを 同時(A、B、C、D、E、F、G、H、I、J)に出力します(CL_MODEコマ ンドを参照してください)。さらに詳しくはセクション1.3.4を参照し てください。

パラメーター: C_INIT 範囲: ピクセルサイズによる。0-4095 (*hex 0x0 - 0xFFF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: C_INIT 0x3C3 *読み出し例*: C INIT ?

1.4.54. Pixel "D" Init Value (D_INIT)

Pixel "D" Init Value (D_INIT) コマンドは、ウェッジパターンのどれか が選択された場合(D_PATSEL = 1-3)の、ピクセル「D」の初期設定の 値を決定します。出力モードに応じて、CLS-212は10までのピクセル を同時(A、B、C、D、E、F、G、H、I、J)に出力します(CL_MODEコ マンドを参照してください)。さらに詳しくはセクション1.3.4を参照 してください。

パラメーター: D_INIT 範囲: ピクセルサイズによる。0-4095 (*hex 0x0 - 0xFFF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: D_INIT 0xC3C *読み出し例*: D_INIT ?

1.4.55. Pixel "E" Init Value (E_INIT)

Pixel "E" Init Value (E_INIT) コマンドは、ウェッジパターンのどれかが 選択された場合(E_PATSEL = 1-3)の、ピクセル「E」の初期設定の値 を決定します。出力モードに応じて、CLS-212は10までのピクセルを 同時(A、B、C、D、E、F、G、H、I、J)に出力します(CL_MODEコマ ンドを参照してください)。さらに詳しくはセクション1.3.4を参照し てください。

パラメーター: E_INIT 範囲: ピクセルサイズによる。0-1023 (*hex 0x0 - 0x3FF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: E_INIT 0x23C *読み出し例*: E INIT ?

1.4.56. Pixel "F" Init Value (F_INIT)

Pixel "F" Init Value (F_INIT) コマンドは、ウェッジパターンのどれかが 選択された場合(F_PATSEL = 1-3)の、ピクセル「F」の初期設定の値 を決定します。出力モードに応じて、CLS-212は10までのピクセルを 同時(A、B、C、D、E、F、G、H、I、J)に出力します(CL_MODEコマ ンドを参照してください)。さらに詳しくはセクション1.3.4を参照し てください。

パラメーター: F_INIT 範囲: ピクセルサイズによる。0-1023 (*hex 0x0 - 0x3FF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: F_INIT 0x23C *読み出し例*: F_INIT ?

1.4.57. Pixel "G" Init Value (G_INIT)

Pixel "G" Init Value (G_INIT)コマンドは、ウェッジパターンのどれか が選択された場合(G_PATSEL = 1-3)の、ピクセル「G」の初期設定の 値を決定します。出力モードに応じて、CLS-212は10までのピクセル を同時(A、B、C、D、E、F、G、H、I、J)に出力します(CL_MODEコ マンドを参照してください)。さらに詳しくはセクション1.3.4を参照 してください。

パラメーター: G_INIT 範囲: ピクセルサイズによる。0-1023 (*hex 0x0 - 0x3FF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: G_INIT 0x23C *読み出し例*: G INIT ?

1.4.58. Pixel "H" Init Value (H_INIT)

Pixel "H" Init Value (H_INIT)コマンドは、ウェッジパターンのどれか が選択された場合(H_PATSEL = 1-3)の、ピクセル「H」の初期設定の 値を決定します。出力モードに応じて、CLS-212は10までのピクセル を同時(A、B、C、D、E、F、G、H、I、J)に出力します(CL_MODEコ マンドを参照してください)。さらに詳しくはセクション1.3.4を参照 してください。

パラメーター: H_INIT 範囲: ピクセルサイズによる。0-1023 (*hex 0x0 - 0x3FF*) 最大。 タイプ: 読み出し/書き込み

書き込み例: H_INIT 0x23C *読み出し例*: H_INIT ?

1.4.59. Pixel "I" Init Value (I_INIT)

Pixel "I" Init Value (I_INIT)コマンドは、ウェッジパターンのどれかが 選択された場合(I_PATSEL = 1-3)の、ピクセル「I」の初期設定の値を 決定します。出力モードに応じて、CLS-212は10までのピクセルを同 時(A、B、C、D、E、F、G、H、I、J)に出力します(CL_MODEコマン ドを参照してください)。さらに詳しくはセクション1.3.4を参照して ください。

パラメーター: I_INIT 範囲: 0-255 (hex 0x0 - 0xFF) タイプ: 読み出し/書き込み *書き込み例*: **I_INIT 0x3C** 読み出し例: **I_INIT ?**

1.4.60. Pixel "J" Init Value (J_INIT)

Pixel "J" Init Value (J_INIT)コマンドは、ウェッジパターンのどれかが 選択された場合(J_PATSEL = 1-3)の、ピクセル「J」の初期設定の値を 決定します。出力モードに応じて、CLS-212は10までのピクセルを同 時(A、B、C、D、E、F、G、H、I、J)に出力します(CL_MODEコマン ドを参照してください)。さらに詳しくはセクション1.3.4を参照して ください。

パラメーター: J_INIT 範囲: 0-255 (hex 0x0 - 0xFF) タイプ: 読み出し/書き込み 書き込み例: J_INIT 0x3C 読み出し例: J_INIT ?

1.4.61. Camera Link Mode (CL_MODE)

Camera Link Mode(CL_MODE)コマンドは、テストパターンピクセルフ ォーマットを決定します。CLS-212は、Camera Link「ベース」、「ミ ディアム」、「フル」コンフィギュレーションによってサポートされ るすべてのCamera Linkモードについてビデオテストパターンを生成し ます。さらに詳しくはセクション1.3.4を参照してください。

パラメーター: CL_MODE

設定: 0(0x0) = 8-bit x 1~3 (ベースコンフィギュレーション) 1 (0x1) = 10-bit x 1~2 (ベースコンフィギュレーション) 2 (0x2) = 12-bit x 1~2 (ベースコンフィギュレーション) 3 (0x3) = 14-bit x 1 (ベースコンフィギュレーション) 4 (0x4) = 16-bit x 1 (ベースコンフィギュレーション) 5(0x5) = 24-bit RGB (ベースコンフィギュレーション) 9(0x9) = 10-bit x 3~4 (ミディアムコンフィギュレーション) 10 (0xA) = 12-bit x 3~4 (ミディアムコンフィギュレーション) 11 (0xB) = 30-bit RGB (\overline{zr} 13 (0xD) = 8-bit x 10 (デカコンフィギュレーション) 14 (0xE) = 10-bit x 8 (フルコンフィギュレーション、10ビット) 15 (0xF) = 8-bit x 8 (フルコンフィギュレーション) タイプ: 読み出し/書き込み

書き込み例: CL_MODE 0x2 *読み出し例:* CL_MODE ?

1.4.62. Pattern Roll (ROLL)

Pattern Roll(ROLL)コマンドは、ビデオテストパターンに動きを付けま す。ロールは、水平、傾斜、垂直ウェッジパターンとともに使用され ます。ロールが有効の場合、開始ピクセル値は各フレームについて増 加します。これは、各フレームのすべてのピクセル値を変化させて、 ビデオテストパターンに「段階的な」動きを付けます。無効の場合、 ウェッジテストパターンは静止します(フレームごとに変化しません)。 さらに詳しくはセクション1.3.4を参照してください。

パラメーター: ROLL

- 設定: 0 (0x0) = ロール無効 1 (0x1) = ロール有効
- タイプ: 読み出し/書き込み
- *書き込み例*: ROLL 0x1
- 読み出し例: ROLL ?

1.4.63. Clock Synthesizer Code (SYNTH_CODE)

Clock Synthesizer Code(SYNTH_CODE)コマンドによって、ユーザーは CLS-212参照クロックを発生させるクロックシンセサイザーデバイス に24ビットコードを直接入力することができます。これによってユー ザーは、Camera Linkの20-66MHzの範囲内で事実上いかなる参照クロ ック周波数もプログラムできます。CLS-212はピクセルクロック周波 数を選択するためにSYNTH_CODEおよび FREQUENCYという2つの コマンドを備えています。SYNTH_CODEは、24ビットのシンセサイ ザーコードの直接入力を可能にすることによって最大の融通性を提供 しています。FREQUENCYによって、ユーザーは20~85MHzの整数周 波数を簡単に指定できます。一番新しいSYNTH_CODEまたは FREQUENCYコマンドによって周波数が決まります。使用されないク ロックコマンドを読み出すと"#####"を返します。使用されるクロック コマンドを読み出すと値を返します。さらに詳しくはセクション1.3.1 を参照してください。

備考: 16進法(0x...)で入力しなければなりません。

パラメーター: SYNTH_CODE 設定: 24ビットシンセサイザーデバイスコード(Hex) タイプ: 読み出し/書き込み

書き込み例: SYNTH_CODE 0x33543D *読み出し例*: SYNTH_CODE ?

1.4.64. Clock Frequency (FREQUENCY)

Clock Frequency (FREQUENCY)コマンドによって、ユーザーはCamera Linkの参照クロックの整数値を20-85MHzの範囲内で選択できます。 CLS-212はピクセルクロック周波数を選択するためにSYNTH_CODEお よび FREQUENCYという2つのコマンドを備えています。 SYNTH_CODEは、24ビットのシンセサイザーコードの直接入力を可 能にすることによって最大の融通性を提供しています。FREQUENCY によって、ユーザーは20~85MHzの整数周波数を簡単に指定できます。 一番新しいSYNTH_CODEまたはFREQUENCYコマンドによって周波 数が決まります。使用されないクロックコマンドを読み出すと"####" を返します。使用されるクロックコマンドを読み出すと値を返します。 さらに詳しくはセクション1.3.1を参照してください。

パラメーター: FREQUENCY 範囲: 20-85 MHz (*hex 0x14 - 0x55*) タイプ: 読み出し/書き込み *書き込み例*: FREQUENCY 0x14 *読み出し例*: FREQUENCY ?

1.4.65. Continuous Mode (CONTINUOUS)

Continuous Mode(CONTINUOUS)コマンドは、ビデオテストパターンの連続出力を可能にします。連続モードが有効の場合、CLS-212はビデオデータを連続して出力します。無効の場合、ビデオパターンデータは一時中断されて、外部同期パルスを待ってワンショット取り込むかまたは連続モードに戻ります。さらに詳しくはセクション1.3.2を参照してください。

パラメーター: CONTINUOUS

- 設定: 0 (0x0) = 連続モード無効1 (0x1) = 連続モード有効
- タイプ: 読み出し/書き込み

書き込み例: CONTINUOUS 0x1

読み出し例: CONTINUOUS ?

1.4.66. Exsync Enable (EXSYNC_ENB)

Exsync Enable (EXSYNC_ENB)コマンドは、カメラコントロール入力 (CC1、CC2、CC3、CC4)を使用してパターンフレーム(または、ライ ンスキャンモードの場合はライン)をトリガーで出力させることを可 能にします。外部同期カメラコントロール入力ソースと有効エッジは、 EXSYNC_SELコマンドを使用して選択します。さらに詳しくはセク ション1.3.8を参照してください。

パラメーター: EXSYNC ENB

- 設定: 0(0x0) = 外部同期トリガー無効 1(0x1) = 外部同期トリガー有効
 タイプ: 読み出し/書き込み

書き込み例: EXSYNC_ENB 0x1

読み出し例: EXSYNC_ENB ?

1.4.67. Exsync Select (EXSYNC_SEL)

Exsync Select(EXSYNC_SEL)コマンドは、外部同期トリガーでビデオ パターンを生成する場合に使用されるカメラコントロール入力と有効 エッジを選択します。CLS-212は、Camera Linkカメラコントロール入 力のどれかを使用する外部同期トリガーによるフレーム生成をサポー トしています。トリガーエッジは、「立ち上がり」(ローからハイへ の移行)または「立ち下がり」(ハイからローへの移行)が選択可能です。 さらに詳しくはセクション1.3.8を参照してください。

パラメーター: EXSYNC_SEL

- 設定: 0 (0x0) = CC1立ち上がりエッジ 1 (0x1) = CC1 立ち下がりエッジ 2 (0x2) = CC2 立ち下がりエッジ 3 (0x3) = CC2 立ち下がりエッジ 4 (0x4) = CC3 立ち上がりエッジ 5 (0x5) = CC3 立ち下がりエッジ 6 (0x6) = CC4 立ち上がりエッジ 7 (0x7) = CC4 立ち下がりエッジ
- タイプ: 読み出し/書き込み

書き込み例: EXSYNC_SEL 0x7 読み出し例: EXSYNC_SEL ?

1.4.68. Integration Time (INTEG_TIME)

Integration Time(INTEG_TIME)コマンドは、カメラ積算(露光)の特性 をシミュレートするためにビデオフレームの生成を遅らせる時間(単 位はミリセカンド)を決定します。

INTEG_TIMEコマンドはトリガー(外部同期)モードと連続モードの両 方で使用されることがあります。さらに詳しくはセクション1.3.5を参 照してください。

備考: この機能を使用しない場合は常にレジスタを0に設定します。

パラメーター: INTEG_TIME 範囲: 0-65535 mS (*hex 0x0 - 0xFFF*). タイプ: 読み出し/書き込み

書き込み例: INTEG_TIME 0x4000 *読み出し例*: INTEG_TIME ?

1.4.69. Linescan Mode (LINESCAN)

Linescan Mode (LINESCAN)コマンドでCLS-212はラインスキャンモー ドになります。ラインスキャンモードが無効の場合、CLS-212は初期 設定のフレームスキャンモードになります。さらに詳しくはセクショ ン1.3.2を参照してください。

パラメーター: LINESCAN

設定:	0(0x0)= フレームスキャンモード
	1(0x1)= ラインスキャンモード
タイプ:	読み出し/書き込み

書き込み例: LINESCAN 0x0 読み出し例: LINESCAN ?

1.4.70. DVAL State (DVAL)

DVAL State(DVAL)コマンドは、DVAL_MODEが0に設定されている場合のCamera Link Data Valid出力シグナルの静的状態を決定します。詳しくはセクションx.x.xを参照してください。

パラメーター: DVAL 設定: 0(0x0) = DVAL出力は0に設定されます。 1(0x1) = DVAL出力は1に設定されます。 タイプ: 読み出し/書き込み

書き込み例: DVAL 0x0 *読み出し例*: DVAL ?

1.4.71. DVAL Mode (DVAL_MODE)

DVAL Mode(DVAL_MODE)コマンドは、Camera Link Data Valid出力シ グナルのタイミング特性を決定します。設定1-3によって、CLS-212は Camera Linkシステムで低ピクセルクロック周波数のカメラに対応する のに一般に使用されるオーバーサンプリング(2x、4x、8x)ビデオデー タのシミュレートを有効にします。詳しくはセクションx.x.xを参照し てください。

パラメーター: DVAL_MODE

設定: 0 (0x0) = DVALはDVALコマンド当たり1回の静的出力。
1 (0x1) = DVALは2番目のピクセルクロックごとに(1)をアサート。
2 (0x2) = DVALは4番目のピクセルクロックごとに(1)をアサート。
3 (0x3) = DVALは8番目のピクセルクロックごとに(1)をアサート。
タイプ: 読み出し/書き込み

書き込み例: DVAL_MODE 0x2 *読み出し例*: DVAL_MODE ?

1.4.72. Clock Disable (CLK_DIS)

Clock Disable (CLK_DIS)コマンドは、Camera Linkインターフェースの 3つのChannel Linkトランスミッターチップ(つまり、ベース、ミディ アム、フル)を個別に無効にします。無効にすると、関連するCamera Linkインターフェースシグナル(つまり、クロック+データ)は無効にな ります。詳しくはセクション1.3.11および1.3.12を参照してください。

パラメーター: CLK_DIS

ビット位置: bit 0 = 「1」でベーストランスミッターが無効。
 bit 1 = 「1」でミディアムトランスミッターが無効。
 bit 2 = 「1」でフルトランスミッターが無効。
 bit 3-7 = 0
 タイプ: 読み出し/書き込み

書き込み例: CLK_DIS 0x7 *読み出し例*: CLK DIS ?

1.4.73. PoCL Power Presence (POCL)

PoCL Power Presence (POCL)コマンドは、Camera Linkインターフェー スPoCLフレームグラバーからの電力の存在を検出します。このレジ スタは読み出しのみです。詳しくはセクション1.3.12を参照してくだ さい。

パラメーター: POCL 設定: 0 (0x0) = PoCL電力が存在しない。 1 (0x1) = PoCL電力が存在する。 タイプ: 読み出し

読み出し例: POCL ?

1.4.74. CC State (CC)

CC State (CC)コマンドは、Camera Linkカメラコントロール入力(CC1、 CC2、CC3、CC4)の現在の状態を読み出すのに使用されます。このレ ジスタは読み出し専用です。さらに詳しくはセクション1.3.8を参照し てください。

パラメーター: CC ビット位置: bit 0 = CC1 (最下位ビット) bit 1 = CC2 bit 2 = CC3 bit 3 = CC4 bit 4-7 = 0 タイプ: 読み出し

読み出し例: CC ?

1.4.75. FPGA Version (VERSION)

FPGA Version (VERSION)コマンドは、CLS-212 Field Programmable Gate Array(FPGA)デバイスのハードウェアヴァージョンコードを読み 出すのに使用されます。標準ヴァージョンコードは61 (0x3D)です。ファームウェアヴァージョンは起動時のメッセージに表示されます。

パラメーター: VERSION

設定: 8ビットFPGAヴァージョンコード(48 (0x30)標準) タイプ: 読み出し

読み出し例: VERSION ?

1.4.76. One Shot Trigger (ONE_SHOT)

One Shot Trigger (ONE_SHOT)コマンドは、CLIを通じてシングルフレ ーム(またはラインスキャンモードの場合はライン)のトリガーによる 取り込みを可能にします。この機能を使用するには連続モードを無効 にしなければならないので注意してください(CONTINUOUSコマンド を参照してください)。このコマンドに関連するデータの読み出しや 書き込みはありません。さらに詳しくはセクション1.3.2を参照してく ださい。

パラメーター: ONE_SHOT 設定: なし、コマンドのみ タイプ: コマンド

例: ONE_SHOT

1.4.77. Parameter Save (SAVE)

Parameter Save(SAVE)コマンドは、現在のCLS-212パラメーターセット を不揮発性メモリに格納します。保存されたパラメーターは、電源投 入時またはRECALLコマンドに応じて自動的に呼び出されます。保存 されたパラメーターはその後のSAVEコマンドで変更されるまで維持 されます。このコマンドに関連するデータの読み出しや書き込みはあ りません。さらに詳しくはセクション1.3.6を参照してください。

パラメーター: SAVE 設定: なし、コマンドのみ タイプ: コマンド

例: SAVE

1.4.78. Parameter Recall (RECALL)

Parameter Recall (RECALL)コマンドは、現在不揮発性メモリに格納されているパラメーターセットを呼び出します。保存されたパラメーターは電源投入時の初期化でも自動的に呼び出されます。このコマンドに関連するデータの読み出しや書き込みはありません。さらに詳しくはセクション1.3.6を参照してください。

パラメーター: RECALL 設定: なし、コマンドのみ タイプ: コマンド

例: RECALL

1.4.79. Echo Control (ECHO)

Echo Control (ECHO)コマンドは、コントロールインターフェースを介 して受信された文字のCLS-212エコーバックをコントロールします。 CLS-212の電源投入時に反映は有効にされ、CLS-212は受信したすべ ての文字を反映します。反映を無効にすると、再び有効にされるか電 源投入時にリセットされるまで無効のままになります。「ECHO ON」または「ECHO OFF」は、ファイルのダウンロード中に大きなデ ータが返されるのを避けるためにコンフィギュレーションファイルで 役立ちます。さらに詳しくはセクション1.4を参照してください。

- パラメーター: ECHO 設定: ON = 反映有効(初期設定) OFF = 反映無効
- タイプ: 書き込み

書き込み例: ECHO ON

1.4.80. Parameter Dump (DUMP)

Parameter Dump(DUMP)コマンドによってCLS-212は、現在のパラメー ターセット全体をホストコンピュータに返します。情報は SYNTH_CODE以外は十六進数と十進数の両方の形式で表示されます。 一般的なDUMPコマンドの反応は以下に示したようになります。

パラメーター: DUMP 設定: なし、コマンドのみ タイプ: コマンド

例: DUMP

CLS-212 反応例:

LVAL LO) =	0x002	0	/	32
LVAL HI	= 1	0x010	0	/	256
FVAL LO) =	0x000	2	/	2
FVAL HI	= 1	0x010	0	/	256
FVAL SE	ETUP =	0x00	00	/	0
FVAL HO	DLD =	0x00	00	/	0
X OFFSI	= TE	0x00	0	/	0
X ACTIV	/E =	0x010	00	/	256
YOFFSE	= TE	0x00	0	/	0
YACTIN	/E =	0x010	00	/	256
A PATSE	EL =	0x03		/	3
B_PATSE	EL =	0x00		/	0
C_PATSE	EL =	0x00		/	0
D PATSE	EL =	0×00		/	0
E PATSE	EL =	0×00		/	0
F_PATSE	EL =	0x00		/	0
G PATSE	EL =	0×00		/	0
H_PATSE	EL =	0x00		/	0
I PATSE	EL =	0×00		/	0
J PATSE	EL =	0×00		/	0
A_FIXEI) =	0x000	0	/	0
B FIXEI) =	0x000	0	/	0
C_FIXEI) =	0x000	0	/	0
D_FIXEI) =	0x000	0	/	0
E_FIXEI) =	0x000	0	/	0
F_FIXEI) =	0x000	0	/	0
G_FIXEI) =	0x000	0	/	0
H_FIXEI) =	0x000	0	/	0
I_FIXEI) =	0x00		/	0
J_FIXEI) =	0x00		/	0

A_BACK	=	0x0000	/ 0
B_BACK	=	0x000x0	/ 0
C_BACK	=	0x0000	/ 0
D_BACK	=	0x000x0	/ 0
E_BACK	=	0x000x0	/ 0
F_BACK	=	0x0000	/ 0
G BACK	=	0x0000	/ 0
H_BACK	=	0x0000	/ 0
I_BACK	=	0x00	/ 0
J BACK	=	0x00	/ 0
A_STEP	=	0x01	/ 1
B STEP	=	0x01	/ 1
C_STEP	=	0x01	/ 1
D_STEP	=	0x01	/ 1
E STEP	=	0x01	/ 1
F STEP	=	0x01	/ 1
G_STEP	=	0x01	/ 1
H STEP	=	0x01	/ 1
I STEP	=	0x01	/ 1
J STEP	=	0x01	/ 1
A INIT	=	0x0000	/ 0
BINIT	=	0x0000	/ 0
CINIT	=	0x0000	/ 0
DINIT	=	0x0000	/ 0
E_INIT	=	0x0000	/ 0
F_INIT	=	0x0000	/ 0
G INIT	=	0x0000	/ 0
H INIT	=	0x0000	/ 0
I_INIT	=	0x00	/ 0
J INIT	=	0x00	/ 0
CL_MODE	=	0x00	/ 0
ROLL	=	0x00	/ 0
SYNTH_CODE	2 =	0x######	
FREQUENCY	=	0x14	/ 20
CONTINUOUS	5 =	0x01	/ 1
EXSYNC_ENE	3 =	0x00	/ 0
EXSYNC_SEI	_ =	0x00	/ 0
INTEG_TIME	3 =	0x0000	/ 0
LINESCAN	=	0x00	/ 0
DVAL	=	0x01	/ 1
DVAL_MODE	=	0x00	/ 0
CLK_DIS	=	0x00	/ 0
POCL	=	0x0	/ 0
CC	=	0x0F	/ 15
VERSION	=	0x3D	/ 61

1.5. 一般的なアプリケーション

一般的なCLS-212 Camera Linkシミュレーターのアプリケーションを図1-12に示します。CLS-212は、4タップ、8ビット、ミディアムコンフィギュ レーション、エリアスキャンカメラをシミュレートするのに使用されま す。このミディアムコンフィギュレーションアプリケーションに対応す るために、2本の標準Camera LinkケーブルでCLS-212とフレームグラバー が接続されます。ベースコンフィギュレーションアプリケーションの場 合は、必要なケーブルが1本のみなので注意してください。CLS-212をコ ントロールするために、付属のシリアルケーブルでCLS-212を標準PCシリ アルポートに接続します。ユーザー選択のパラメーターがあるコンフィ ギュレーションファイルの例(cls212_example.txt)を表1-4に示します。

コンフィギュレーションファイルをCLS-212にダウンロードするには、 (Windowsに含まれる)HyperTerminalまたはほかの通信ソフトウェアプログ ラムが使用されます。PCシリアルポートプロトコルの設定は一般的なも のでセクション1.3.7に設定があります(伝送速度9600、データビット8、 パリティなし、ストップビット1、フローコントロールなし)。 HyperTerminalを使用する場合は、「Transfer」タブを選択して「Send Text File」をクリックするとコンフィギュレーションファイルはCLS-212に送 られます。それからユーザーが「cls212_example.txt」の場所を指定する とファイルのダウンロードが開始します。

そうしないで、CLIを通じて個別にパラメーターを入力することもできま す。新しいコンフィギュレーションファイルをダウンロードするか、ま たはキーボードから手でコマンドを入力することによって、CLS-212パラ メーターの以後の変更を行うことができます。

図1-12: CLS-212の一般的なアプリケーション

表1-4: コンフィギュレーションファイルの例(cls212_example.txt)

// // CLS-212 Camera Link Simulator Configuration File 11

- //
 // Example Test Pattern Characteristics
 // 512x512 active image area
 // 20 MHz pixel clock rate
 // Continuous output mode
 // Camera Link "full" configuration
 // Eight 8-bit pixels (8x8)
 // Diagonal wedge pattern on all pixels

// Line Valid Low // - 32 clocks LVAL_LO 32

// Line Valid High // - 576 clocks LVAL_HI 576

// Frame Valid Low // - 2 lines FVAL_LO 2

// Frame Valid High
// - 512 lines FVAL HI 512

// Frame Valid Setup
// - 0 clocks FVAL SETUP 0

// Frame Valid Hold
// - 0 clocks FVAL_HOLD 0

// X Offset // - 8 clocks X_OFFSET 8

// X Active
// - 512 clocks
X_ACTIVE 512

// Y Offset // - 0 lines Y_OFFSET 0


```
// Y Active
// - 512 lines
Y ACTIVE 512
// Pixel A-B-C-D-E-F-G-H Pattern Select
// - a-h = diagonal wedge = 3
A PATSEL
            3
B PATSEL
            3
C_PATSEL
D_PATSEL
            3
            3
E_PATSEL
            3
3
F_PATSEL
            3
G_PATSEL
H PATSEL
            3
// Pixel A-B-C-D-E-F-G-H Fixed Value // \ - \ a-h = \ 0
A FIXED
          0
B FIXED
            0
C_FIXED
           0
D_FIXED
            0
E FIXED
           0
F_FIXED
G_FIXED
            0
            0
H_FIXED
            0
// Pixel A-B-C-D-E-F-G-H Background Value // - a-h = 0 A_BACK 0
B BACK
            0
           0
C_BACK
D_BACK
E BACK
           0
0
F_BACK
G_BACK
          0
            0
H_BACK
            0
// Pixel A-B-C-D-E-F-G-H pattern step size
// - a-h = 1 = patterns increment by 1
A_STEP 1
B_STEP
            1
C_STEP
            1
D_STEP
            1
E STEP
            1
F STEP
            1
G_STEP
            1
H_STEP
            1
// Camera Link Mode
// - mode = full 8x8 = 15
CL_MODE 15
```


// Pattern Roll // - roll disabled = 0 ROLL 0 // Clock Synthesizer Code // - Not used, using Clock Frequency instead // SYNTH_CODE 0x33543D

// Clock Frequency // - 20 MHz FREQUENCY 20

// Continuous Mode
// - continuous mode enabled = 1
CONTINUOUS 1

// Exsync Enable
// - exsync triggering disabled = 0
EXSYNC_ENB 0

// Exsync Select
// - CC1 rising edge = 0
EXSYNC_SEL 0

// integration time
// - 0 = 0 mS delay = disabled
INTEG_TIME 0

// Linescan Mode
// - linescan mode disabled = framescan mode = 0
LINESCAN 0

// DVAL State // - dval signal state = 1 DVAL 1// - 20// - 512x512 active image area

1.6. 仕様

機能	仕様
カメラインターフェース	Camera Link「ベース/ミディアム/フル」& 80ビット+PoCL
カメラコネクタ	26ピンSDR (miniCL)タイプ(2)
周波数範囲	20-85 MHz
シリアルポートインターフェース	RS-232
シリアルポートコネクタ	オス9ピンD-Sub (DB9)
シリアルポートケーブル	3メートルDB9メス - DB9メスヌルモデムケーブル
USBポート	外部USBシリアルRS-232アダプター経由(オプション)
チップセット	National Semi. DS90CR287 (2)
電源	米国/ヨーロッパ変圧器/ コンセント接続タイプ
電源ジャック	2.1 x 5.5 mm、中心が正極
必要電力	5-7 VDC、700 mA (標準)
ケース寸法	5.28" (L) x 1.18" (H) 7.12" (D)
重量	16 オンス
動作温度範囲	0 から 50° C
保管温度範囲	-25 から 75° C
相対湿度	0 から 90%、結露不可

表1-5: CLS-212 仕様

2. インターフェース

2.1. 前面パネルの接続

CLS-212 Camera Linkシミュレーターの前面パネルを図2-1に示します。前面パネルには、フレームグラバーに接続するための2つのビデオコネクタがあります。Camera Link「ミディアム」&「フル」コンフィギュレーションは両方のビデオコネクタを使用します。

「ベース」コンフィギュレーションは「ベース」コネクタだけを使用し ます。

カメラコネクタは、26ピン SDRタイプ(SDR-26)、3M p/n12226-8250-00FR で3M p/n 12600-S-112ジャックスクリュー付きです。図2-2はSDR-26のピ ンの位置を示します。

前面パネルにはPoCL電源存在を示すインディケータもあります。

_	Vivid Engineering	Camera L	ink Simulator	CLS-212
			0	•
	MEDIUN	//FULL	BASE	PoCL

図2-1: CLS-212前面パネル

図2-2: SDR-26 (miniCL)コネクタのピンの位置

2.1.1. カメラコネクタシグナル

SDR-26カメラコネクタシグナルの割り当ては、Camera Link仕様の 「ベース」、「ミディアム」、「フル」コンフィギュレーションに準 拠しています。「ベース」コネクタはPoCLにも準拠しています。

表2-1と表2-2はそれぞれ、SDR-26(miniCL)の「ベース」および「ミディアム/フル」カメラコネクタのシグナル割り当てを示しています。

コネクタピンの割り当ては、Camera Link仕様でカメラインターフェー ス用に定義されているので注意してください。これで標準のCamera Linkケーブルとの互換性が保たれます。

2.1.2. ケーブルシールドの接地

Camera Linkケーブルの「外側の」シールドはCLS-212アルミニウムケ ースに接続されます。ケースは、CLS-212回路とケーブルの「内側 の」シールドから孤立していて、安全性を確保しています。

フレームグラバーケーブルの「内側の」シールドは、回路のデジタル グラウンドに接続されて、CLS-212とフレームグラバーとの間のシグ ナル参照レベルを維持しています。

表2-1: CLS-212 「ベース」コネクタ

Camera Link シグナル名	「ペース」 コネクタ ピン# (カメラピン出力)	シグナル方向	備考
標準=内部シールド PoCL=+12v電源	1	N/A	10K感応抵抗に接続(+)
標準=内部シールド PoCL=電源グラウンド	14	N/A	10K感応抵抗に接続(-)
X0-	2	CLS-212 FG	
X0+	15	CLS-212 FG	
X1-	3	CLS-212 FG	
X1+	16	CLS-212 FG	
X2-	4	CLS-212 FG	
X2+	17	CLS-212 FG	
Xclk-	5	CLS-212 FG	
Xclk+	18	CLS-212 FG	
X3-	6	CLS-212 FG	
X3+	19	CLS-212 FG	
SerTC+	7	FG CLS-212	シリアルcomm
SerTC-	20	FG CLS-212	ű
SerTFG-	8	CLS-212 FG	シリアルcomm
SerTFG+	21	CLS-212 FG	ű
CC1-	9	FG CLS-212	
CC1+	22	FG CLS-212	
CC2+	10	FG CLS-212	
CC2-	23	FG CLS-212	
CC3-	11	FG CLS-212	
CC3+	24	FG CLS-212	
CC4+	12	FG CLS-212	
CC4-	25	FG CLS-212	

標準=内部シールド PoCL=電源グラウンド	13	N/A	10K <i>感応抵抗に接続(-</i>)
標準=内部シールド PoCL=+12v電源	26	N/A	10K <i>感応抵抗に接続</i> (+)
"FG"= フレームク	ブラバー		

表2-2: CLS-212「ミディアム/フル」コネクタ

Camera Link シグナル名	「ミディアム/フル」 コネクタ ピン# (カメラピン出力)	シグナル方向	備考
内部シールド	1	N/A	デジタルグラウンドに接続
内部シールド	14	N/A	デジタルグラウンドに接続
Y0-	2	CLS-212 FG	
Y0+	15	CLS-212 FG	
Y1-	3	CLS-212 FG	
Y1+	16	CLS-212 FG	
Y2-	4	CLS-212 FG	
Y2+	17	CLS-212 FG	
Yclk-	5	CLS-212 FG	
Yclk+	18	CLS-212 FG	
Y3-	6	CLS-212 FG	
Y3+	19	CLS-212 FG	
100オーム	7	N/A	100オーム終端処理、7-20
終端処理	20	N/A	100オーム終端処理、7-20
Z0-	8	CLS-212 FG	
Z0+	21	CLS-212 FG	
Z1-	9	CLS-212 FG	
Z1+	22	CLS-212 FG	
Z2-	10	CLS-212 FG	
Z2+	23	CLS-212 FG	
Zclk-	11	CLS-212 FG	
Zclk+	24	CLS-212 FG	
Z3-	12	CLS-212 FG	
Z3+	25	CLS-212 FG	
内部シールド	13	N/A	デジタルグラウンドに接続

内部シールド	26	N/A	デジタルグラウンドに接続
"FG" = フレームク	ブラバー		

2.2. 背面パネル

CLS-212 Camera Linkシミュレーターの背面パネルを図2-3に示します。背面パネルには、RS-232コネクタ、電源ランプ、オンオフスイッチ、DC電源ジャックがあります。DC電源ジャックは、直流5-7ボルト電源を接続し、中心が正極性になっています。

RS-232シリアルポートコネクタは、標準の9ピンオスD-Subタイプ(DB9)、 Tyco p/n 5747840-4です。図2-4はDB9のピンの位置を示します。

図2-3: CLS-212背面パネル

図2-4: DB9コネクタのピンの位置

2.2.1. DB9コネクタシグナル

DB9コネクタシグナルの割り当ては、RS-232シリアルインターフェー ス規格に準拠しています。表2-3は、DB9のシグナルの割り当てを示し ます。

RS-232 シグナル名	DB9ピン#	シグナル方向	備考
キャリア検出	1	N/A	ピン4 & 6に接続
受信データ	2	PC CLS-212	
送信データ	3	CLS-212 PC	
データ端末レディ	4	N/A	ピン1 & 6に接続
シグナルグラウンド(共通)	5	N/A	デジタルグラウンドに接続
データセットレディ	6	N/A	ピン1 & 4に接続
送信要求	7	N/A	ピン8に接続
送信可	8	N/A	ピン7に接続
被呼表示	9	N/A	未接続

表2-3: DB9コネクタ

"PC" = コントロールPC、ワークステーション、ターミナル

3. 機構仕様

3.1. 寸法

CLS-212 Camera Linkシミュレーターのケースの寸法を図3-1に示します。

CLS-212は頑丈なアルミニウムケースに収容されています。筐体は押し出 しアルミニウム成型で、前面端板と背面端板は取り外し可能です。ケー スには取り付けフランジが備えられています。フランジには機器の取り 付けに便利なように4つの穴(直径0.15インチ)が開けてあります。取り付 け穴図面を図3-2に示します。

図3-1: CLS-212 ケース寸法

図3-2: 取り付け穴

3.2. 外部電源

CLS-212は、5-7 VDC電源で動作します。電源は2.1 x 5.5mmの標準の直流 電源プラグを備えています。電源プラグの極性は中心が正です。

多国用の壁マウント電源は、広い電力範囲(90-264 VAC、47-63 Hz)があり、 ほとんどの国(米国、ヨーロッパ、イギリスなど)で使用できる出力プラグ が付属しています。CLS-212は、電源なしでも購入できます。

CLS-212は、内部のリセット可能ヒューズによって保護されています。

4. 付録

4.1. フルコンフィギュレーションの例

以下の4つの例は、Camera Link「フル」コンフィギュレーションテストパ ターンを生成するのに使用される主要なコンフィギュレーション設定を 示しています。Camera Linkフルコンフィギュレーションでは、ピクセル クロックごとに8つの8ビットピクセルが同時に出力されます。これは、 非常に高速のフレームレートに対応しています。Camera Linkフルコンフ ィギュレーションカメラは、一般にライン内で8つの連続した(シーケンシ ャル)ピクセルを出力します。この理由から、カメラの水平方向のサイズ は8の倍数になります。

例では256x256画像を使用します。ピクセルクロックごとに8つの連続し たピクセルが出力されるので、水平ラインは32クロックだけの持続時間 に水平ブランクを加えたものになります。「A」コンフィギュレーション レジスタは第1ピクセルを、「B」コンフィギュレーションレジスタは第2 ピクセルを、「H」コンフィギュレーションレジスタは第8ピクセルを指 定するのに使用されます。

4.1.1. 8ビット 8タップ 水平ウェッジの例

目的: 水平ウェッジ、8ビットモノクロ、256x256画像サイズ、 8ビット x 8タップ(Camera Linkフル)

- 主要パラメーター: LVAL HI 32 FVAL_HI 256 X_ACTIVE 32 Y_ACTIVE 256 A-H PATSEL 1 A-H STEP 8 A_INIT 0 **B_INIT** 1 C_INIT 2 D_INIT 3 E INIT 4 5 F_INIT G_INIT 6 H_INIT 7 CL_MODE 15
- 備考: ピクセルクロックごとに8つの連続したピクセルが出力されるので、 line valid (LVAL_HI)時間は256/8 = 32です。初期設定値(INIT)とステ ップサイズ(STEP)の設定は通常のグラディエント(0,1,2...255)を生 成します。

4.1.2. 8ビット 8タップ 垂直ウェッジの例

目的: 垂直ウェッジ、8ビットモノクロ、256x256画像サイズ、 8ビット x 8タップ(Camera Linkフル)

- 主要パラメーター: LVAL_HI 32 FVAL_HI 256 X_ACTIVE 32 Y_ACTIVE 256 2 A-H PATSEL A-H STEP 1 A-H INIT 0 CL_MODE 15
- 備考: ピクセルクロックごとに8つの連続したピクセルが出力されるので、 line valid (LVAL_HI)時間は256/8 = 32です。通常のグラディエント (0,1,2...255)が生成されます。

4.1.3. 8ビット 8タップ 傾斜ウェッジの例#1

目的: 傾斜ウェッジ、8ビットモノクロ、256x256画像サイズ、8ビット x 8タップ(Camera Linkフル)

- 主要パラメーター: LVAL_HI 32 256 FVAL_HI X_ACTIVE 32 Y_ACTIVE 256 A-H PATSEL 3 A-H STEP 8 A_INIT 0 **B_INIT** 1 C_INIT 2 D_INIT 3 E_INIT 4 F_INIT 5 G INIT 6 H INIT 7 CL_MODE 15
- 備考: ピクセルクロックごとに8つの連続したピクセルが出力されるので、
 line valid (LVAL_HI)時間は256/8 = 32です。初期設定値(INIT)とステップサイズ(STEP)の設定は、X方向に通常のグラディエント
 (0,1,2...255)を生成しますが、STEPの設定に応じてY方向のグラディエントは0,8,16...になります。

_	
	_
	_

4.1.4. 8ビット 8タップ 傾斜ウェッジの例#2

目的: 傾斜ウェッジ、8ビットモノクロ、2048x256画像サイズ、
 8ビット x 8タップ(Camera Linkフル)

- 主要パラメーター: LVAL_HI 256 FVAL_HI 256 X_ACTIVE 256 Y_ACTIVE 256 A-H PATSEL 3 A-H STEP 1 A_INIT 0 **B_INIT** 1 C_INIT 2 3 D_INIT E_INIT 4 F_INIT 5 G INIT 6 H INIT 7 CL_MODE 15
- 備考: ピクセルクロックごとに8つの連続したピクセルが出力されるので、 line valid (LVAL_HI)時間は2048/8 = 256です。初期設定値(INIT)とス テップサイズ(STEP)の設定は、0.1.2.3.4.5.6.7, 1.2.3.4.5.6.7.8, 2.3.4.5.6.7.8.9, …の形のX方向のグラディエントを生成し、Y方向の グラディエントは通常の(0.1.2...255)になります。

4.2. 80ビットの例

以下の4つの例は、新しい80ビットのコンフィギュレーションでCamera Linkテストパターンを生成するのに使用される主要なコンフィギュレーシ ョン設定を示しています。2つの80ビットコンフィギュレーションがあり ます:10の8ビットタップと8つの10ビットタップです。例は、デカコンフ ィギュレーションとも呼ばれる10の8ビットタップの場合を示しています。

デカコンフィギュレーションでは、ピクセルクロックごとに10の8ビット ピクセルが同時に出力されます。これは、非常に高速のフレームレート に対応しています。デカコンフィギュレーションカメラは、一般にライ ン内で10つの連続した(シーケンシャル)ピクセルを出力します。この理由 から、カメラの水平方向のサイズは10の倍数になります。

例では320x256画像を使用します。ピクセルクロックごとに10つの連続し たピクセルが出力されるので、水平ラインは32クロックだけの持続時間 に水平ブランクを加えたものになります。「A」コンフィギュレーション レジスタは第1ピクセルを、「B」コンフィギュレーションレジスタは第2 ピクセルを、「J」コンフィギュレーションレジスタは第10ピクセルを指 定するのに使用されます。

4.2.1. 8ビット 10タップ 水平ウェッジの例

目的:水平ウェッジ、8ビットモノクロ、320x256画像サイズ、
8ビット x 10タップ(Camera Linkフル、80ビットDECA)

主要パラメーター:	LVAL_HI	32
	FVAL_HI	256
	X_ACTIVE	32
	Y_ACTIVE	256
	A-J PATSEL	1
	A-J STEP	8
	A_INIT	0
	B_INIT	1
	C_INIT	2
	D_INIT	3
	E_INIT	4
	F_INIT	5
	G_INIT	6
	H_INIT	7
	I_INIT	8
	J_INIT	9
	CL MODE	13

備考: ピクセルクロックごとに10つの連続したピクセルが出力されるので、line valid (LVAL_HI)時間は320/10 = 32です。初期設定値(INIT)とステップサイズ(STEP)の設定は、0.1,2,3,4,5,6,7,8,9,8,9,10,11,12,13,14,15,16,17,16,17,18,19,20,21,22,23,24,25,...の形のグラディエントを生成します。

4.2.2. 8ビット 10タップ 垂直ウェッジの例

- 目的:垂直ウェッジ、8ビットモノクロ、320x256画像サイズ、
8ビット x 10タップ(Camera Linkフル、80ビットDECA)
- 主要パラメーター: LVAL_HI 32 FVAL HI 256 X_ACTIVE 32 Y_ACTIVE 256 A-J PATSEL 2 A-J STEP 1 A-J INIT 0 CL_MODE 13
- 備考: ピクセルクロックごとに10の連続したピクセルが出力されるので、 line valid (LVAL_HI)時間は320/10 = 32です。通常のグラディエント (0,1,2...255)が生成されます。

4.2.3. 8ピット 10タップ 傾斜ウェッジの例#1

目的:傾斜ウェッジ、8ビットモノクロ、320x256画像サイズ、
8ビット x 10タップ(Camera Linkフル、80ビットDECA)

主要パラメーター:	LVAL_HI	32
	FVAL_HI	256
	X_ACTIVE	32
	Y_ACTIVE	256
	A-J PATSEL	3
	A-J STEP	8
	A_INIT	0
	B_INIT	1
	C_INIT	2
	D_INIT	3
	E_INIT	4
	F_INIT	5
	G_INIT	6
	H_INIT	7
	I_INIT	8
	J_INIT	9
	CL_MODE	13

備考:ピクセルクロックごとに10の連続したピクセルが出力されるので、 line valid (LVAL_HI)時間は320/10 = 32です。初期設定値(INIT)とス テップサイズ(STEP)の設定は、0.1.2.3.4.5.6.7.8.9, 8.9.10.11.12.13.14.15.16.17, 16.17.18.19.20.21.22.23.24.25, ...の形のX 方向のグラディエントを生成しますが、STEPの設定に応じてY方 向のグラディエントは0.8.16...になります。

	-	-		
-	-	-		
-	-	-		
-	-	-		
-	-			
-	-			
-				-
_	-		_	-

4.2.4. 8ピット 10タップ 傾斜ウェッジの例#2

目的: 傾斜ウェッジ、8ビットモノクロ、2560x256画像サイズ、8ビット x 10タップ(Camera Linkフル、80ビットDECA)

主要パラメーター:	LVAL HI	32
	FVAL HI	256
	X ACTIVE	32
	YACTIVE	256
	A-J PATSEL	3
	A-J STEP	1
	A INIT	0
	BINIT	1
	C_INIT	2
	D_INIT	3
	E_INIT	4
	F_INIT	5
	G_INIT	6
	H_INIT	7
	I_INIT	8
	J_INIT	9
	CL_MODE	13

備考:ピクセルクロックごとに10の連続したピクセルが出力されるので、 line valid (LVAL_HI)時間は320/10 = 32です。初期設定値(INIT)とス テップサイズ(STEP)の設定は、0,1,2,3,4,5,6,7,8,9, <u>1,2,3,4,5,6,7,8,9,10</u>, <u>2,3,4,5,6,7,8,9,10,11</u>,…の形のX方向のグラディ エントを生成し、Y方向は通常のグラディエント(0,1,2...255)が生成 されます。

5. 改訂履歴

表5-1: CLS-212 ユーザーマニュアル改訂履歴

文書ID #	日付	変更
200483-1.0	6/30/2010	最初のマニュアル