

Technical Manual

V5.2.0 09 March 2015

Allied Vision Technologies GmbH Taschenweg 2a D-07646 Stadtroda / Germany

Legal notice

For customers in the U.S.A.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However there is no guarantee that interferences will not occur in a particular installation. If the equipment does cause harmful interference to radio or television reception, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the distance between the equipment and the receiver.
- Use a different line outlet for the receiver.
- Consult a radio or TV technician for help.

You are cautioned that any changes or modifications not expressly approved in this manual could void your authority to operate this equipment. The shielded interface cable recommended in this manual must be used with this equipment in order to comply with the limits for a computing device pursuant to Subpart B of Part 15 of FCC Rules.

For customers in Canada

This apparatus complies with the Class B limits for radio noise emissions set out in the Radio Interference Regulations.

Pour utilisateurs au Canada

Cet appareil est conforme aux normes classe B pour bruits radioélectriques, spécifiées dans le Règlement sur le brouillage radioélectrique.

Life support applications

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Allied Vision Technologies customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Allied for any damages resulting from such improper use or sale.

Trademarks

Unless stated otherwise, all trademarks appearing in this document of Allied Vision Technologies are brands protected by law.

Warranty

The information provided by Allied Vision Technologies is supplied without any guarantees or warranty whatsoever, be it specific or implicit. Also excluded are all implicit warranties concerning the negotiability, the suitability for specific applications or the non-breaking of laws and patents. Even if we assume that the information supplied to us is accurate, errors and inaccuracy may still occur.

Copyright

All texts, pictures and graphics are protected by copyright and other laws protecting intellectual property. It is not permitted to copy or modify them for trade use or transfer, nor may they be used on web sites.

Allied Vision Technologies GmbH 03/2015

All rights reserved. Managing Director: Mr. Frank Grube Tax ID: DE 184383113

Headquarters:

Taschenweg 2A D-07646 Stadtroda, Germany Tel.: +49 (0)36428 6770 Fax: +49 (0)36428 677-28 e-mail: info@alliedvision.com

Contents

Contacting Allied Vision	12
Introduction	13
Document history	
Manual overview	
Conventions used in this manual	
Styles	28
Symbols	28
More information	29
Before operation	30
Pike cameras	32
Conformity	34
CE	
FCC – Class B Device	
FireWine	<u>-</u>
FireWire	
Overview	
Definition IEEE 1394 standards	
Why use FireWire?	
FireWire in detail	
Serial bus	
FireWire connection capabilities	
Capabilities of 1394a (FireWire 400)	
IIDC V1.3 camera control standards	38
IIDC V1.31 camera control standards	
Compatibility between 1394a and 1394b	
Compatibility example Image transfer via 1394a and 1394b	
1394b bandwidths	
Requirements for PC and 1394b	41
Example1: 1394b bandwidth of Pike cameras	
Example 2: More than one Pike camera at full speed	
FireWire Plug & play capabilities	
FireWire hot-plug and screw-lock precautions	
Operating system support	44
Specifications	45
Pike F-032B/C (fiber)	
Pike F-100B/C (fiber)	
Pike F-145B/C (fiber) (-15fps*)	48

	Pike F-210B/C (fiber)	50
	Pike F-421B/C (fiber)	51
	Pike F-505B/C (fiber)	
	Pike F-1100B/C (fiber)	
	Pike F-1600B/C (fiber)	
	Spectral sensitivity	
С	amera dimensions	.67
	Serial numbers for starting new front flange	67
	Pike standard housing (2 x 1394b copper)	68
	Pike (1394b: 1 x GOF, 1 x copper)	69
	Tripod adapter	70
	Pike W90 (2 x 1394b copper)	71
	Pike W90 (1394b: 1 x GOF, 1 x copper)	
	Pike W90 S90 (2 x 1394b copper)	
	Pike W90 S90 (1394b: 1 x GOF, 1 x copper)	
	Pike W270 (2 x 1394b copper)	
	Pike W270 (1394b: 1 x GOF, 1 x copper)	
	Pike W270 S90 (2 x 1394b copper)	
	Pike W270 S90 (1394b: 1 x GOF, 1 x copper)	
	Cross section: CS-Mount (only Pike F-032B/C)	
	Cross section: C-Mount (VGA size filter)	
	Cross section: C-Mount (large filter)	
	Adjustment of C-Mount	
	Adjustment of F-Mount for Pike F-1100 and Pike F-1600	
	F-Mount	
	Pike F-Mount: standard housing	
	(2 x 1394b copper)	84
	Pike F-Mount (1394b: 1 x GOF, 1 x copper)	85
	Pike F-Mount: Tripod adapter	
	Pike F-Mount: W270 (2 x 1394b copper)	87
	Pike F-Mount: W270	
	(1394b: 1 x GOF, 1 x copper)	
	Cross section: F-Mount	
	K-Mount, M39-Mount	
	Cross section: M39-Mount	
	M42-Mount	91
	Pike M42-Mount: standard housing	
	(2 x 1394b copper)	91
	Pike M42-Mount: standard housing	~~
	(1394b: 1 x GOF, 1 x copper)	
	Pike M42-Mount: Tripod adapter	
	Pike M42-Mount: W270 (2 x 1394b copper) Pike M42-Mount: W270	94
	(1394b: 1 x GOF, 1 x copper)	05
	Cross section: M42-Mount	
	M58-Mount	
		51

Pike M58-Mount: standard housing	
(2 x 1394b copper)	97
Pike M58-Mount: standard housing	
(1394b: 1 x GOF, 1 x copper)	
Pike M58-Mount: Tripod adapter	
Pike M58-Mount: W270 (2 x 1394b copper)	
Pike M58-Mount: W270	
(1394b: 1 x GOF, 1 x copper)	101
Cross section: M58-Mount	
Filter and lenses	103
IR cut filter: spectral transmission	
Camera lenses	
Camera interfaces	106
IEEE 1394b port pin assignment	106
Camera I/O connector pin assignment	
Status LEDs	
On LED (green)	
Status LED	
Control and video data signals	
Inputs	
Triggers	
Input/output pin control	
IO_INP_CTRL 1-2	
Trigger delay	
Outputs	
IO_OUTP_CTRL 1-4	
Output modes	
Pulse-width modulation	
PWM: minimal and maximal periods and frequencies	120
PWM: Examples in practice	
Pixel data	
Description of video data formats	123
Description of the data path	128
Block diagrams of the cameras	128
Black and white cameras	128
Color cameras	129
Channel balance	129
Channel adjustment with SmartView (>1.5)	
Dual-tap offset adjustment with SmartView (1.10 or greater)	
White balance	
One-push white balance	
Auto white balance (AWB)	
Auto shutter	
Auto gain	
Manual gain	
Handat Yann	

Brightness (black level or offset)	144
Horizontal mirror function	145
Shading correction	148
Building shading image in Format_7 modes	
First example	
Second example	148
How to store shading image	148
Automatic generation of correction data	150
Requirements	150
Algorithm	150
Loading a shading image out of the camera	153
Loading a shading image into the camera	154
Look-up table (LUT) and gamma function	155
Loading an LUT into the camera	157
Defect pixel correction (Pike F-1100/1600 only)	158
Defect pixel definitions for Pike F-1100	
Defect pixel definitions for Pike F-1600	159
Allied Vision factory default settings	159
Allied Vision defect pixel map	159
Defect pixel editor in SmartView	161
Defect Pixel editor: more details	164
Where is the defect pixel correction done?	164
Binning (only Pike b/w models)	165
2 x / 4 x / 8 x binning	165
Vertical binning	166
Horizontal binning	
2 x full binning/4 x full binning/8 x full binning	169
Sub-sampling (Pike b/w and color)	170
What is sub-sampling?	170
Which Pike models have sub-sampling?	170
Description of sub-sampling	170
Binning and sub-sampling access	176
Quick parameter change timing modes	179
Why new timing modes?	179
Standard Parameter Update Timing	
New: Quick Format Change Mode (QFCM)	180
How to transfer parameters to the camera	181
Encapsulated Update (begin/end)	181
Parameter-List Update	182
Standard Update (IIDC)	183
Packed 12-Bit Mode	184
High SNR mode (High Signal Noise Ratio)	185
Frame memory and deferred image transport	186
Deferred image transport	
HoldImg mode	187
FastCapture mode	
Color interpolation (BAYER demosaicing)	
Sharpness	
•	

	Hue and saturation	192
	Color correction	192
	Why color correction?	
	Color correction in Allied Vision cameras	
	Color correction: formula	
	GretagMacbeth ColorChecker	
	Changing color correction coefficients	
	Switch color correction on/off	
	Color conversion (RGB \rightarrow YUV)	
	Bulk Trigger	
	Level Trigger	195
	Serial interface	195
С	ontrolling image capture	200
	Trigger modi	200
	Bulk Trigger (Trigger_Mode_15)	201
	Trigger delay	
	Trigger delay advanced register	206
	Debounce	207
	Debounce time	
	Exposure time (shutter) and offset	
	Exposure time offset	
	Minimum exposure time	
	Extended shutter	
	One-shot	
	One-shot command on the bus to start of exposure	
	End of exposure to first packet on the bus	
	Multi-shot	
	ISO_Enable / free-run	
	Asynchronous broadcast	
	Jitter at start of exposure	
	Sequence mode	
	How is sequence mode implemented?	
	Setup mode (new for 3.x)	
	Sequence step mode (new for 3.x)	
	SeqMode description	
	Sequence repeat counter (new for 3.x)	
	Manual stepping & reset (new for 3.x)	
	Which new sequence mode features are available?	
	Setup mode	
	I/O controlled sequence stepping mode I/O controlled sequence pointer reset	223
	I/O controlled sequence stepping mode and I/O controlled sequence pointer reset via so	
	command	
	Points to pay attention to when working with a sequence	
	Changing the parameters within a sequence	
	Points to pay attention to when changing the parameters	
	Secure image signature (SIS): definition and scenarios	

SIS: Definition	227
SIS: Scenarios	227
Smear reduction (not Pike F-1100/1600)	228
Smear reduction: definition	228
Smear reduction: how it works	228
Smear reduction: switch on/off in register and SmartView	228
Video formats, modes and bandwidth	229
Pike F-032B / Pike F-032C	230
Pike F-100B / Pike F-100C	
/ Pike F-145B / Pike F-145C (-15 fps**)	
Pike F-210B / Pike F-210C	
Pike F-421B / Pike F-421C	
Pike F-505B / Pike F-505C	
Pike F-1100B / Pike F-1100C	
Pike F-1600B / Pike F-1600C	
Area of interest (AOI)	
Autofunction AOI	
Frame rates	
Frame rates Format 7	
Pike F-032: A0I frame rates	
Pike F-100: A0I frame rates	
Pike F-145: AOI frame rates (no sub-sampling)	256
Pike F-145: AOI frame rates (sub-sampling)	
Pike F-145-15fps: AOI frame rates (no sub-sampl.)	
Pike F-145-15fps: AOI frame rates (sub-sampl.)	259
Pike F-210: AOI frame rates (no sub-sampling)	
Pike F-210: AOI frame rates (sub-sampling)	
Pike F-421: AOI frame rates	
Pike F-505: AOI frame rates	
AOI frame rates with max. BPP = 8192	
AOI frame rates with max. BPP = 11000	
Pike F-1100: AOI frame rates	
Pike F-1100: frame rate formula single-tap	
AOI frame rates maxBPP=8192, single-tap, no sub-sampling	
AOI frame rates maxBPP=8192, single-tap, sub-sampling Pike F-1100: frame rate formula dual-tap	
AOI frame rates maxBPP=8192, dual-tap, no sub-sampling	
AOI frame rates maxBPP=8192, dual-tap, no sub-sampling	
AOI frame rates maxBPP=11000, single-tap, no sub-sampling	
AOI frame rates maxBPP=11000, single-tap, sub-sampl.	
AOI frame rates maxBPP=11000, dual-tap, no sub-sampl.	
AOI frame rates maxBPP=11000, dual-tap, sub-sampl	
Pike F-1600: AOI frame rates	
Pike F-1600: frame rate formula single-tap	
AOI frame rates maxBPP=8192, single-tap, no sub-sampling	
AOI frame rates maxBPP=8192, single-tap, sub-sampling	
Pike F-1600: frame rate formula dual-tap	

Pike Technical Manual V5.2.0

AOI frame rates maxBPP=8192, dual-tap, no sub-sampling	. 275
AOI frame rates maxBPP=8192, dual-tap, sub-sampling	276
AOI frame rates maxBPP=16000, single-tap, no sub-sampl	. 277
AOI frame rates maxBPP=11000, single-tap, sub-sampling	. 278
AOI frame rates maxBPP=11000, dual-tap, no sub-sampling	. 279
AOI frame rates maxBPP=11000, dual-tap, sub-sampling	. 280
How does bandwidth affect the frame rate?	. 281
Example formula for the b/w camera	. 282
Test images	
Loading test images	
Test images for b/w cameras	
Test images for color cameras	
YUV4:2:2 mode	
Mono8 (raw data)	284
Configuration of the camera	. 285
Camera_Status_Register	
Example	
Sample program	
Example FireGrab	
Example FireStack API	
Configuration ROM	
Implemented registers	
Camera initialize register	
Inquiry register for video format	
Inquiry register for video mode	
Inquiry register for video frame rate and base address	
Inquiry register for basic function	
Inquiry register for feature presence	
Inquiry register for feature elements	
Inquiry register for absolute value CSR offset address	
Status and control register for feature	
Feature control error status register	
Video mode control and status registers for Format_7	
Quadlet offset Format_7 Mode_0	
Quadlet offset Format_7 Mode_1	. 313
Format_7 control and status register (CSR)	. 313
Advanced features	. 315
Extended version information register	. 319
Advanced feature inquiry	. 320
Camera status	. 322
Maximum resolution	. 323
Time base	
Extended shutter	325
Test images	
Look-up tables (LUT)	
Loading a look-up table into the camera	. 328

Shading correction	329
Reading or writing shading image from/into the camera	331
Automatic generation of a shading image	331
Non-volatile memory operations	331
Memory channel error codes	332
Deferred image transport	332
Frame information	333
Input/output pin control	334
Delayed Integration enable	334
Auto shutter control	335
Auto gain control	336
Autofunction AOI	337
Color correction	338
Trigger delay	339
Mirror image	339
AFE channel compensation (channel balance)	340
Dual-tap offset adjustment	340
Soft reset	341
High SNR mode (High Signal Noise Ratio)	342
Maximum ISO packet size	343
Quick parameter change timing modes	345
Standard Parameter Update Timing	
Quick Format Change Mode	
Automatic reset of the UpdActive flag	
Low-noise binning mode (only 2 x H-binning)	346
Software feature control (disable LEDs / switch single-tap and dual-tap)	347
Disable LEDs	
Sensor digitization taps (Pike F-1100/1600 only)	348
Parameter-List Update	348
Format_7 mode mapping	349
Example	350
Secure image signature (SIS)	
Advanced register: SIS	
Advanced register: frame counter	
Advanced register: trigger counter	354
Where to find time stamp, frame counter and trigger counter in the image	
Where to find all SIS values in the image	
Smear reduction (not Pike F-1100/1600)	356
Defect pixel correction	
Reading or writing defect pixel correction data from/into the camera	
User profiles	
Error codes	359
Reset of error codes	
Stored settings	
Frame time control	
GPDATA_BUFFER	
Little endian vs. big endian byte order	
User adjustable gain references	363

Firmware update	364
- Extended version number (FPGA/μC)	
Appendix	366
Sensor position accuracy of Pike cameras	

Contacting Allied Vision

Contacting Allied Vision

Connect with Allied Vision colleagues by function: www.alliedvision.com/en/contact

Find an Allied Vision office or distributor:

www.alliedvision.com/en/about-us/where-we-are.html

E-mail:

info@alliedvision.com (for commercial and general inquiries)
support@alliedvision.com (for technical assistance with Allied Vision products)

Telephone:

EMEA: +49 36428-677-0 The Americas: +1 978-225-2030 Asia-Pacific: +65 6634-9027 China: +86 (21) 64861133

Headquarters:

Allied Vision Technologies GmbH Taschenweg 2a, 07646 Stadtroda, Germany Tel: +49 (36428) 677-0 Fax +49 (36428) 677-24 President/CEO: Frank Grube | Registration Office: AG Jena HRB 208962

This **Pike Technical Manual** describes in depth the technical specifications, dimensions, all camera features (IIDC standard and Allied Vision smart features) and their registers, trigger features, all video and color formats, bandwidth, and frame rate calculation.

For information on hardware installation, safety warnings, and pin assignments on I/O connectors and 1394b connectors read the **1394 Installation Manual**.

Please read through this manual carefully.

We assume that you have read already the **1394 Installation Manual** (see: http://www.alliedvision.com/en/support/technical-documentation) and that you have installed the hardware and software on your PC or laptop (FireWire card, cables).

Document history

Version	Date	Remarks	
V2.0.0	07.07.2006	New Manual - RELEASE status	
PRE_V3.0.0	22.09.2006	Minor corrections	
		Added Pike F-145	
		Pike F-210 AOI frame rates corrected: Chapter Pike F-210: AOI frame rates (no sub-sampling) on page 260	
		New advanced registers: Chapter Advanced features on page 315	
V3.0.1	29.09.2006	Minor corrections	
V3.1.0	13.02.2007	Changed camera status register (Table 156: Advanced register: Camera status on page 323)	
		Added description for the following mode <i>Output state follows PinState bit (Table 31: Output routing</i> on page 117)	
		Added M39-Mount for Pike F-201 and F-421 (Chapter F-Mount on page 83)	
	to be continued on next page		

Version	Date	Remarks
		continued from previous page
V3.2.0	22.08.2007	Minor corrections
		Added CE in Chapter Conformity on page 33.
		Added Value field in Table 43: CSR: Shutter on page 139.
		Added Chapter Cross section: CS-Mount (only Pike F-032B/C) on page 79.
		Added detailed description of BRIGHTNESS (800h) in Table 149: Feature control register on page 310
		Added detailed description of WHITE-BALANCE (80Ch) in Table 149: Feature control register on page 310 et seq.
		Added Appendix, Chapter on page 378.
		Added new frame rates in Chapter Specifications on page 45
		Added new AOI frame rates and diagrams in Chapter Frame rates Format_7 on page 253
		New minimum shutter speeds for each of the Pike cameras in Chapter Specifications on page 45 and the following
		Added new features of Pike update round:
		 SIS: see Chapter Secure image signature (SIS): definition and scenarios on page 226 Sequence mode: see Chapter Sequence mode on page 217 Smear reduction see Chapter Smear reduction (not Pike F-1100/1600) on page 228 4 x / 8 x binning and sub-sampling modes see Chapter Binning (only Pike b/w models) on page 165 see Chapter Sub-sampling (Pike b/w and color) on page 170 see Chapter Binning and sub-sampling access on page 176 Quick mode for format changes see Chapter Quick parameter change timing modes on page 179 Speed increase mode (Packed 12-bit Mode) Chapter Packed 12-Bit Mode on page 184 CS-Mount (only for Pike F-032) Chapter Pike F-032B/C (fiber) on page 45 and Chapter Cross section: CS-Mount (only Pike F-032B/C) on page 79
	I	to be continued on next page

Version	Date	Remarks	
	continued from previous page		
V4.0.0	15.01.2008	Added 15fps versions of Pike F-145 at Table 154: Camera type ID list on page 320	
		Added VERSION_INFO1_EX, VERSION_INFO3_EX and description at Table 153: Advanced register: Extended version information on page 319	
		Revised Chapter Secure image signature (SIS) on page 351	
		Added detailed description to register 0xF10000570 PARAMUP- D_TIMING (how to switch on Quick Format Change Mode) see Chapter Quick parameter change timing modes on page 345	
		Added Chapter Pike F-505B/C (fiber) on page 53.	
		Added Chapter Pike F-505B / Pike F-505C on page 240.	
		Revised description of C-Mount adjustment in Chapter Adjust- ment of C-Mount on page 82.	
		Moved Allied Vision Glossary from Appendix of Pike Technical Manual to Allied Vision Website.	
		Revised Pike F-505B/C data.	
		Corrected binning (only b/w cameras) and added Format_IDs in Figure 102: Mapping of possible Format_7 modes to F7M1F7M7 on page 178.	
	1	to be continued on next page	

Version	Date	Remarks	
continued from previous page			
V4.1.0	20.08.08	Added Pike F-505 to Chapter Index on page Index	
		Revised formulas by adding some units in Chapter How does bandwidth affect the frame rate? on page 281	
		Corrected Table 174: Advanced register: Channel balance on page 340	
		Added Max IsoSize Bit [1] to register 0xF1000048 ADV_INQ_3 in Table 155: Advanced register: Advanced feature inquiry on page 321f.	
		Added Chapter Maximum ISO packet size on page 343 (useful for Pike F-505 for higher frame rates)	
		Corrected Figure 103: Former standard timing on page 179	
		Added photos of 1394b locking connectors and 1394a Molex clamp locking (aka Interlock) connectors in Chapter 1394a and 1394b cameras and compatibility on page 39.	
		Added recommendation to use PCI-X (64 bit) or PCI Express adapter in Chapter Maximum ISO packet size on page 343.	
		Corrected frame rate formula in Chapter High SNR mode (High Signal Noise Ratio) on page 185.	
		Corrected binning order in Chapter 2 x full binning/4 x full bin- ning/8 x full binning on page 169.	
		Added block diagram of modern PC (X38 chipset by INTEL) in Fig- ure 5: Block diagram of modern PC (X38 chipset by INTEL) on page 39	
		Revised FireWire hot-plug precautions and added screw-lock pre- cautions in Chapter FireWire hot-plug and screw-lock precau- tions on page 44	
		Added images of FireWire locking cables in Figure 4: 1394a and 1394b cameras and compatibility on page 39	
		Added list of available FireWire screw lock cables in Table 4: 1394 locking cables on page 35	
		Corrected CAD drawing in Figure 26: Pike W90 S90 (2 x 1394b copper) on page 73	
		Changed provisions directive to 2004/108/EG in Chapter Confor- mity on page 33	
		Corrected diag. (16.3 mm) of KAI2093 in Table 11: Specification Pike F-210B/C (fiber) on page 50	
	I	to be continued on next page	

Version	Date	Remarks
		continued from previous page
V4.1.0	20.08.08	Restructuring of Pike Technical Manual:
[continued]	[continued]	Added Chapter Contacting Allied Vision on page 12
		Added Chapter Manual overview on page 27
		Restructured Chapter <i>Pike types and highlights</i> to Chapter Pike cameras on page 32.
		Infos from <i>Pike camera types</i> table moved to Chapter Specifica- tions on page 45
		<i>Safety instructions</i> moved to <i>Hardware Installation Guide</i> , Chapter <i>Safety instructions</i> and <i>Camera cleaning instructions</i>
		Environmental conditions moved to Pike Instruction Leaflet
		Infos on CS-/C-Mounting moved to Hardware Installation Guide, Chapter <i>Changing filters safety instructions</i>
		Infos on System components and Environmental conditions moved to Pike Instruction Leaflet
		Infos on <i>IR cut filter</i> and <i>Lenses</i> moved to Chapter Filter and lenses on page 103
		Moved binning explanation from Chapter Specifications on page 45 to Chapter Video formats, modes and bandwidth on page 229
		Binning / sub-sampling modes and color modes are only listed in Chapter Video formats, modes and bandwidth on page 229
		Moved detailed description of the camera interfaces (FireWire, I/O connector), ordering numbers and operating instructions to the <i>Hardware Installation Guide</i> .
		Revised Chapter Description of the data path on page 132
		Revised Chapter Controlling image capture on page 200; User profiles are only described in Chapter User profiles on page 358
		Revised Chapter Video formats, modes and bandwidth on page 229
		Revised Chapter How does bandwidth affect the frame rate? on page 281
		[to be continued]
	· · ·	to be continued on next page

Version	Date	Remarks	
		continued from previous page	
V4.1.0	20.08.08	[continued: Restructuring of Pike Technical Manual:]	
[continued]	[continued]	Revised Chapter Configuration of the camera on page 285	
		Revised Chapter Firmware update on page 364	
		Added Chapter on page 378	
		Revised Chapter Index	
		Corrected for all Pike cameras: 16 user-defined LUTs in Chapter Specifications on page 45ff.	
		Added cross-reference from upload LUT to GPDATA_BUFFER in Chapter Loading an LUT into the camera on page 157.	
		Added cross-reference from upload/download shading image to GPDATA_BUFFER in:	
		Chapter Loading a shading image out of the camera on page 153	
		Chapter Loading a shading image into the camera on page 154	
		Added Pike F-505 as it uses different BAYER pattern (first pixel of the sensor is RED) in Chapter Color interpolation (BAYER demo- saicing) on page 190	
		Added detailed level values of I/Os in Chapter Camera I/O connector pin assignment on page 108.	
		Added RoHS in Chapter Conformity on page 33	
		Added little endian vs. big endian byte order in Chapter GPDATA_BUFFER on page 362	
		Pike update firmware round:	
		Gain references: see Chapter User adjustable gain references on page 363	
		Low-noise binning mode for 2 x horizontal binning: see Chapter Low-noise binning mode (only 2 x H-binning) on page 346	
		New photo of LED positions in Figure 58: Position of status LEDs on page 109	
V4.2.0	01.09.08	New default gain references for Pike F-505B/C in Table 201: Default gain references of Pike models on page 363	
	· · · · · · · · · · · · · · · · · · ·	to be continued on next page	

Version	Date	Remarks	
	continued from previous page		
V4.3.0	23.04.09	Pike F-100B: new Quantum efficiency diagram in Figure 7: Spec- tral sensitivity of Pike F-100B on page 60	
		All advanced registers in 8-digit format beginning with 0xF1 in Chapter Advanced features on page 315ff. and in Table 183: Advanced register: Parameter-List Update: parameter list on page 348	
		Corrected Pike cameras with small (VGA size) and large filter in Chapter Cross section: C-Mount (VGA size filter) on page 80 and Chapter Cross section: C-Mount (large filter) on page 81	
		SEQUENCE_RESET register moved to SEQUENCE_STEP register (0xF1000228) in SEQUENCE_STEP on page 219 and in SEQUENCE_STEP on page 315.	
		Revised Chapter White balance on page 133ff.	
		New sensor for Pike F-421B/C in Table 3: Pike camera types on page 33 and in Table 12: Specification Pike F-421B/C (fiber) on page 51.	
		Calculated effective chip size for all sensors (with resolution of Format_7 Mode_0) in Chapter Specifications on page 45ff.	
		Pike F-210B/C shows no speed increase using sub-sampling: see Chapter Pike F-210: AOI frame rates (sub-sampling) on page 261	
	·	to be continued on next page	

Version	Date	Remarks
		continued from previous page
V4.4.0	28.09.09	Added notice to description of non-volatile storage of shading image in Note on page 151.
		Corrected drawing in Figure 148: Delayed integration timing on page 334
		Corrected Format_7 Mode_5 (640 x 240) in Table 84: Video For- mat_7 default modes Pike F-032B / Pike F-032C on page 231.
		Added Raw12 to Pike F-032C and corrected some frame rates in Table 84: Video Format_7 default modes Pike F-032B / Pike F-032C on page 231f.
		New dual-tap offset adjustment for Pike F-032/210/421/505:
		 See 0xF1000430 on page 317 See Table 175: Advanced register: Dual-tap offset adjustment on page 340 See Chapter Dual-tap offset adjustment with SmartView (1.10 or greater) on page 131 Revised Chapter Conformity on page 33.
		New Pike front flange :
		 Title page: new photo and Figure 35: Back focus adjustment on page 82: new Pike drawing New CAD drawings: Chapter Camera dimensions on page 67ff. Figure 35: Back focus adjustment on page 82 (adjusting
		C-Mount via both screws on top (middle) and right sight of the housing
		Added PWM feature:
		 Added PWM feature in IO_OUTP_CTRL 1-4 on page 116ff. Added PWMCapable in Register 0xF1000320 in Table 30: Advanced register: Output control on page 116
		Added ID 0x09 in Table 31: Output routing on page 117Added Chapter Pulse-width modulation on page 119ff.
		 Added Table 32: PWM configuration registers on page 119 Added PWM in Table 155: Advanced register: Advanced feature inquiry on page 321f.
		 Added PWM in Table 152: Advanced registers summary on page 315ff.
	·	to be continued on next page

V4.4.0 28.09.09 [continued] [continued] V5.0.0 07.05.10	 continued from previous page All Pike models: added input debounce feature: Advanced register summary 0xF1000840 on page 318 Advanced register summary 0xF1000850 on page 318 Advanced register summary 0xF1000860 on page 318 Advanced register summary 0xF1000870 on page 318 Chapter Debounce on page 207f. Chapter Debounce time on page 208 Table 71: Advanced register: Debounce time for input ports on page 208 All Pike models: added Frame time control feature: Table 152: Advanced registers summary on page 315ff. Chapter Frame time control on page 361
[continued] [continued	 Advanced register summary 0xF1000840 on page 318 Advanced register summary 0xF1000850 on page 318 Advanced register summary 0xF1000860 on page 318 Advanced register summary 0xF1000870 on page 318 Chapter Debounce on page 207f. Chapter Debounce time on page 208 Table 71: Advanced register: Debounce time for input ports on page 208 All Pike models: added Frame time control feature: Table 152: Advanced registers summary on page 315ff.
V5.0.0 07.05.10	 Chapter Debounce on page 207f. Chapter Debounce time on page 208 Table 71: Advanced register: Debounce time for input ports on page 208 All Pike models: added Frame time control feature: Table 152: Advanced registers summary on page 315ff.
V5.0.0 07.05.10	
	New Pike F-1100 and Pike F-1600 models:
	 Figure 17: Spectral sensitivity of Pike F-1100B on page 65 Figure 18: Spectral sensitivity of Pike F-1100C on page 66 Figure 20: Spectral sensitivity of Pike F-1600B on page 66 Chapter Pike F-1100B/C (fiber) on page 55f. Chapter Pike F-1600B/C (fiber) on page 57f. Chapter Dual-tap offset adjustment with SmartView (1.10 or greater) on page 131ff. and Chapter Dual-tap offset adjustment on page 340 Chapter Adjustment of F-Mount for Pike F-1100 and Pike F-1600 on page 83 Chapter F-Mount on page 83ff. Chapter Pike F-Mount: standard housing (2 x 1394b copper) on page 84 Chapter Pike F-Mount: Tripod adapter on page 86 Chapter Pike F-Mount: W270 (2 x 1394b copper) on page 87 Chapter Cross section: F-Mount on page 361 Chapter Sensor digitization taps (Pike F-1100/1600 only) on page 348

Version	Date	Remarks
continued from previous page		
V5.0.0	07.05.10	[continued]
[continued]	[continued]	New Pike F-1100 and Pike F-1600 models:
		• Chapter F-Mount on page 83ff.
		Chapter M42-Mount on page 91ff.
		Chapter M58-Mount on page 97ff.
		Chapter Exposure time offset on page 209
		Chapter Minimum exposure time on page 209
		• Figure 113: Data flow and timing after end of exposure on page 214
		• Table 78: Jitter at exposure start (no binning, no sub-sam- pling) on page 217
		• Table 201: Default gain references of Pike models on page 363
		 Chapter Software feature control (disable LEDs / switch sin- gle-tap and dual-tap) on page 347
		Chapter Pike F-1100B / Pike F-1100C on page 242
		Chapter Pike F-1600B / Pike F-1600C on page 244
		• Chapter Pike F-1100: AOI frame rates on page 265ff.
		• Chapter Pike F-1600: AOI frame rates on page 273ff.
		New Pike front flange:
		• Serial numbers for Pike camera models starting new front flange: Chapter Serial numbers for starting new front flange on page 67
		• Added photo of Pike 11M/16M on title page
		Minor corrections and improvements:
		 Improved description on low noise binning: Chapter Low- noise binning mode (only 2 x H-binning) on page 346 Corrected MaxValue from [031] to [631] in Table 168: Advanced register: Auto shutter control on page 335
		 Corrected: Pike F-145C has Raw12 formats (F7M0, F7M4, F7M5, F7M6) in Table 88: Video Format_7 default modes Pike F-145B / F-145C on page 235
		• Improved description of debounce feature in Chapter Debounce on page 207
		New storage temperature:
		• 70 °C, see Chapter Specifications on page 45ff.
	I	to be continued on next page

Remarks		
continued from previous page		
New links to the new Allied Vision website:		
Chapter <i>Contacting Allied Vision</i> on page 12		
New measured sensitivity curves:		
• Chapter Spectral sensitivity on page 58ff.		
Added new CAD drawings for W90S90 and W270S90:		
 Chapter Pike W90 S90 (2 x 1394b copper) on page 73 Chapter Pike W270 S90 (2 x 1394b copper) on page 77 Chapter Pike W90 S90 (1394b: 1 x GOF, 1 x copper) on page 74 Chapter Pike W270 S90 (1394b: 1 x GOF, 1 x copper) on page 78 		
Added more information on operating system support (Windows XP SP3, Vista SP2, Windows 7):		
Chapter Operating system support on page 46		
Changed sensitivity curves for Pike F-421B/C from Kodak KAI 4021 to Kodak KAI 4022:		
 Figure 13: Spectral sensitivity of Pike F-421B on page 63 Figure 14: Spectral sensitivity of Pike F-421C on page 63 		
Minor corrections		
 Added red font to Pike F-1100C and Pike F-1600C in head-line: see Chapter Pike F-1100B / Pike F-1100C on page 242 and Chapter Pike F-1600B / Pike F-1600C on page 244 Added missing Pike F-100: see Chapter Dual-tap offset adjustment with SmartView (1.10 or greater) on page 131f. Changed frame rates from Pike F-505 (maxBPP=1100) form 15 fps to 14 fps for RAW8 and AOI height of 2054 and 2048. Changed all frame rates that exceeded the theoretical frame rate of the CCD: see Table 115: Frame rates Pike F-505 as function of AOI height [width=2452] (maxBPP=11000) on page 264 and Chapter Specification Pike F-505B/C (fiber) on page 53 Changed all frame rates that exceeded the theoretical frame rate of the CCD: see Chapter Frame rates Format_7 on page 253ff. 		

Version	Date	Remarks		
continued from previous page				
V5.0.1	08.06.10	Changed and new CAD drawings for Pike F-1100/1600:		
[continued]	[continued]	 Changed CAD drawings with corrected mount dimensions: see Figure 41: Pike F-Mount dimensions (standard for Pike F-1100 and Pike F-1600) on page 89, Figure 48: Pike M42- Mount dimensions (optional for Pike F-1100 and Pike F- 1600) on page 96 and Figure 54: Pike M58-Mount dimen- sions (optional for Pike F-1100 and Pike F-1600) on page 102. Added CAD drawings for Pike F-1100/1600 GOF versions incl. W270 models: Chapter Camera dimensions on page 67ff. 		
V5.0.2	09.08.10	Changed sensitivity curve:		
		 For Pike F-032B: due to new KODAK sensor data sheet for KAI-0340, the new sensitivity curve was added, see Figure 5: Spectral sensitivity of Pike F-032B on page 59. 		
		Changed trigger diagram:		
		• Added trigger delay and connection between trigger delay and Busy signal, see Figure 62: Output impulse diagram on page 118		
		New file format:		
		• Converted FrameMaker files from FM7 to FM9		
		Improved description of HSNR mode:		
		• Added info that for 8-bit video modes, the internal HSNR calculations are done with 14 bit: Chapter High SNR mode (High Signal Noise Ratio) on page 185		
	•	to be continued on next page		

Version	Date	Remarks	
		continued from previous page	
V5.1.0	03.05.11	Added new features:	
		Defect pixel correction	
		 Chapter Defect pixel correction (Pike F-1100/1600 only) on page 158 Advanced feature registers: see Chapter Defect pixel 	
		correction on page 356Advanced registers summary: see	
		DEFECT_PIXEL_CORRECTION_CTRL on page 317	
		Pike F-505C	
		 Added Pike F-505C in Figure 75: Mirror and Bayer order on page 147 	
		Added new address:	
		• Added Singapore address in Chapter <i>Contacting Allied Vision</i> on page 12	
		Revised chapters:	
		 Revised Chapter Description of video data formats on page 123 	
V5.1.1	27.02.12	VC50 variants have also the following conformities:	
		• REACH	
		China RoHS	
		See Chapter Conformity on page 33.	
		Smaller corrections:	
		• Pike F-1100/1600 don't have smear reduction:	
		 Chapter Smear reduction (not Pike F-1100/1600) on page 228 	
		 Smear reduction on page 322 	
		 Chapter Smear reduction (not Pike F-1100/1600) on page 356 	
		• Up to 16 LUTs can be stored permanently in the camera via 4 user sets: see Chapter Stored settings on page 360	
V5.1.2	13.08.2012	• High SNR mode: Added note to set grab count and activa- tion of HighSNR in one single write access :	
		 see Chapter High SNR mode (High Signal Noise Ratio) on page 185 	
		 Chapter High SNR mode (High Signal Noise Ratio) on page 342 	
	I	to be continued on next page	

Version	Date	Remarks	
		continued from previous page	
V5.1.2 [continued]	13.08.2012 [continued]	Changed IR cut filter to <i>(type Jenofilt 217)</i> : see Figure 55: Approximate spectral transmission of IR cut filter (may vary slightly by filter lot) (type Jenofilt 217) on page 103 Pike trigger input voltage (GPIn1 and GPIn2) changed from 2 V to 3 V at min. input current of 5 mA , see Chapter Camera I/O connector pin assignment on page 108.	
V5.1.3	19.11.2012	Corrected register offset of LOW_NOISE_BINNING (0xF10005B0 instead of 0xF1000580), see: • Table 152: Advanced registers summary on page 315 • Table 181: Advanced register: Low-noise binning mode on page 346 • Chapter Index	
V5.2.0	09.03.2015	page 346	

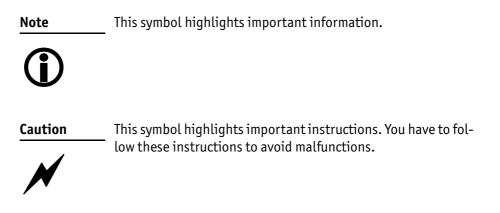
Manual overview

This manual overview describes each chapter of this manual shortly.

- Chapter Contacting Allied Vision on page 12 lists Allied Vision contact data for both:
 - Technical information / ordering
 - Commercial information
- Chapter Introduction on page 13 (this chapter) gives you the document history, a manual overview and conventions used in this manual (styles and symbols). Furthermore you learn how to get more information on how to install hardware (1394 Installation Manual), available Allied Vision software (incl. documentation) and where to get it.
- Chapter Pike cameras on page 32 gives you a short introduction to the Pike cameras with their FireWire technology. Links are provided to data sheets and brochures on Allied Vision website.
- Chapter Conformity on page 33 gives you information about conformity of Allied Vision cameras.
- Chapter FireWire on page 34 describes the FireWire standard in detail, explains the compatibility between 1394a and 1394b and explains bandwidth details (incl. Pike examples).
 - Read and follow the FireWire hot-plug and screw-lock precautions in Chapter FireWire hot-plug and screw-lock precautions on page 44.
 - Read Chapter Operating system support on page 46.
- Chapter Filter and lenses on page 103 describes the IR cut filter and suitable camera lenses.
- Chapter Specifications on page 45 lists camera details and spectral sensitivity diagrams for each camera type.
- Chapter Camera dimensions on page 67 provides CAD drawings of standard housing (copper and GOF) models, tripod adapter, available angled head models, cross sections of CS-Mount and C-Mount.
- Chapter Camera interfaces on page 106 describes in detail the inputs/outputs of the cameras (incl. Trigger features). For a general description of the interfaces (FireWire and I/O connector) see **1394 Installation Man**ual.
- Chapter Description of the data path on page 132 describes in detail IIDC conform as well as Allied Vision-specific camera features.
- Chapter Controlling image capture on page 200 describes trigger modi, exposure time, one-shot/multi-shot/ISO_Enable features. Additionally special Allied Vision features are described: sequence mode and secure image signature (SIS).
- Chapter Video formats, modes and bandwidth on page 229 lists all available fixed and Format_7 modes (incl. color modes, frame rates, binning/ sub-sampling, AOI=area of interest).
- Chapter How does bandwidth affect the frame rate? on page 281 gives some considerations on bandwidth details.

- Chapter Configuration of the camera on page 285 lists standard and advanced register descriptions of all camera features.
- Chapter Firmware update on page 364 explains where to get information on firmware updates and explains the extended version number scheme of FPGA/µC.
- Chapter Appendix on page 377 lists the sensor position accuracy of Allied Vision cameras.
- Chapter Index on page Index gives you quick access to all relevant data in this manual.

Conventions used in this manual


To give this manual an easily understood layout and to emphasize important information, the following typographical styles and symbols are used:

Style	Function	Example
Bold	Programs, inputs or highlighting important things	bold
Courier	Code listings etc.	Input
Upper case	Register	REGISTER
Italics	Modes, fields	Mode
Parentheses and/or blue	Links	(Link)

Styles

Table 2: Styles

Symbols

Pike Technical Manual V5.2.0

This symbol highlights URLs for further information. The URL itself is shown in blue.

Example: http://www.alliedvision.com

More information

For more information on hardware and software read the following:

• **1394 Installation Manual** describes the hardware installation procedures for all 1394 cameras (Marlin, Guppy, Pike, Stingray). Additionally, you get safety instructions and information about camera interfaces (IEEE1394a/b copper and GOF, I/O connectors, input and output).

You find the 1394 Installation Manual here:

http://www.alliedvision.com/en/support/technical-documentation

http://www.alliedvision.com/en/support/software-down-loads

notes) provided by Allied Vision can be downloaded at:

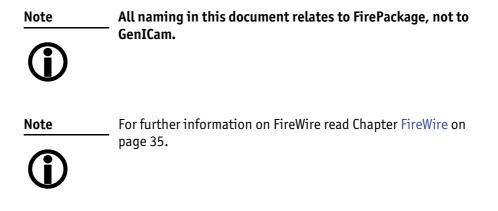
All software packages (including documentation and release

Before operation

	We place the highest demands for quality on our cameras.		
Target group	This Technical Manual is the guide to detailed technical information of the cam- era and is written for experts .		
Getting started	For a quick guide how to get started read 1394 Installation Manual first.		
	Note	Please read through this manual carefully before operating the camera.	
	(j)	For information on Allied Vision accessories and software read 1394 Installation Manual .	
	Caution	Before operating any Allied Vision camera read safety instruc- tions and ESD warnings in 1394 Installation Manual .	
	Note	To demonstrate the properties of the camera, all examples in this manual are based on the FirePackage OHCI API software and the SmartView application.	
	NoteThe camera also works with all IIDC (formerly DCAM) compatibleImage: Display transmissionDisplay transmissionImage: Display transmissionAll naming in this document relates to FirePackage, not to GenICam.		
	www	For downloads see:	
	S 11	Software (Vimba and all other software): http://www.alliedvision.com/en/support/software-down- loads	
		Firmware: http://www.alliedvision.com/en/support/firm- ware	
		Technical documentation (overview page): http://www.alliedvision.com/en/support/technical-docu- mentation	
		Technical papers (appnotes, white papers) and knowledge base: http://www.alliedvision.com/en/support/technical-papers- knowledge-base	

Pike cameras

Pike The Pike is a fast IEEE 1394b camera for demanding applications. Numerous preprocessing functions produce an outstanding image quality. Pike cameras operate with very high frame rates and offer much more real-time functions than specified in the IIDC standards.


They can even emulate traditional frame grabber functions.

- **IEEE 1394b** IEEE 1394b provides a plug & play interface standard with high-speed, deterministic data transmission. The camera communication protocol is standardized and can easily be integrated into your application
 - **GOF** Pike cameras are available both with two copper ports (for daisy-chaining) and with copper/GOF (glass optical fiber) ports.

Advantages of GOF:

- 800 Mbit/s over 400 meters and more
- No additional repeaters required
- Transmission of light instead of electricity: No ground problems and no interference with electromagnetic fields.
- **Image applications** Allied Vision can provide users with a range of products that meet almost all the requirements of a very wide range of image applications.

FireWire The industry standard IEEE 1394 (FireWire or i.Link) facilitates the simplest computer compatibility and bidirectional data transfer using the plug & play process. Further development of the IEEE 1394 standard has already made 800 Mbit/second possible. Investment in this standard is therefore secure for the future; each further development takes into account compatibility with the preceding standard, and vice versa, meaning that IEEE 1394b is reverse-compatible with IEEE 1394a. Your applications will grow as technical progress advances.

www

For further information on the highlights of Pike **types**, the Pike **family** and the whole range of **Allied Vision FireWire cameras** read the data sheets and brochures on the website of Allied Vision:

http://www.alliedvision.com/en/support/technical-documentation/pike-documentation

Pike type	Sensor	Picture size (max.) Format_7 Mode_0	Frame rates, full resolution
Pike F-032B/C	Туре 1/3 КОДАК КАІ-340	640 (h) x 480 (v)	Up to 208 fps
Pike F-032B/C fiber	Progressive Scan CCD imager		
Pike F-100B/C	Туре 2/3 КОДАК КАІ-1020	1000 (h) x 1000 (v)	Up to 60 fps
Pike F-100B/C fiber	Progressive Scan CCD imager		
Pike F-145B/C	Type 2/3 SONY ICX285	1388 (h) x 1038 (v)	Up to 30 fps
Pike F-145B/C fiber	Progressive Scan CCD imager		
Pike F-145B/C-15fps	Type 2/3 SONY ICX285	1388 (h) x 1038 (v)	Up to 16 fps
Pike F-145B/C-15fps fiber	Progressive Scan CCD imager		
Pike F-210B/C	Type 1 KODAK KAI-2093	1920 (h) x 1080 (v)	Up to 31 fps
Pike F-210B/C fiber	Progressive Scan CCD imager		
Pike F-421B/C	Type 1.2 KODAK KAI-4022	2048 (h) x 2048 (v)	Up to 16 fps
Pike F-421B/C fiber	Progressive Scan CCD imager		
Pike F-505B/C	Type 2/3 SONY ICX625	2456 (h) x 2058 (v)	Up to 15 fps
Pike F-505B/C fiber	Progressive Scan CCD imager		
Pike F-1100B/C	Type 35 mm KODAK KAI-11002	4008 (h) x 2672 (v)	Single-tap: up to 2.6 fps
Pike F-1100B/C fiber	Progressive Scan CCD imager		
			Dual-tap: up to 4.9 fps
Pike F-1600B/C	Type 35 mm KODAK KAI-16000	4872 (h) x 3248 (v)	Single-tap: up to 1.7 fps
Pike F-1600B/C fiber	Progressive Scan CCD imager		
			Dual-tap: up to 3.1 fps

Table 3: Pike camera types

Conformity

Conformity

Allied Vision Technologies declares under its sole responsibility that all standard cameras of the **Pike** family to which this declaration relates are in conformity with the following standard(s) or other normative document(s):

- CE, following the provisions of 2004/108/EG directive
- FCC Part 15 Class B
- RoHS (2011/65/EU)
- CE 🗸
- WEEE

CE

We declare, under our sole responsibility, that the previously described **Pike** cameras conform to the directives of the CE.

FCC – Class B Device

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. You are cautioned that any changes or modifications not expressly approved in this manual could void your authority to operate this equipment.

FireWire

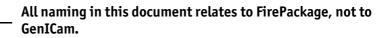
Overview

FireWire provides one of the most comprehensive, high-performance, and costeffective solutions platforms. **FireWire** offers very impressive throughput at very affordable prices.

Definition

FireWire (also known as **i.Link** or **IEEE 1394**) is a personal computer and digital video serial bus interface standard, offering high-speed communications and isochronous real-time data services. **FireWire** has low implementation costs and a simplified and adaptable cabling system.

Figure 1: FireWire Logo


IEEE 1394 standards

FireWire was developed by Apple Computer in the late 1990s, after work defining a slower version of the interface by the IEEE 1394 working committee in the 1980s. Apple's development was completed in 1995. It is defined in IEEE standard 1394, which is currently a composite of three documents:

- Original IEEE Std. 1394-1995
- IEEE Std. 1394a-2000 amendment
- IEEE Std. 1394b-2002 amendment

FireWire is used to connect digital cameras, especially in industrial systems for machine vision.

Note

FireWire

Why use FireWire?

Digital cameras with on-board **FireWire** (IEEE 1394a or 1394b) communications conforming to the IIDC standard (V1.3 or V1.31) have created cost-effective and powerful solutions options being used for thousands of different applications around the world. **FireWire** is currently the premier robust digital interface for industrial applications for many reasons, including:

- Guaranteed bandwidth features to ensure fail-safe communications
- Interoperability with multiple different camera types and vendors
- Diverse camera powering options, including single-cable solutions up to 45 W
- Effective multiple-camera solutions
- Large variety of **FireWire** accessories for industrial applications
- Availability of repeaters and optical fibre cabling
- Forward and backward compatibility blending 1394a and 1394b
- Both real-time (isochronous) and demand-driven asynchronous data transmission capabilities

FireWire in detail

Serial bus

FireWire is a very effective way to utilize a low-cost serial bus, through a standardized communications protocol, that establishes packetized data transfer between two or more devices. FireWire offers real time isochronous bandwidth for image transfer with guaranteed low latency. It also offers asynchronous data transfer for controlling camera parameters on the fly, such as gain and shutter. As illustrated in the diagram below, these two modes can co-exist by using priority time slots for video data transfer and the remaining time slots for control data transfer.

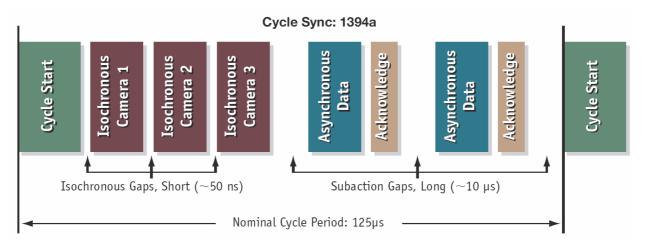


Figure 2: 1394a data transmission

Whereas 1394a works in half duplex transmission, 1394b does full duplex transmission. 1394b optimizes the usage of the bandwidth, as it does not need gaps between the signals like 1394a. This is due to parallel arbitration, handled by the bus owner supervisor selector (BOSS). For details see the following diagram:

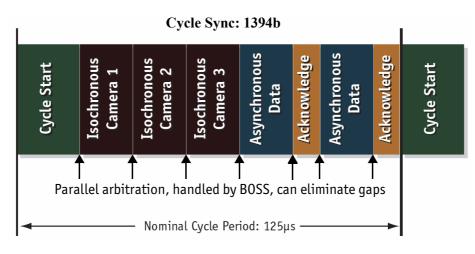


Figure 3: 1394b data transmission

Additional devices may be added up to the overall capacity of the bus, but throughput at guaranteed minimum service levels is maintained for all devices with an acknowledged claim on the bus. This deterministic feature is a huge advantage for many industrial applications where robust performance is required. This applies with applications that do not allow dropping images within a specific time interval.

FireWire connection capabilities

FireWire can connect together up to 63 peripherals in an acyclic network structure (hubs). It allows peer-to-peer device communication between digital cameras, without using system memory or the CPU.

A **FireWire camera** can directly, via direct memory access (DMA), write into or read from the memory of the computer with almost no CPU load.

FireWire also supports multiple hosts per bus. **FireWire** requires only a cable with the correct number of pins on either end (normally 6 or 9).

Note How to extend the size of an isochronous packet up to 11.000 byte at \$800:

- see register 0xF1000048, ADV_INQ_3, Max IsoSize [1] in Table 155: Advanced register: Advanced feature inquiry on page 321
- see Chapter Maximum ISO packet size on page 343

Caution

While supplying such an amount of bus power is clearly a beneficial feature, it is **very** important **not** to exceed the inrush current of 18 mJoule in 3 ms.

Higher inrush current may damage the Phy chip of the camera and/or the Phy chip in your PC.

Capabilities of 1394a (FireWire 400)

FireWire 400 (S400) is able to transfer data between devices at 100, 200, or 400 MBit/s data rates.

The 1394a capabilities in detail:

- 400 Mbit/s
- Hot-pluggable devices
- Peer-to-peer communications
- Direct Memory Access (DMA) to host memory
- Guaranteed bandwidth
- Multiple devices (up to 45 W) powered via FireWire bus

IIDC V1.3 camera control standards

IIDC V1.3 released a set of camera control standards via 1394a, which established a common communications protocol on which most current FireWire cameras are based.

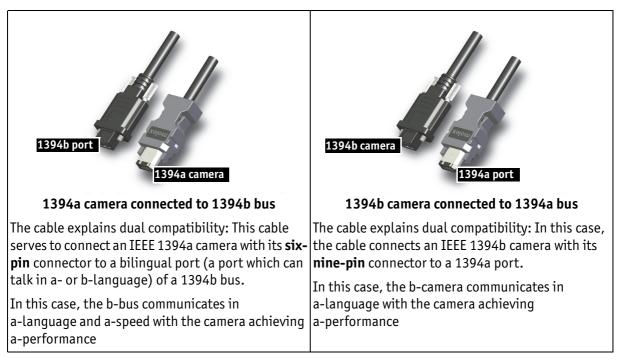
In addition to common standards shared across manufacturers, Allied Vision offers Format_7 mode that provides special features (smart features), such as:

- Higher resolutions
- Higher frame rates
- Diverse color modes

as extensions (advanced registers) to the prescribed common set.

FireWire 800 (S800) was introduced commercially by Apple in 2003 and has a 9pin FireWire 800 connector (see details in **1394 Installation Manual** and in Chapter IEEE 1394b port pin assignment on page 106). This newer 1394b specification allows a transfer rate of 800 MBit/s with backward compatibility to the slower rates and 6-pin connectors of FireWire 400.

The 1394b capabilities in detail:


- 800 Mbit/s
- All previously described benefits of 1394a
- Interoperability with 1394a devices
- Longer communications distances (up to 500 m using GOF cables)

FireWire

IIDC V1.31 camera control standards

Along with 1394b-, the IIDC V1.31 standard arrived in January 2004, evolving the industry standards for digital imaging communications to include I/O and RS232 handling, and adding further formats. The increased bandwidths enable transmitting high-resolution images to the PC's memory at high frame rates.

Compatibility between 1394a and 1394b

Figure 4: 1394a and 1394b cameras and compatibility

Compatibility example

It's possible to run a 1394a and a 1394b camera on the 1394b bus.

You can e.g. run a Pike F-032B and a Marlin F-033B on the same bus:

- Pike F-032B @ S800 and 120 fps (5120 bytes per cycle, 64% of the cycle slot)
- Marlin F-033B @ S400 and 30 fps (1280 bytes, 32% of the cycle slot)

Bus runs at 800 Mbit/s for all devices. Data from Marlin's port is up-converted from 400 Mbit/s to 800 Mbit/s by data doubling (padding), still needing 32% of the cycle slot time. This doubles the bandwidth requirement for this port, as if the camera were running at 60 fps. Total consumption is thus 5120 + 2560 = 7680 bytes per cycle.

Image transfer via 1394a and 1394b

Technical detail	1394a	1394b
Transmission mode	Half duplex (both pairs needed)	Full duplex (one pair needed)
	400 Mbit/s data rate	1 Gbit/s signaling rate, 800 Mbit/ s data rate
	aka: a-mode, data/strobe (D/S) mode, legacy mode	10b/8b coding (Ethernet), aka: b-mode (beta mode)
Devices	Up to 63 devic	es per network
Number of cameras	Up to 16 came	ras per network
Number of DMAs	4 to 8 DMAs (para	llel) cameras / bus
Real time capability	Image has rea	l time priority
Available bandwidth acc. IIDC	4096 bytes per cycle	8192 bytes per cycle
(per cycle 125 μs)	~ 1000 quadlets @ 400 Mbit/s	~ 2000 quadlets @ 800 Mbit/s (@1 GHz clock rate)
	For further detail read Chapter Frame rates on page 249.	
Max. image bandwidth	31.25 MByte/s	62.5 MByte/s
Max. total bandwidth	~45 MByte/s	~85 MByte/s
Number of busses	Multiple busses per PC	Multiple busses per PC
	limit: PCI bus	limit: PCI (Express) bus
CPU load	Almost none for DMA image transfer	
Gaps	Gaps negatively affect asynchro- nous performance of widespread network (round trip delay), reducing efficiency	No gaps needed, BOSS mode for parallel arbitration

Table 4: Technical detail comparison: 1394a and 1394b

Note

The bandwidth values refer to the fact:

1 MByte = 1024 kByte

1394b bandwidths

According to the 1394b specification on isochronous transfer, the largest recommended data payload size is 8192 bytes per 125 μs cycle at a bandwidth of 800 Mbit/s.

Note	Certain cameras may offer, depending on their settings in com-
	bination with the use of FirePackage higher packet sizes.

Note

Consult your local dealer's support team, if you require additional information on this feature.

How to extend the size of an isochronous packet up to 11.000 byte at S800:

• See register 0xF1000048, ADV_INQ_3, Max IsoSize [1] in Table 155: Advanced register: Advanced feature inquiry on page 321

For further details read Chapter How does bandwidth affect the frame rate? on page 281.

Requirements for PC and 1394b

For FireWire accessories see http://www.alliedvision.com/en/contact

As mentioned earlier, it is **very** important **not** to exceed an inrush energy of 18 mWs in 3 ms. (This means that a device, when powered via 12 V bus power, must **never** draw more than 1.5 A, especially in the first 3 ms.)

Higher inrush current may damage the physical interface chip of the camera and/or the phy chip in your PC.

For a single Stingray camera inrush current may not be a problem. But daisy chaining multiple cameras or supplying bus power via (optional) HIROSE power out to circuitry with unknown inrush currents needs careful design considerations.

FireWire

Pike model	Resolution	Frame rate	Bandwidth
Pike F-032 B/C	VGA	208 fps	62.5 MByte/s
Pike F-100 B/C	1 megapixel	60 fps	57.6 MByte/s
Pike F-145 B/C	1.4 megapixel	30 fps	41.4 MByte/s
Pike F-210 B/C	2.1 megapixel	31 fps	62.5 MByte/s
Pike F-421 B/C	4 megapixel	15 fps	62.5 MByte/s
Pike F-505 B/C	5 megapixel	13 fps	62.5 MByte/s
Pike F-1100 B/C	10.7 megapixel	2.6 fps (single-tap)	26.6 MByte/s
		4.9 fps (dual-tap)	50.0 MByte/s
Pike F-1600 B/C	15.8 megapixel	1.7 fps (single-tap)	25.7 MByte/s
		3.1 fps (dual-tap)	46.8 MByte/s

Example1: 1394b bandwidth of Pike cameras

Table 5: Bandwidth of Pike cameras

All data are calculated using Raw8 / Mono8 color mode. Higher bit depths or color modes will double or triple bandwidth requirements.

Example 2: More than one Pike camera at full speed

Due to the fact that one Pike camera can, depending on its settings, saturate a 32-bit PCI bus, you are advised to use either a PCI Express card and/or multiple 64-bit PCI bus cards, if you want to use 2 or more Pike cameras simultaneously (see the following table).

# cameras	PC hardware required
1 Pike camera at full speed	1 x 32-bit PCI bus card (85 MByte/s)
2 or more Pike cameras at full speed	PCI Express card and/or
	Multiple 64-bit PCI bus cards

Table 6: Required hardware for multiple camera applications

FireWire

FireWire Plug & play capabilities

FireWire devices implement the ISO/IEC 13213 **configuration ROM** model for device configuration and identification to provide plug & play capability. All FireWire devices are identified by an IEEE EUI-64 unique identifier (an extension of the 48-bit Ethernet MAC address format) in addition to well-known codes indicating the type of device and protocols it supports. For further details read Chapter Configuration of the camera on page 285.

FireWire hot-plug and screw-lock precautions

Caution

Hot-plug precautions

- N
- Although FireWire devices can theoretically be hotplugged without powering down equipment, we strongly recommend turning off the computer power, before connecting a digital camera to it.
- Static electricity or slight plug misalignment during insertion may short-circuit and damage components.
- The physical ports may be damaged by excessive ESD (electrostatic discharge), when connected under powered conditions. It is good practice to ensure proper grounding of computer case and camera case to the same ground potential, before plugging the camera cable into the port of the computer. This ensures that no excessive difference of electrical potential exists between computer and camera.
- As mentioned earlier, **it is very important not to exceed the inrush energy of 18 mWs in 3 ms**. (This means that a device, when powered via 12 V bus power, must never draw more than 1.5 A, especially in the first 3 ms.)
- Higher inrush current may damage the physical interface chip of the camera and/or the phy chip in your PC. For a single Stingray camera inrush current may not be a problem. But daisy chaining multiple cameras or supplying bus power via (optional) HIROSE power out to circuitry with unknown inrush currents needs careful design considerations.

Screw-lock precautions

- All Allied Vision 1394b camera and cables have industrial screw-lock fasteners to insure a tight electrical connection that is resistant to vibration and gravity.
- We strongly recommend using only 1394b adapter cards with screw-locks.

Operating system support

Operating system	1394a	1394b
Linux	Full support	Full support
Apple Mac OS X	Full support	Full support
Windows XP	Full support	With SP3 the default speed for 1394b is S100 (100 Mbit/s). A download and registry modifi- cation is available from Microsoft to restore performance to either S400 or S800.
		Note: The Windows IEEE1394 driver only supports IEEE 1394a.
		For IEEE 1394b use either the FirePackage or install the driver provided with the 1394 Bus Driver Package . (Both drivers replace the Mic- rosoft OHCI IEEE 1394 driver, but the second is 100% compliant to the driver of Microsoft. This way, applications using the MS1394 driver will continue to work.)
Windows Vista	Full support	Windows Vista incl. SP1/SP2 supports 1394b only with S400.
		Note: The Windows IEEE1394 driver only supports IEEE 1394a.
		For IEEE 1394b use either the FirePackage or install the driver provided with the 1394 Bus Driver Package . (Both drivers replace the Mic- rosoft OHCI IEEE 1394 driver, but the second is 100% compliant to the driver of Microsoft. This way, applications using the MS1394 driver will continue to work.)
Windows 7	Full support	Full support
Windows 8	Full support	Full support

Table 7: FireWire and operating systems

www

For more information see Allied Vision Software:

http://www.alliedvision.com

Specifications

- For information on bit/pixel and byte/pixel for each color mode see Table 131: ByteDepth on page 281.
- Maximum protrusion means the distance from lens flange to the glass filter in the camera.

Pike F-032B/C (fiber)

Feature	Specification
Image device	Type 1/3 (diag. 5.92 mm) type progressive scan KODAK IT CCD KAI-0340A/C with HAD microlens
Effective chip size	4.7 mm x 3.6 mm
Cell size	7.4 μm x 7.4 μm
Picture size (max.)	640 x 480 pixels (Format_7 Mode_0)
Lens mount	Adjustable C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) mechanical flange back to filter distance: 12.5 mm (see Figure 33: Pike C-Mount dimensions (VGA size filter) on page 80)
	Adjustable CS-Mount: 12.526 mm (in air), Ø 25.4 mm (32 tpi), mechanical flange back distance: 7.9 mm (see Figure 32: Pike CS-Mount dimensions (only Pike F-032B/C) on page 79)
ADC	14 bit
Color modes	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8
Frame rates	1.875 fps; 3.75 fps; 7.5 fps; 15 fps; 30 fps; 60 fps; 120 fps up to 208 fps in Format_7 (Mono8)
Gain control	Manual: 0-22 dB (0.0353 dB/step); auto gain (select. AOI)
Shutter speed	18 μs 67,108,864 μs (~67s); auto shutter (select. AOI)
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay
Internal FIFO memory	Up to 105 frames
Look-up tables	16 user-defined (14 bit \rightarrow 14 bit); gamma (0.45 and 0.7)

Table 8: Specification Pike F-032B/C (fiber)

Feature	Specification
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 64 MByte image memory, mirror, binning, sub-sampling, High SNR, stor- able user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness
	Two configurable inputs, four configurable outputs
	RS-232 port (serial port, IIDC V1.31)
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s, 800 Mbit/s
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber: IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE
Power consumption	Typical 5 W (@ 12 V DC); fiber: typical 5.75 W (@ 12 V DC)
	(full resolution and maximal frame rates)
Dimensions	96.8 mm x 44 mm x 44 mm (L x W x H); incl. connectors, without tripod and lens
Mass	250 g (without lens)
Operating temperature	+ 5 °C + 50 °C housing temperature (without condensation)
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)
Regulations	CE, FCC Class B, RoHS (2002/95/EC)
Standard accessories	b/w: protection glass
	color: IR cut filter
Optional accessories	b/w: IR cut filter, IR pass filter
	color: protection glass
On request	Host adapter card, angled head, power out (HIROSE)
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)

Table 8: Specification Pike F-032B/C (fiber)

Pike F-100B/C (fiber)

Feature	Specification	
Image device	Type 2/3 (diag. 10.5 mm) type progressive scan KODAK IT CCD KAI-1020A/C with HAD microlens	
Effective chip size	7.4 mm x 7.4 mm	
Cell size	7.4 μm x 7.4 μm	
Picture size (max.)	1000 x 1000 pixels (Format_7 Mode_0)	
Lens mount	Adjustable C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) mechanical flange back to filter distance: 12.5 mm (see Figure 34: Pike C-Mount dimensions (large filter) on page 81)	
ADC	14 bit	
Color modes	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8	
Frame rates	1.875 fps; 3.75 fps; 7.5 fps; 15 fps; 30 fps; 60 fps up to 60 fps in Format_7 (Mono8)	
Gain control	Manual: 0-22 dB (0.0353 dB/step); auto gain (select. AOI)	
Shutter speed	43 μs 67,108,864 μs (~67s); auto shutter (select. AOI)	
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay	
Internal FIFO memory	Up to 32 frames	
Look-up tables	16 user-defined (14 bit \rightarrow 14 bit); gamma (0.45 and 0.7)	
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 64 MByte image memory, mirror, binning, sub-sampling, High SNR, stor- able user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness	
	Two configurable inputs, four configurable outputs	
	RS-232 port (serial port, IIDC V1.31)	
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s, 800 Mbit/s	
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber: IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)	
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE	
Power consumption	Typical 5 W (@ 12 V DC); fiber: typical 5.75 W (@ 12 V DC)	
Dimensions	96.8 mm x 44 mm x 44 mm (L x W x H); incl. connectors, without tripod and lens	
Mass	250 g (without lens)	
Operating temperature	+ 5 °C + 50 °C housing temperature (without condensation)	
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)	
Regulations	CE, FCC Class B, RoHS (2002/95/EC)	

Table 9: Specification Pike F-100B/C (fiber)

Feature	Specification
Standard accessories	b/w: protection glass
	color: IR cut filter
Optional accessories	b/w: IR cut filter, IR pass filter
	color: protection glass
On request	Host adapter card, angled head, power out (HIROSE)
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)

Table 9: Specification Pike F-100B/C (fiber)

Pike F-145B/C (fiber) (-15fps*)

* Variant: F-145-15fps only

This variant offers lower speed (only 15 fps), but better image quality.

Feature	Specification
Image device	Type 2/3 (diag. 11.2 mm) type progressive scan SONY ICX285AL/AQ with EXview HAD microlens
Effective chip size	9.0 mm x 6.7 mm
Cell size	6.45 μm x 6.45 μm
Picture size (max.)	1388 x 1038 pixels (Format_7 Mode_0)
Lens mount	Adjustable C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) mechanical flange back to filter distance: 12.5 mm (see Figure 34: Pike C-Mount dimensions (large filter) on page 81)
ADC	14 bit
Color modes	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8
Frame rates	1.875 fps; 3.75 fps; 7.5 fps; 15 fps; 30 fps (* Variant: F-145-15fps only up to 15 fps) up to 30 (16*) fps in Format_7 (Mono8/12 no sub-sampling)
Gain control	Manual: 0-32 dB (0.0358 dB/step); auto gain (select. AOI)
Shutter speed	39 (71*) μs 67,108,864 μs (~67s); auto shutter (select. A0I)
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay
Internal FIFO memory	Up to 22 frames
Look-up tables	16 user-defined (14 bit \rightarrow 14 bit); gamma (0.45 and 0.7)

Table 10: Specification Pike F-145B/C (fiber)

Feature	Specification
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 64 MByte image memory, mirror, binning, sub-sampling, High SNR, stor- able user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness
	Two configurable inputs, four configurable outputs
	RS-232 port (serial port, IIDC V1.31)
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s, 800 Mbit/s
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber: IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE
Power consumption	Typical 5 W (@ 12 V DC); fiber: typical 5.75 W (@ 12 V DC)
Dimensions	96.8 mm x 44 mm x 44 mm (L x W x H); incl. connectors, without tripod and lens
Mass	250 g (without lens)
Operating temperature	+ 5 °C + 50 °C housing temperature (without condensation)
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)
Regulations	CE, FCC Class B, RoHS (2002/95/EC)
Standard accessories	b/w: protection glass
	color: IR cut filter
Optional accessories	b/w: IR cut filter, IR pass filter
	color: protection glass
On request	Host adapter card, angled head, power out (HIROSE)
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)

Table 10: Specification Pike F-145B/C (fiber)

Pike F-210B/C (fiber)

Feature	Specification	
Image device	Type 1 (diag. 16.3 mm) type progressive scan KODAK IT CCD KAI-2093A/C with HAD microlens	
Effective chip size	14 mm x 8.0 mm	
Cell size	7.4 μm x 7.4 μm	
Picture size (max.)	1920 x 1080 pixels (Format_7 Mode_0)	
Lens mount	Adjustable C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) mechanical flange back to filter distance: 12.5 mm (see Figure 34: Pike C-Mount dimensions (large filter) on page 81)	
ADC	14 bit	
Color modes	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8	
Frame rates	1.875 fps; 3.75 fps; 7.5 fps; 15 fps; 30 fps up to 31 fps in Format_7 (Mono8, no sub-sampling)	
Gain control	Manual: 0-22 dB (0.0353 dB/step); auto gain (select. AOI)	
Shutter speed	43 μs 67,108,864 μs (~67s); auto shutter (select. A0I)	
External Trigger Shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay	
Internal FIFO memory	Up to 15 frames	
Look-up tables	16 user-defined (14 bit \rightarrow 14 bit); gamma (0.45 and 0.7)	
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 64 MByte image memory, mirror, binning, sub-sampling, High SNR, stor- able user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness	
	Two configurable inputs, four configurable outputs	
	RS-232 port (serial port, IIDC V1.31)	
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s, 800 Mbit/s	
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber: IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)	
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE	
Power consumption	Typical 5.5 W (@ 12 V DC); fiber: typical 6.25 W (@ 12 V DC)	
Dimensions	96.8 mm x 44 mm x 44 mm (L x W x H); incl. connectors, without tripod and lens	
Mass	250 g (without lens)	
Operating temperature	+ 5 °C + 50 °C housing temperature (without condensation)	
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)	
Regulations	CE, FCC Class B, RoHS (2002/95/EC)	

Table 11: Specification Pike F-210B/C (fiber)

Feature	Specification	
Standard accessories	b/w: protection glass	
	color: IR cut filter	
Optional accessories	b/w: IR cut filter, IR pass filter	
	color: protection glass	
On request	Host adapter card, angled head, power out (HIROSE)	
	M39-Mount suitable for e.g. Voigtländer optics	
	Adjustable M39-Mount: 28.80 mm (in air); M39 x 26 tpi mechanical flange back to filter distance: 24.2 mm (see Figure 42: Pike M39-Mount dimensions (only Pike F-210 and Pike F-421) on page 90)	
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)	

Table 11: Specification Pike F-210B/C (fiber)

Pike F-421B/C (fiber)

Feature	Specification	
Image device	Type 1.2 (diag. 21.4 mm) type progressive scan KODAK IT CCD KAI-04022A/C with HAD microlens	
Effective chip size	15 mm x 15 mm	
Cell size	7.4 μm x 7.4 μm	
Picture size (max.)	2048 x 2048 pixels (Format_7 Mode_0)	
Lens mount	Adjustable C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) mechanical flange back to filter distance: 12.5 mm (see Figure 34: Pike C-Mount dimensions (large filter) on page 81)	
ADC	14 bit	
Color modes	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8	
Frame rates	1.875 fps; 3.75 fps; 7.5 fps; 15 fps; 30 fps up to 16 fps in Format_7 (Mono8)	
Gain control	Manual: 0-22 dB (0.0353 dB/step); auto gain (select. AOI)	
Shutter speed	70 μs 67,108,864 μs (~67s); auto shutter (select. A0I)	
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay	
Internal FIFO memory	Up to 6 frames	
Look-up tables	16 user-defined (14 bit \rightarrow 14 bit); gamma (0.45 and 0.7)	

Table 12: Specification Pike F-421B/C (fiber)

Feature	Specification		
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 64 MByte image memory, mirror, binning, sub-sampling, High SNR, stor- able user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness		
	Two configurable inputs, four configurable outputs		
	RS-232 port (serial port, IIDC V1.31)		
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s, 800 Mbit/s		
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber : IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)		
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE		
Power consumption	Typical 5.5 W (@ 12 V DC); fiber: typical 6.25 W (@ 12 V DC)		
Dimensions	96.8 mm x 44 mm x 44 mm (L x W x H); incl. connectors, without tripod and lens		
Mass	250 g (without lens)		
Operating temperature	+ 5 °C + 50 °C housing temperature (without condensation)		
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)		
Regulations	CE, FCC Class B, RoHS (2002/95/EC)		
Standard accessories	b/w: protection glass		
	color: IR cut filter		
Optional accessories	b/w: IR cut filter, IR pass filter		
	color: protection glass		
On request	Host adapter card, angled head, power out (HIROSE)		
	M39-Mount suitable for e.g. Voigtländer optics		
	Adjustable M39-Mount: 28.80 mm (in air); M39 x 26 tpi mechanical flange back to filter distance: 24.2 mm (see Figure 42: Pike M39-Mount dimensions (only Pike F-210 and Pike F-421) on page 90)		
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)		

Table 12: Specification Pike F-421B/C (fiber)

Pike F-505B/C (fiber)

Feature	Specification		
Image device	Type 2/3 (diag. 11.0 mm) progressive scan SONY ICX625ALA/AQA with Super HAD microlens		
Effective chip size	8.5 mm × 7.1 mm		
Cell size	3.45 μm x 3.45 μm		
Picture size (max.)	2452 x 2054 pixels (Format_7 Mode_0)		
Lens mount	Adjustable C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) mechanical flange back to filter distance: 12.5 mm (see Figure 34: Pike C-Mount dimensions (large filter) on page 81)		
ADC	14 bit		
Color modes	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8		
Frame rates	1.875 fps; 3.75 fps; 7.5 fps; 15 fps up to 14* fps in Format_7 (Mono8 no sub-sampling) * at 11000 bytes per packet		
Gain control	Manual: 0-24 dB (0.0359 dB/step); auto gain (select. AOI)		
Shutter speed	27 μs 67,108,864 μs (~67s); auto shutter (select. AOI)		
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay		
Internal FIFO memory	Up to 5 frames		
Look-up tables	16 user-defined (14 bit \rightarrow 14 bit); gamma (0.45 and 0.7)		
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 64 MByte image memory, mirror, binning, sub-sampling, High SNR, stor- able user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness		
	Two configurable inputs, four configurable outputs		
	RS-232 port (serial port, IIDC V1.31)		
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s, 800 Mbit/s		
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber : IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)		
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE		
Power consumption	Typical 5.75 W (@ 12 V DC); fiber: typical 6.50 W (@ 12 V DC)		
Dimensions	96.8 mm x 44 mm x 44 mm (L x W x H); incl. connectors, without tripod and lens		
Mass	250 g (without lens)		
Operating temperature	+ 5 °C + 50 °C housing temperature (without condensation)		
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)		

Table 13: Specification Pike F-505B/C (fiber)

Feature	Specification	
Regulations	E, FCC Class B, RoHS (2002/95/EC)	
Standard accessories	b/w: protection glass	
	color: IR cut filter	
Optional accessories	b/w: IR cut filter, IR pass filter	
	color: protection glass	
On request	Host adapter card, angled head, power out (HIROSE)	
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)	

Table 13: Specification Pike F-505B/C (fiber)

Pike F-1100B/C (fiber)

Feature	Specification		
Image device	Type 35 mm (diag. 43.3 mm) progressive scan KODAK IT CCD KAI-11002 with Super HAD microlens		
Effective chip size	37.25 mm × 25.7 mm		
Cell size	9.0 μm x 9.0 μm		
Picture size (max.)	4008 x 2672 pixels		
Lens mount	Standard: F-Mount: 46.5 mm (in air) maximum protrusion: 26 mm (see Figure 41: Pike F-Mount dimensions (standard for Pike F-1100 and Pike F- 1600) on page 89)		
	Optional: M42-Mount: 45.5 mm (in air) maximum protrusion: 28 mm (Figure 48: Pike M42-Mount dimensions (optional for Pike F-1100 and Pike F-1600) on page 96)		
	Optional: M58-Mount: 20.5 mm (in air) maximum protrusion: 8 mm (Figure 54: Pike M58-Mount dimensions (optional for Pike F-1100 and Pike F-1600) on page 102)		
ADC	14 bit		
Color modes	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8		
Frame rates	1.875 fps; 3.75 fps up to 2.6* fps (single-tap) / up to 4.9* fps (dual-tap) in Format_7 (Mono8 no sub- sampling) * at 11000 bytes per packet		
	User can switch between single-tap and dual-tap.		
Gain control	Manual: 0-24 dB (0.0359 dB/step); auto gain (select. AOI)		
Shutter speed	129 μs 67,108,864 μs (~67s); auto shutter (select. AOI)		
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay		
Internal FIFO memory	Up to 5 frames		
Look-up tables	16 user-defined (14 bit \rightarrow 14 bit); gamma (0.45 and 0.7)		
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 256 MByte image memory, mirror, binning, sub-sampling, High SNR, storable user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness		
	Two configurable inputs, four configurable outputs		
	RS-232 port (serial port, IIDC V1.31)		
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s, 800 Mbit/s		

Table 14: Specification Pike F-1100B/C (fiber)

Feature	Specification		
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber: IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x optical fiber on LCLC), (daisy chain)		
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE		
Power consumption	Typical single-tap: 5 W (@ 12 V DC); fiber: typical 5.5 W (@ 12 V DC)		
	Typical dual-tap: 5.5 W (@ 12 V DC); fiber: typical 6.0 W (@ 12 V DC)		
Dimensions	42.8 mm x 59 mm x 59 mm (L x W x H); incl. connectors, without tripod and lens		
Mass	380 g (without lens)		
Operating temperature	+ 5 °C + 50 °C housing temperature (without condensation)		
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)		
Regulations	CE, FCC Class B, RoHS (2002/95/EC)		
Standard accessories	b/w: protection glass		
	color: IR cut filter		
Optional accessories	b/w: IR cut filter, IR pass filter		
	color: protection glass		
On request	Host adapter card, angled head, power out (HIROSE)		
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)		

Table 14: Specification Pike F-1100B/C (fiber)

Pike F-1600B/C (fiber)

Feature	Specification			
Image device	Type 35 mm (diag. 43.3 mm) progressive scan KODAK IT CCD KAI-16000 with Super HAD microlens			
Effective chip size	36.1 mm × 24 mm			
Cell size	7.4 μm x 7.4 μm			
Picture size (max.)	4872 x 3248 pixels			
Lens mount	Standard: F-Mount: 46.5 mm (in air) maximum protrusion: 26 mm (see Figure 41: Pike F-Mount dimensions (standard for Pike F-1100 and Pike F- 1600) on page 89)			
	Optional: M42-Mount: 45.5 mm (in air) maximum protrusion: 28 mm (Figure 48: Pike M42-Mount dimensions (optional for Pike F-1100 and Pike F-1600) on page 96)			
	Optional: M58-Mount: 20.5 mm (in air) maximum protrusion: 8 mm (Figure 54: Pike M58-Mount dimensions (optional for Pike F-1100 and Pike F-1600) on page 102)			
ADC	14 bit			
Color modes	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8			
Frame rates	1.875 fps; 3.75 fps; 7.5 fps; 15 fps up to 1.7* fps (single-tap) / up to 3.1* fps (dual-tap) in Format_7 (Mono8 no sub- sampling) * at 11000 bytes per packet			
	User can switch between single-tap and dual-tap.			
Gain control	Manual: 0-24 dB (0.0359 dB/step); auto gain (select. AOI)			
Shutter speed	636 μs 67,108,864 μs (~67s); auto shutter (select. AOI)			
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay			
Internal FIFO memory	Up to 5 frames			
Look-up tables	16 user-defined (14 bit \rightarrow 14 bit); gamma (0.45 and 0.7)			
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 256 MByte image memory, mirror, binning, sub-sampling, High SNR, storable user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness			
	Two configurable inputs, four configurable outputs			
	RS-232 port (serial port, IIDC V1.31)			
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s, 800 Mbit/s			

Table 15: Specification Pike F-1600B/C (fiber)

Feature	Specification		
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber: IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)		
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE		
Power consumption	Typical single-tap: 6.25 W (@ 12 V DC); fiber: typical 6.75 W (@ 12 V DC)		
	Typical dual-tap: 6.5 W (@ 12 V DC); fiber: typical 7.0 W (@ 12 V DC)		
Dimensions	142.8 mm x 59 mm x 59 mm (L x W x H); incl. connectors, without tripod and lens		
Mass	380 g (without lens)		
Operating temperature	+ 5 °C + 50 °C housing temperature (without condensation)		
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)		
Regulations	CE, FCC Class B, RoHS (2002/95/EC)		
Standard accessories	b/w: protection glass		
	color: IR cut filter		
Optional accessories b/w: IR cut filter, IR pass filter			
	color: protection glass		
On request	Host adapter card, angled head, power out (HIROSE)		
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)		

Table 15: Specification Pike F-1600B/C (fiber)

Spectral sensitivity

All measurements were done without protection glass / without filter.

The uncertainty in measurement of the QE values is $\pm 10\%$. This is mainly due to:

- Manufacturing tolerance of the sensor
- Uncertainties in the measuring apparatus itself

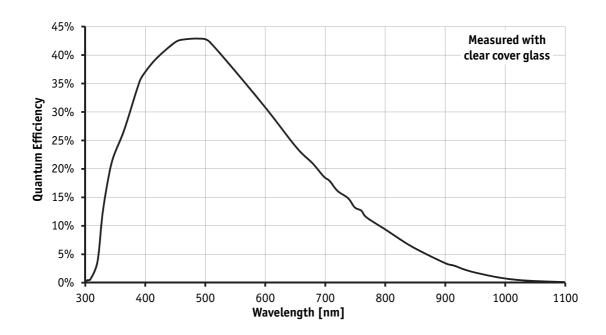


Figure 5: Spectral sensitivity of Pike F-032B

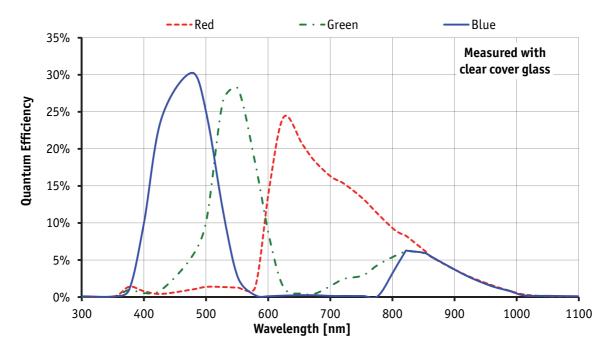


Figure 6: Spectral sensitivity of Pike F-032C

Pike Technical Manual V5.2.0

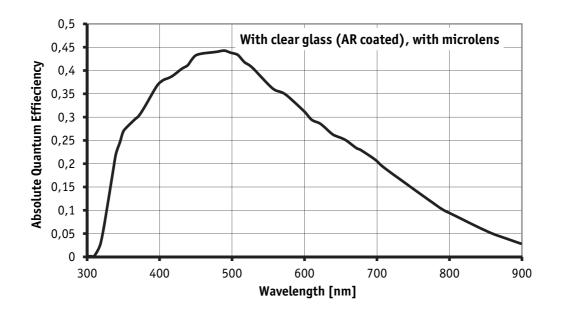


Figure 7: Spectral sensitivity of Pike F-100B

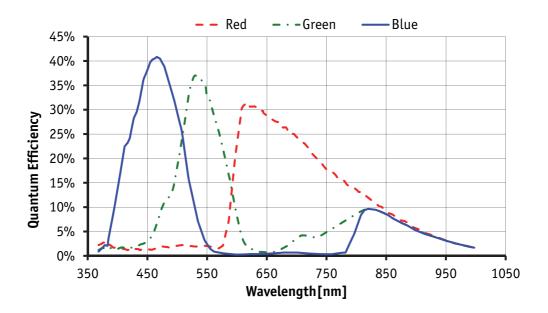


Figure 8: Spectral sensitivity of Pike F-100C

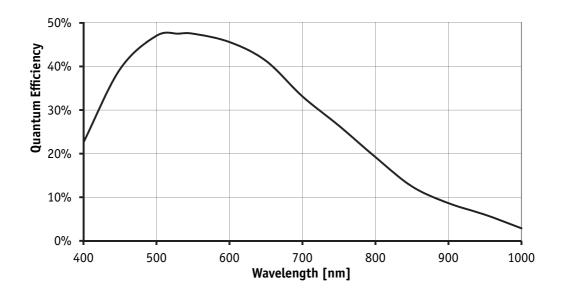


Figure 9: Spectral sensitivity of Pike F-145B

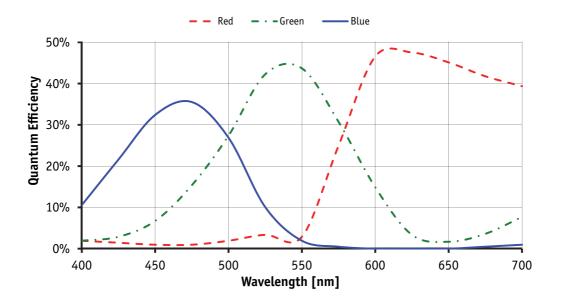
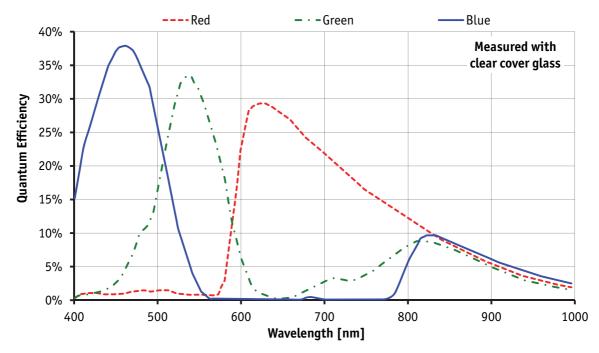
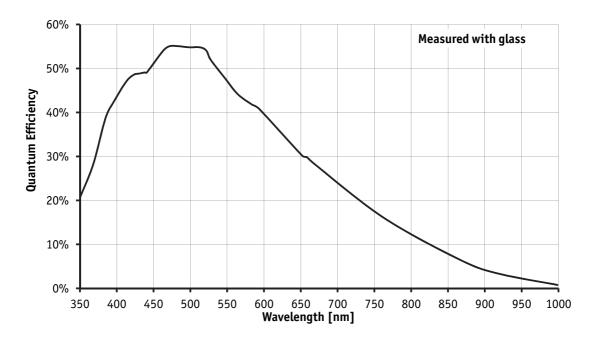
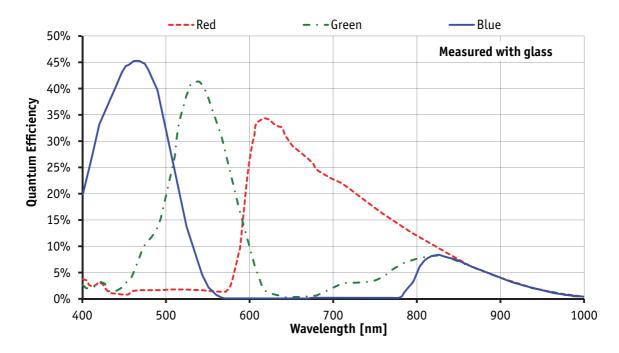


Figure 10: Spectral sensitivity of Pike F-145C

Figure 11: Spectral sensitivity of Pike F-210B


Figure 12: Spectral sensitivity of Pike F-210C

Pike Technical Manual V5.2.0

Pike Technical Manual V5.2.0

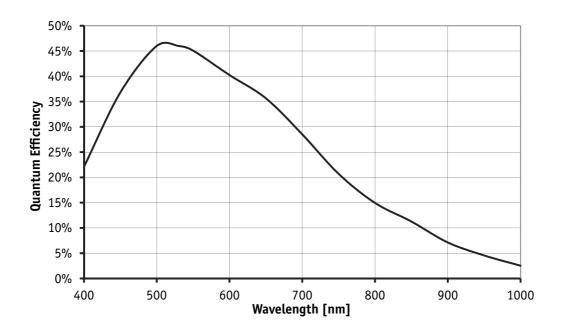


Figure 15: Spectral sensitivity of Pike F-505B

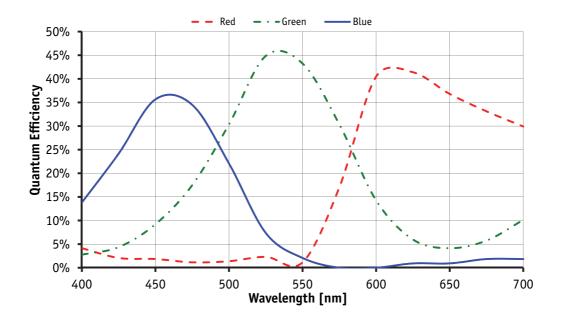
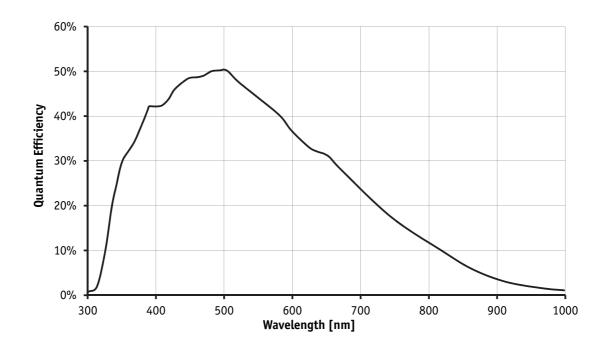



Figure 16: Spectral sensitivity of Pike F-505C

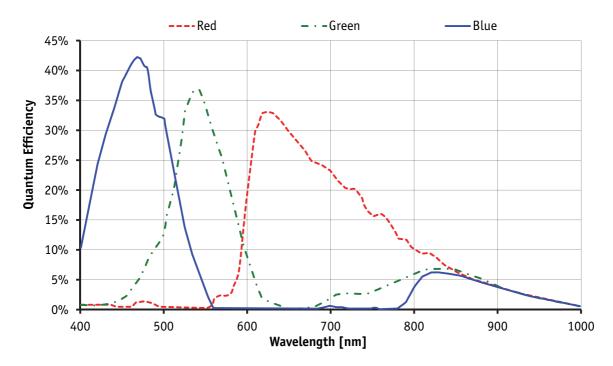
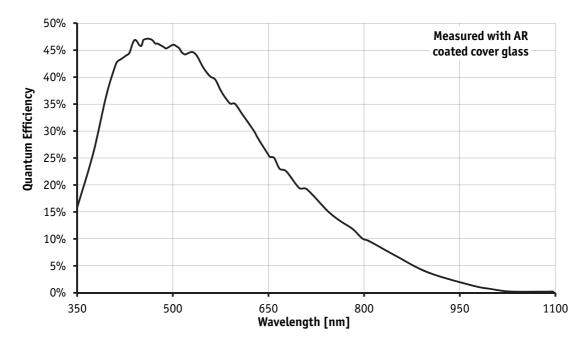



Figure 18: Spectral sensitivity of Pike F-1100C

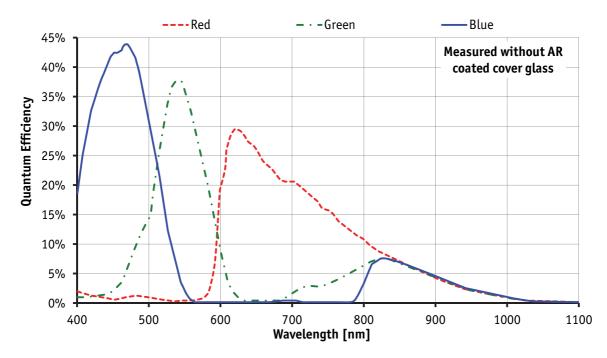
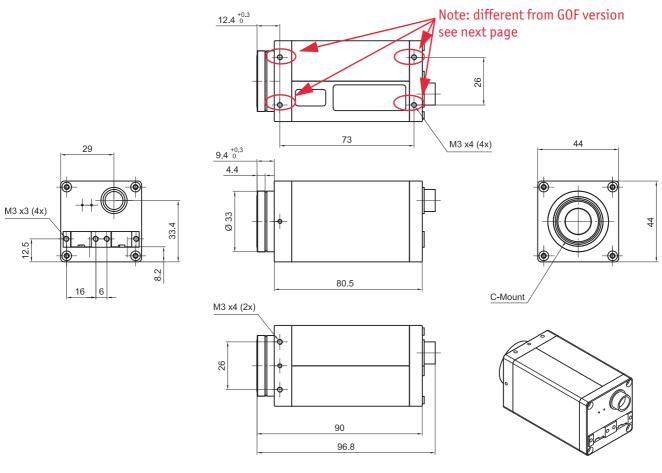


Figure 20: Spectral sensitivity of Pike F-1600C

Note

For information on **sensor position accuracy:**

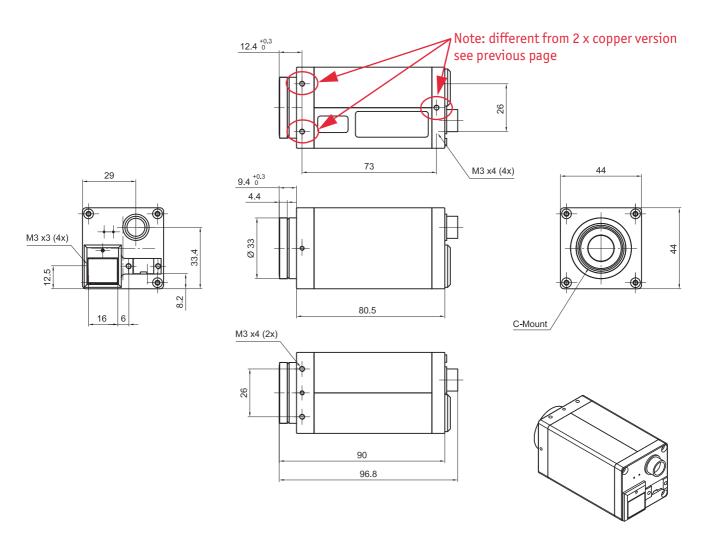
(sensor shift x/y, optical back focal length z and sensor rotation α) see ChapterSensor position accuracy of Pike cameras on page 366.


Serial numbers for starting new front flange

Camera model	E-number	Starting
Pike F-421B	E0000882	from SN: 09/16-269066321
Pike F-505B	E0001141	from SN: 09/16-269066246

Table 16: Starting serial numbers for new front flange

Pike standard housing (2 x 1394b copper)



Body size: 96.8 mm x 44 mm x 44 mm (L x W x H) Mass: 250 g (without lens)

Figure 21: Camera dimensions (2 x 1394b copper)

Pike (1394b: 1 x GOF, 1 x copper)

Body size: 96.8 mm x 44 mm x 44 mm (L x W x H) Mass: 250 g (without lens)

Figure 22: Camera dimensions (1394b: 1 x GOF, 1 x copper)

Tripod adapter

This tripod adapter is only designed for standard housings, but not for the angled head versions.

Note

If you need a tripod adapter for **angled head** versions, **please contact Customer Care**. See ChapterContacting Allied Vision on page 12.

Tripods for F-Mount and M42-Mount (both for Pike F-1100 and F-1600):

see ChapterPike F-Mount: Tripod adapter on page 86 and ChapterPike F-Mount: Tripod adapter on page 86.

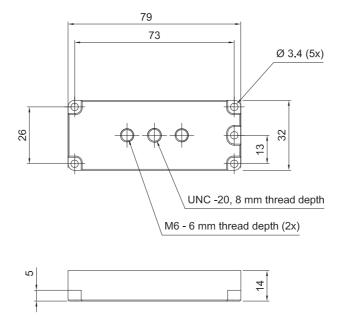


Figure 23: Tripod dimensions

Pike W90 (2 x 1394b copper)

This version has the sensor tilted by 90 degrees clockwise, so that it views upwards.

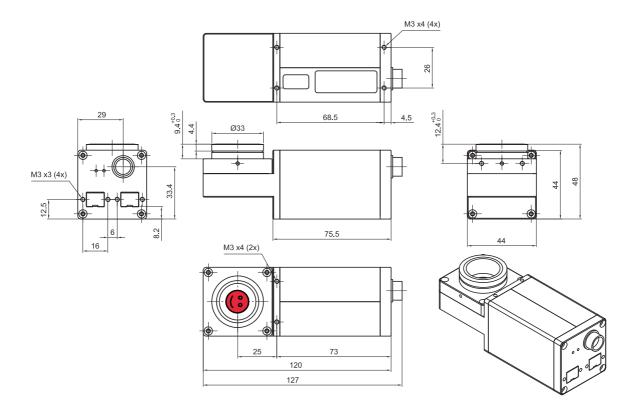
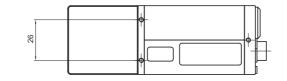



Figure 24: Pike W90 (2 x 1394b copper)

Pike W90 (1394b: 1 x GOF, 1 x copper)

This version has the sensor tilted by 90 degrees clockwise, so that it views upwards.

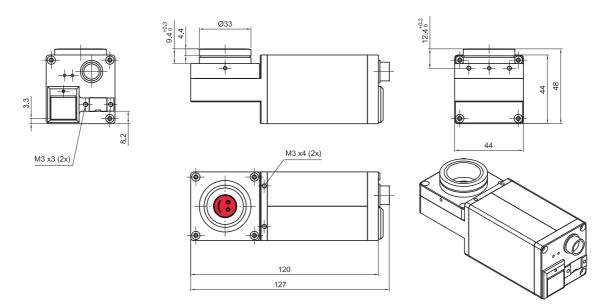


Figure 25: Pike W90 (1394b: 1 x GOF, 1 x copper)

Pike W90 S90 (2 x 1394b copper)

This version has the sensor tilted by 90 degrees clockwise, so that it views upwards.

The sensor is also rotated by 90 degrees clockwise.

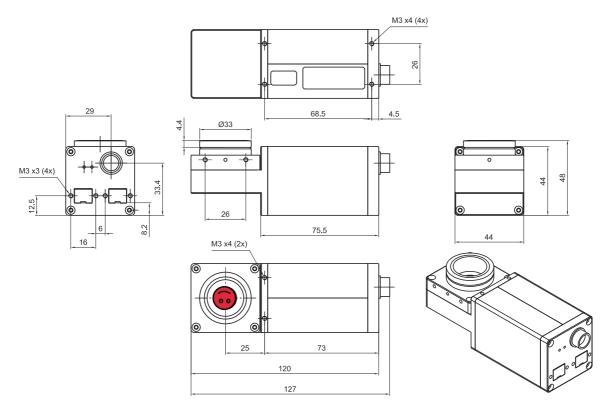


Figure 26: Pike W90 S90 (2 x 1394b copper)

Pike W90 S90 (1394b: 1 x GOF, 1 x copper)

This version has the sensor tilted by 90 degrees clockwise, so that it views upwards.

The sensor is also rotated by 90 degrees clockwise.

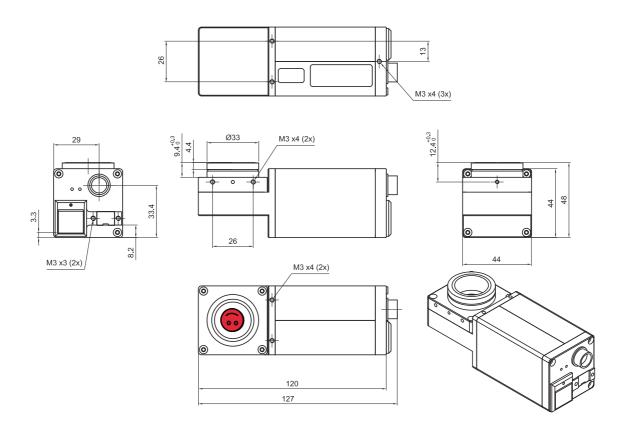


Figure 27: Pike W90 S90 (1394b: 1 x GOF, 1 x copper)

Pike W270 (2 x 1394b copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

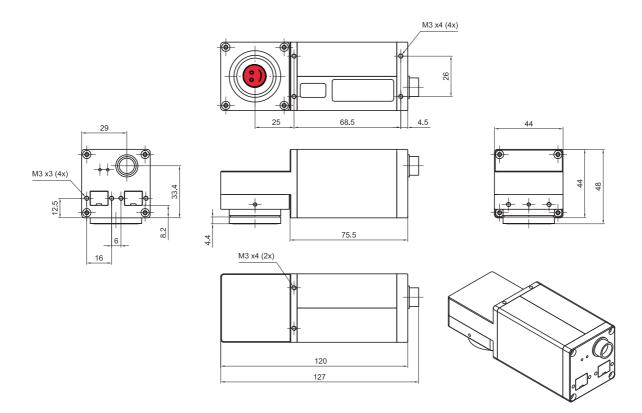


Figure 28: Pike W270 (2 x 1394b copper)

Pike W270 (1394b: 1 x GOF, 1 x copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

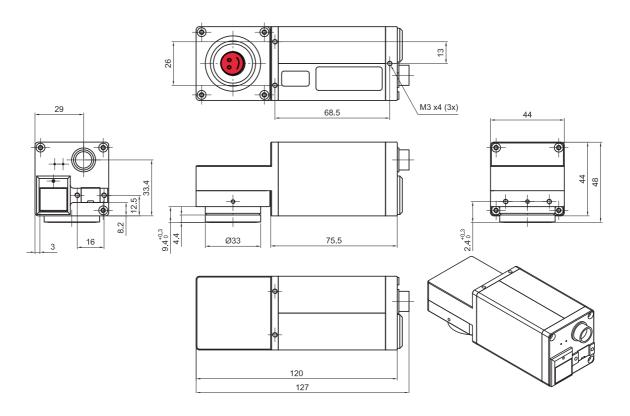


Figure 29: Pike W270 (1394b: 1 x GOF, 1 x copper)

Pike W270 S90 (2 x 1394b copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

The sensor is also rotated by 90 degrees clockwise.

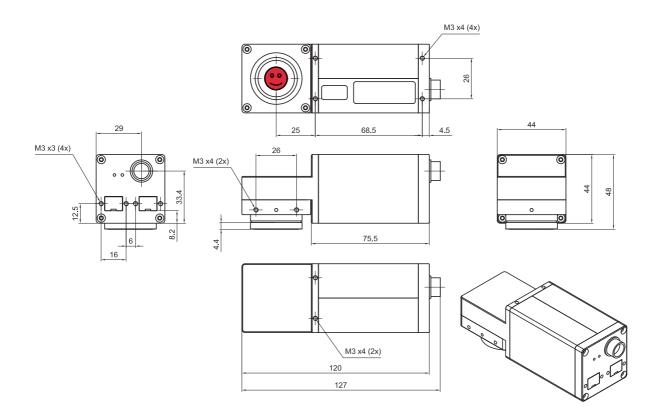


Figure 30: Pike W270 S90 (2 x 1394b copper)

Pike W270 S90 (1394b: 1 x GOF, 1 x copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

The sensor is also rotated by 90 degrees clockwise.

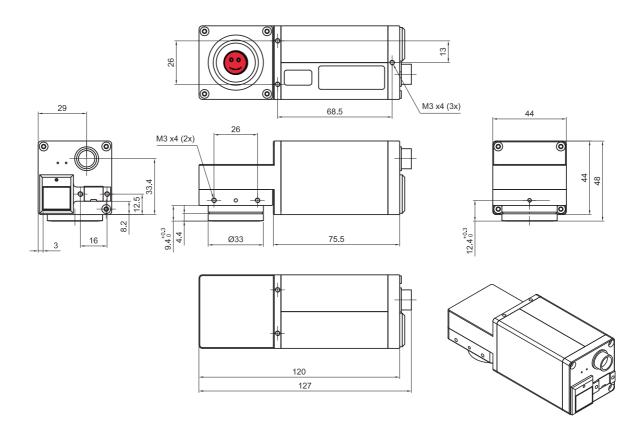


Figure 31: Pike W270 S90 (1394b: 1 x GOF, 1 x copper)

Cross section: CS-Mount (only Pike F-032B/C)

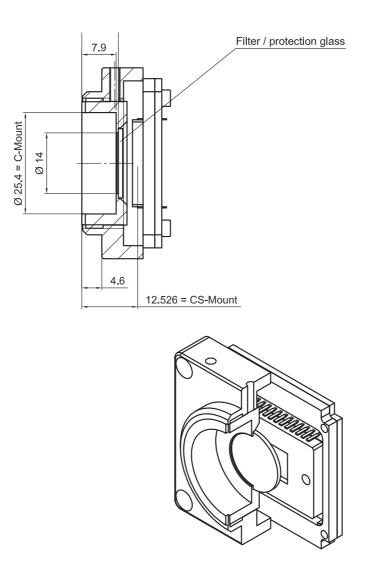


Figure 32: Pike CS-Mount dimensions (only Pike F-032B/C)

Cross section: C-Mount (VGA size filter)

Pike F-032/100/145/505 cameras are equipped with VGA size filter.

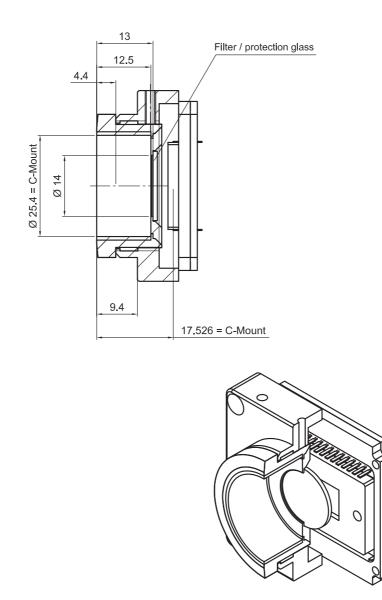


Figure 33: Pike C-Mount dimensions (VGA size filter)

Cross section: C-Mount (large filter)

Pike F-210/421 are equipped with a large filter.

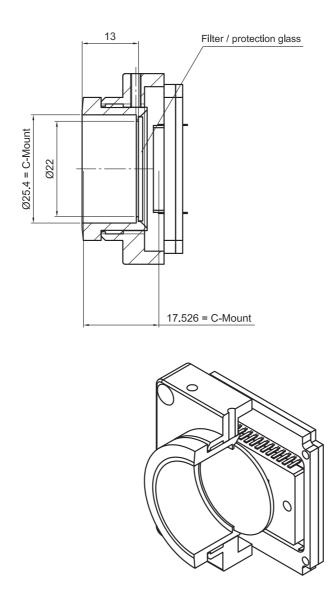


Figure 34: Pike C-Mount dimensions (large filter)

Adjustment of C-Mount

Pike cameras allow the precise adjustment of the back focus of the C-Mount by means of a **back focus ring** which is threaded into the C-Mount and held by **two** screws: one on the top (middle) and one on the right side of the camera. The mechanical adjustment of the imaging device is important in order to achieve a perfect alignment with the focal point of the lens.

Individual adjustment may be required:

- if you cannot focus correctly at near or far distances or
- if the back focal plane of your lens does not conform to the C-Mount backfocus specification or
- if you have e.g. removed the IR cut filter.

loosen both screws on top and the right side of the camera

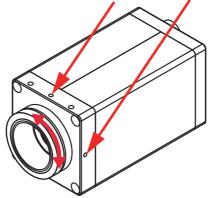


Figure 35: Back focus adjustment

Do the following:

- Looking in front of the lens loosen both screws on the top (middle) and the right side of the housing (locations as shown above by arrows) with an Allen key (1.3 x 50; Order#: K 9020411). If one of this screws is not available (angled head models W90/W270 S90), use the screw on the other side.
- 2. With the lens set to infinity or a known focus distance, set the camera to view an object located at *infinity* or the known distance.
- 3. Rotate the C-Mount ring and lens forward or backwards on its thread until the object is in sharp focus. Be careful that the lens remains seated in the C-Mount.
- 4. Once focus is achieved, tighten the two locking screws without applying excessive torque.

Adjustment of F-Mount for Pike F-1100 and Pike F-1600

Different from the other Pike cameras Pike: F-1100/F-1600 have built-in filter that cannot be removed.

The dimensional adjustment cannot be done by the customer. All adjustments have to be done by the Allied Vision factory.

If you need any adjustments, please contact Customer Care: For phone numbers and e-mail: See ChapterContacting Allied Vision on page 12.

F-Mount

For Pike F-1100 and Pike F-1600 the following mounts will be available:

- F-Mount (standard)
- M42-Mount (optional)
- M58-Mount (optional)

Note

For Pike F-1100 and Pike F-1600:

- **No** K-Mount available.
- No M39-Mount available.

Pike F-Mount: standard housing (2 x 1394b copper)

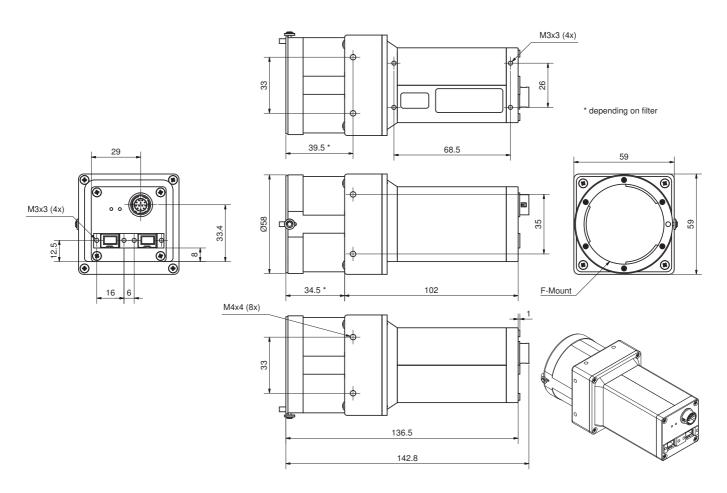
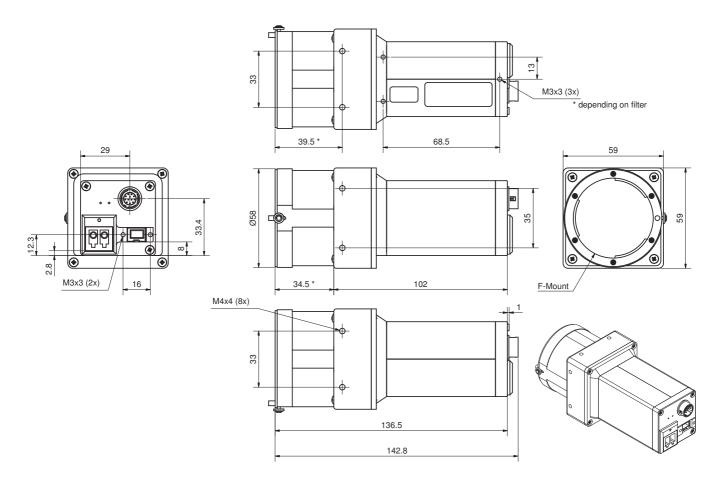



Figure 36: F-Mount Pike standard housing (2 x 1394b copper)

Pike F-Mount (1394b: 1 x GOF, 1 x copper)

Figure 37: F-Mount Pike standard housing (1394b: 1 x GOF, 1 x copper)

Pike F-Mount: Tripod adapter

This tripod adapter is designed for Pike F-Mount/M42-Mount/M58-Mount standard housings.

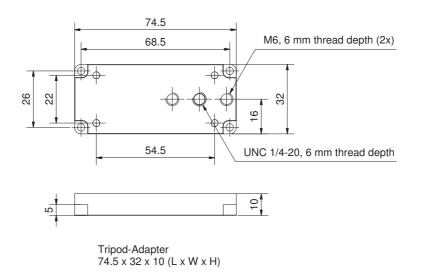


Figure 38: Tripod dimensions

Pike Technical Manual V5.2.0

Pike F-Mount: W270 (2 x 1394b copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

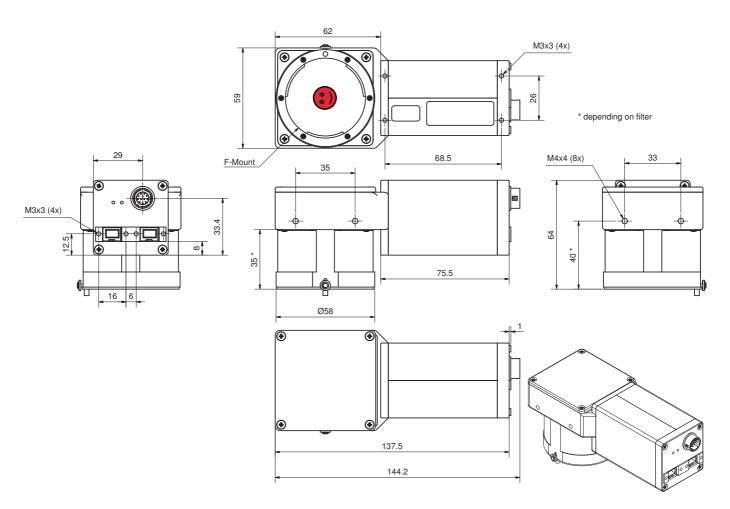


Figure 39: F-Mount Pike W270 (2 x 1394b copper)

Pike F-Mount: W270 (1394b: 1 x GOF, 1 x copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

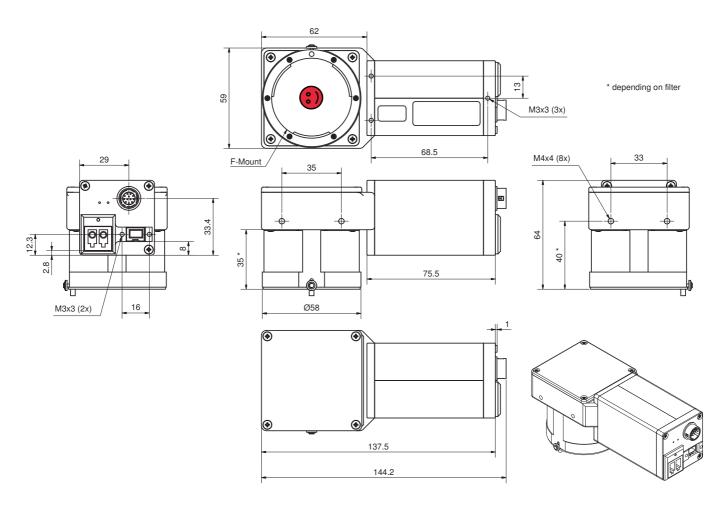
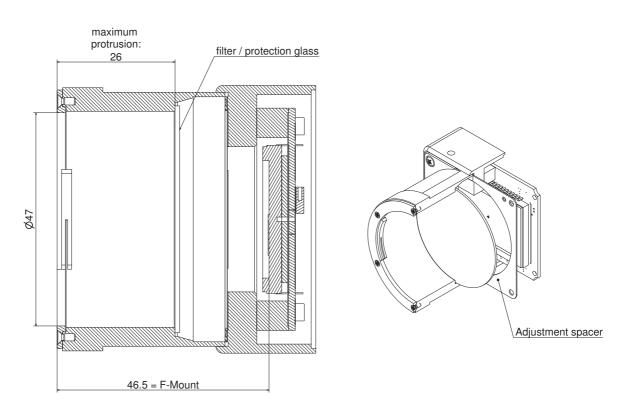



Figure 40: F-Mount Pike W270 (1394b: 1 x GOF, 1 x copper)

Cross section: F-Mount

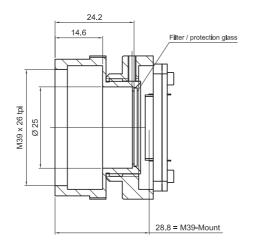
K-Mount, M39-Mount

 Note
 For other mounts (e.g. K-Mount, M39-Mount) please contact your distributor.

 Note
 Pike F-210 and Pike F-421 can be equipped at factory site with M39-Mount instead of C-Mount.

 Note
 Note

 Note
 Pike F-210 and Pike F-421 can be equipped at factory site with M39-Mount instead of C-Mount.


 Note
 Note

 Note
 Pike F-210 and Pike F-421 can be equipped at factory site with M39-Mount instead of C-Mount.

short focal length optics. See drawing below for further details.

Please ask Allied Vision or your local dealer if you require further information.

Cross section: M39-Mount

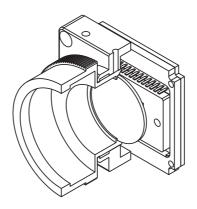


Figure 42: Pike M39-Mount dimensions (only Pike F-210 and Pike F-421)

Pike Technical Manual V5.2.0

M42-Mount

Pike F-1100 and Pike F-1600 cameras can optionally be ordered with M42-Mount.

Pike M42-Mount: standard housing (2 x 1394b copper)

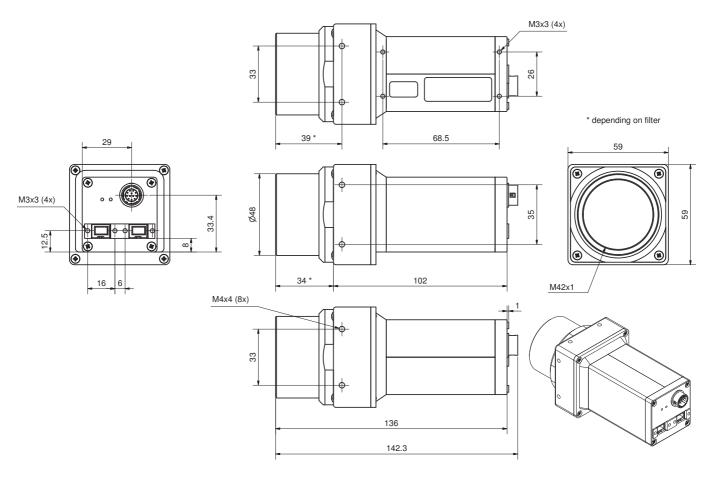


Figure 43: M42-Mount Pike standard housing (2 x 1394b copper)

Pike M42-Mount: standard housing (1394b: 1 x GOF, 1 x copper)

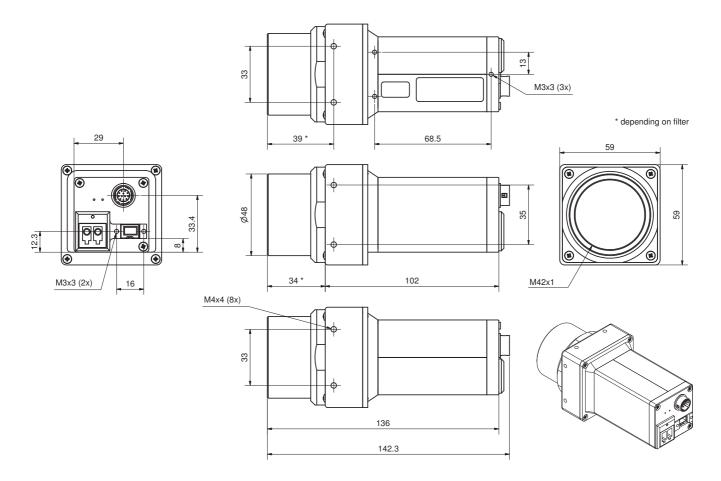
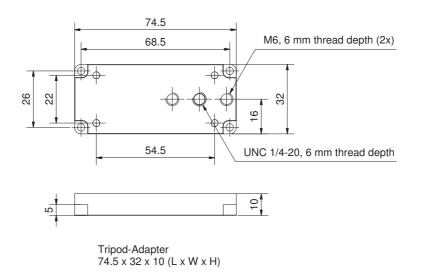



Figure 44: M42-Mount Pike standard housing (1394b: 1 x GOF, 1 x copper)

Pike M42-Mount: Tripod adapter

This tripod adapter is designed for Pike F-Mount/M42-Mount/M58-Mount standard housings.

Pike Technical Manual V5.2.0

Pike M42-Mount: W270 (2 x 1394b copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

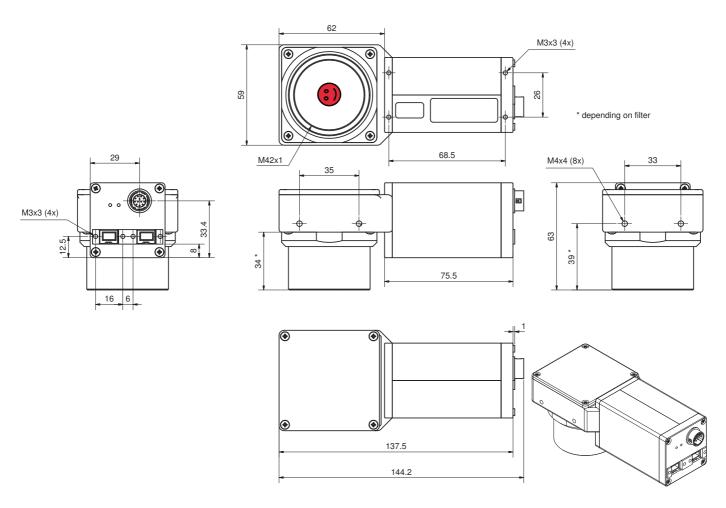


Figure 46: M42-Mount Pike W270 (2 x 1394b copper)

Pike M42-Mount: W270 (1394b: 1 x GOF, 1 x copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

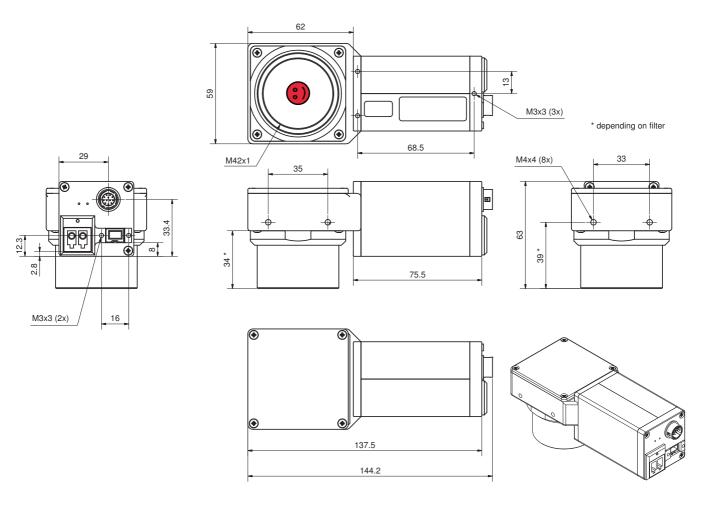
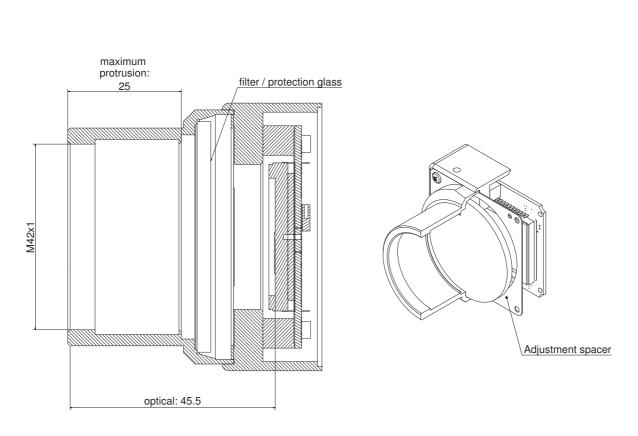



Figure 47: M42-Mount Pike W270 (1394b: 1 x GOF, 1 x copper)

Cross section: M42-Mount

M58-Mount

Pike F-1100 and Pike F-1600 cameras can optionally be ordered with M58-Mount.

Pike M58-Mount: standard housing (2 x 1394b copper)

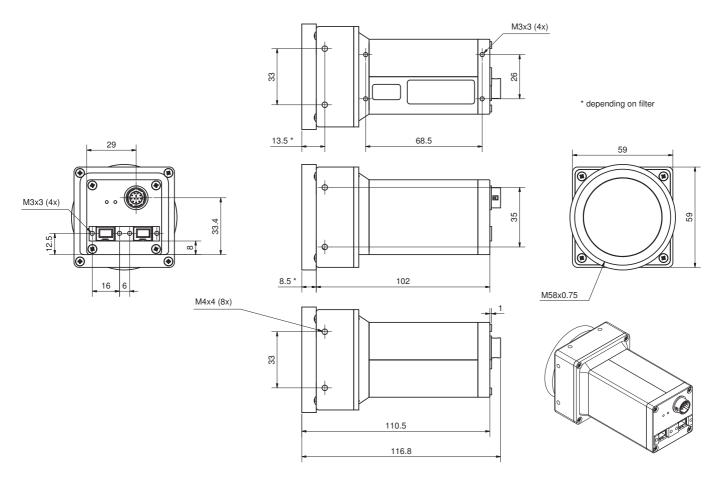


Figure 49: M58-Mount Pike standard housing (2 x 1394b copper)

Pike M58-Mount: standard housing (1394b: 1 x GOF, 1 x copper)

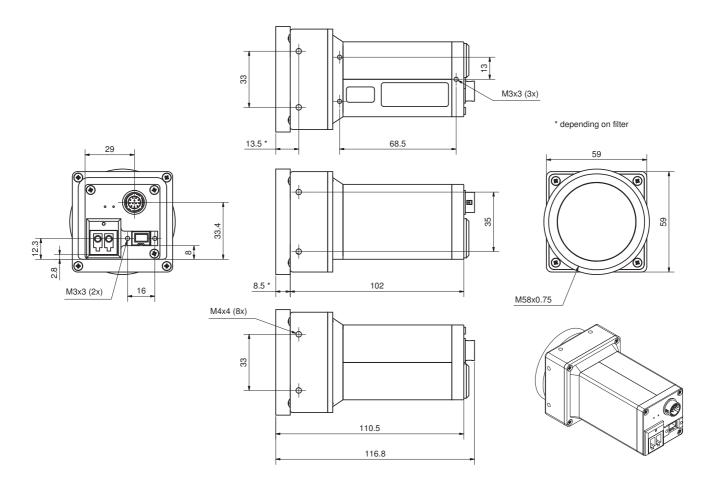
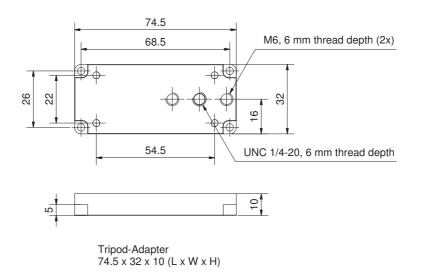



Figure 50: M58-Mount Pike standard housing (1394b: 1 x GOF, 1 x copper)

Pike M58-Mount: Tripod adapter

This tripod adapter is designed for Pike F-Mount/M42-Mount/M58-Mount standard housings.

Pike Technical Manual V5.2.0

Pike M58-Mount: W270 (2 x 1394b copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

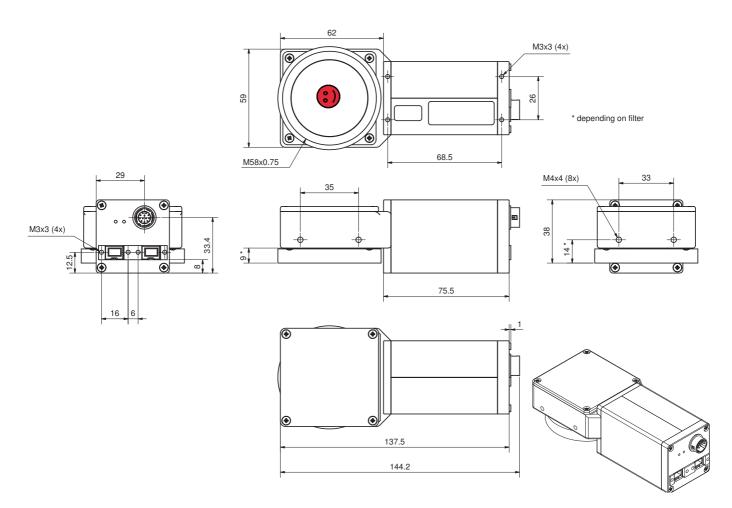


Figure 52: M58-Mount Pike W270 (2 x 1394b copper)

Pike M58-Mount: W270 (1394b: 1 x GOF, 1 x copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

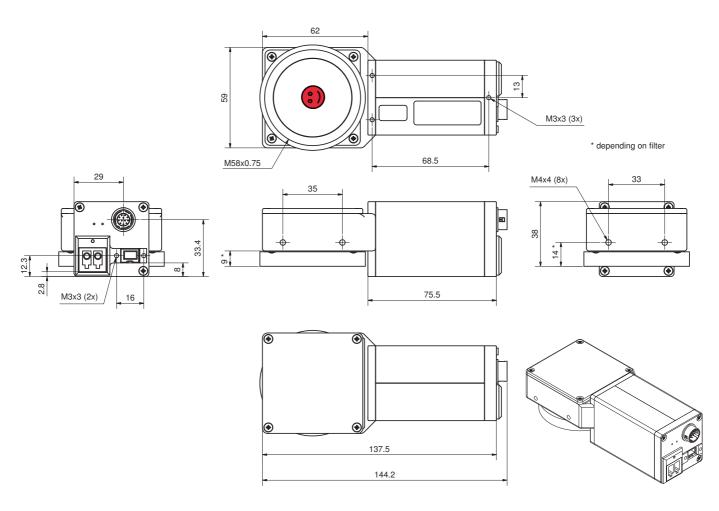
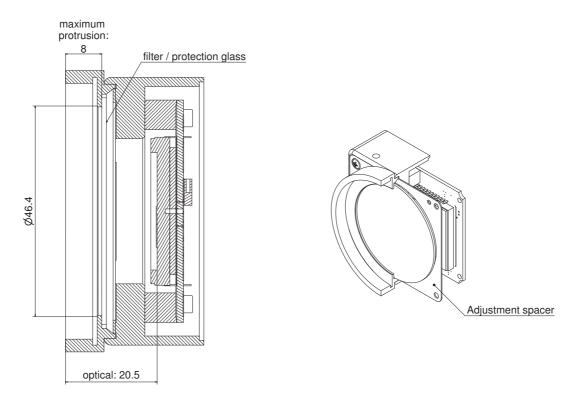



Figure 53: M58-Mount Pike W270 (1394b: 1 x GOF, 1 x copper)

Cross section: M58-Mount

Figure 54: Pike M58-Mount dimensions (optional for Pike F-1100 and Pike F-1600)

Filter and lenses

IR cut filter: spectral transmission

The following illustration shows the spectral transmission of the IR cut filter:

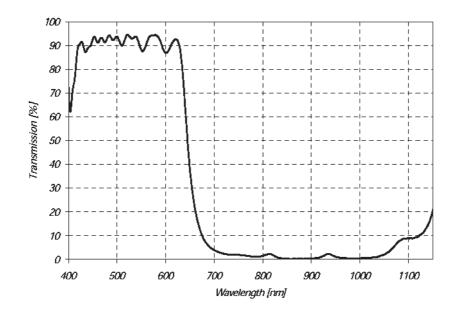


Figure 55: Approximate spectral transmission of IR cut filter (may vary slightly by filter lot) (type Jenofilt 217)

Camera lenses

Allied Vision offers different lenses from a variety of manufacturers. The following table lists selected image formats depending on camera type, distance and the focal length of the lens.

All values listed in the following tables are theoretical and therefore only **approximate values** (focal length and field of view).

Focal length for type 1/3 sensors Pike F-032	Distance = 0.5 m	Distance = 1 m
4.8 mm	0.38 m x 0.5 m	0.75 m x 1 m
8 mm	0.22 m x 0.29 m	0.44 m x 0.58 m
12 mm	0.15 m x 0.19 m	0.29 m x 0.38 m
16 mm	11 cm x 15 cm	22 cm x 29 cm
25 mm	6.9 cm x 9.2 cm	14 cm x 18 cm
35 mm	4.8 cm x 6.4 cm	9.6 cm x 13 cm
50 mm	3.3 cm x 4.4 cm	6.6 cm x 8.8 cm

Table 17: Focal length vs. field of view (Pike F-032)

Focal length for type 2/3 sensors Pike F-100/F-145/F-505	Distance = 0.5 m	Distance = 1 m
4.8 mm	0.7 m x 0.9 m	1.4 m x 1.9 m
8 mm	0.4 m x 0.5 m	0.8 m x 1.1 m
12 mm	0.27 m x 0.36 m	0.54 m x 0.72 m
16 mm	0.2 m x 0.27 m	0.4 m x 0.54 m
25 mm	13 cm x 17 cm	26 cm x 34 cm
35 mm	8.8 cm x 12 cm	18 cm x 24 cm
50 mm	6 cm x 7.9 cm	12 cm x 17 cm

Table 18: Focal length vs. field of view (Pike F-100/F-145/F-505)

Focal length for type 1 sensors Pike F-210	Distance = 0.5 m	Distance = 1 m	
8 mm	0.6 m x 0.8 m	1.2 m x 1.6 m	
12 mm	0.39 m x 0.52 m	0.78 m x 1.2 m	
16 mm	0.29 m x 0.38 m	0.58 m x 0.76 m	
25 mm	18 cm x 24 cm	36 cm x 49 cm	
35 mm	13 cm x 17 cm	26 cm x 34 cm	
50 mm	8.8 cm x 12 cm 18 cm x 23 cm		

Table 19: Focal length vs. field of view (Pike F-210)

Lenses with focal lengths < 35 mm will very likely show excessive shading in the edges of the image due to the fact that the image size of the sensor is slightly bigger than the C-mount itself and due to microlenses on the sensor's pixel.

Ask your dealer if you require non C-Mount lenses.

Focal length for type 1.2 sensors Pike F-421	Distance = 0.5 m	Distance = 1 m
35 mm	20 cm x 20 cm	42 cm x 42 cm
50 mm	14 cm x 14 cm	29 cm x 29 cm

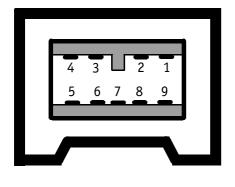
Table 20: Focal length vs. field of view (Pike F-421)

Focal length for type 35 mm sensors Pike F-1100/F-1600	Distance = 0.5 m	Distance = 1 m
18 mm	64 cm x 96 cm	1.3 m x 2.0 m
21 mm	55 cm x 82cm	1.1 m x 1.7 m
25 mm	46 cm x 68 cm	0.94 m x 1.4 m
28 mm	41 cm x 61 cm	0.83 m x 1.3 m
35 mm	32 cm x 48 cm	66 cm x 99 cm
50 mm	22 cm x 32 cm	46 cm x 68 cm
90 mm	11 cm x 16 cm	24 cm x 36 cm

Table 21: Focal length vs. field of view (Pike F-1100/F-1600)

Camera interfaces

This chapter gives you detailed information on status LEDs, inputs and outputs, trigger features and transmission of data packets.


Note	
(;)

For a detailed description of the **camera interfaces (FireWire**, I/O connector), ordering numbers and operating instructions see the 1394 Installation Manual, Chapter *Camera interfaces*.

Read all **Notes** and **Cautions** in the **1394 Installation Manual**, before using any interfaces.

IEEE 1394b port pin assignment

The IEEE 1394b connector is designed for industrial use and has the following pin assignment as per specification:

Pin	Signal	
1	TPB-	
2	TPB+	
3	TPA-	
4	TPA+	
5	TPA (Reference ground)	
6	VG (GND)	
7	N.C.	
8	VP (Power, VCC)	
9	TPB (Reference ground)	

Figure 56: IEEE 1394b connector

- Both IEEE 1394b connectors with screw lock mechanism provide access to the IEEE 1394 bus and thus makes it possible to control the camera and output frames. Connect the camera by using either of the connectors. The other connector can be used to daisy chain a second camera.
- Cables with latching connectors on one or both sides can be used and are available with lengths of 5 m or 7.5 m. Ask your local dealer for more details.

For **more information on cables** and on **ordering cables online** (by clicking the article and sending an inquiry) go to:

http://www.alliedvision.com/en/contact

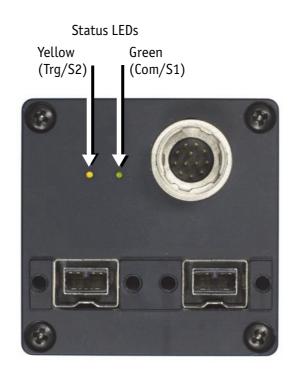
Camera I/O connector pin assignment

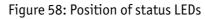
Pin	Signal	Direction	Level	Description
1	External GND		GND for RS232 and ext. power	External Ground for RS232 and external power
2	External Power		+8+36 V DC	Power supply
3	Camera Out 4	Out	Open emitter	Camera Output 4 (GPOut4) default: -
4	Camera In 1	In	U _{in} *(high) = 3 VU _{inVCC} U _{in} (low) = 0 V0.8 V	Camera Input 1 (GPIn1) default: Trigger
5	Camera Out 3	Out	Open emitter	Camera Output 3 (GPOut3) default: Busy
6	Camera Out 1	Out	Open emitter	Camera Output 1 (GPOut1) default: IntEna
7	Camera In GND	In	Common GND for inputs	Camera Common Input Ground (In GND)
8	RxD RS232	In	RS232	Terminal Receive Data
9	TxD RS232	Out	RS232	Terminal Transmit Data
10	Camera Out Power	In	Common VCC for outputs max. 36 V DC	External Power for digital outputs (OutVCC)
11	Camera In 2	In	U _{in} *(high) = 3 VU _{inVCC} U _{in} (low) = 0 V0.8 V	Camera Input 2 (GPIn2) default: -
12	Camera Out 2	Out	Open emitter	Camera Output 2 (GPOut2) default: Follow CameraIn2

*min. 5 mA input current; U_{in} depends on input current.

Figure 57: Camera I/O connector pin assignment

Note GP = General Purpose


For a detailed description of the **I/O connector and its operating instructions** see the **1394 Installation Manual**, **Chapter** *Pike input description*.


Read all **Notes** and **Cautions** in the **1394 Installation Manual**, before using the I/O connector.

Status LEDs

On LED (green)

The green power LED indicates that the camera is being supplied with sufficient voltage and is ready for operation.

Status LED

The following states are displayed via the LED:

State	Description
Com/S1 (green)	Asynchronous and isochronous data transmission active (indicated asynchronously to transmission via the 1394 bus)
Trg/S2 (yellow)	LED on - waiting for external trigger
	LED off - triggered / internal sync

Table 22: LED indication

Blink codes are used to signal warnings or error states:

Class S1 —→ Error code S2	Warning 1 blink	DCAM 2 blinks	MISC 3 blinks	FPGA 4 blinks	Stack 5 blinks
FPGA boot error				1-5 blinks	
Stack setup					1 blink
Stack start					2 blinks
No FLASH object			1 blink		
No DCAM object		1 blink			
Register mapping		3 blinks			
VMode_ERROR_STATUS	1 blink				
FORMAT_7_ERROR_1	2 blinks				
FORMAT_7_ERROR_2	3 blinks				

Table 23: Error codes

The following sketch illustrates the series of blinks for a Format_7_error_1:

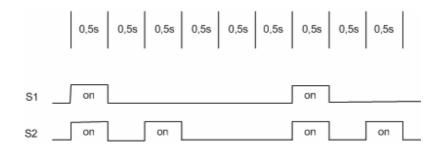


Figure 59: Warning and error states

You should wait for at least 2 full cycles because the display of blinking codes starts asynchronously - e.g. on the second blink from S2.

Control and video data signals

The inputs and outputs of the camera can be configured by software. The different modes are described below.

Inputs

For a general description of the **inputs** and **warnings** see the **1394 Installation Manual**, Chapter **Pike input description**.

The optocoupler inverts all input signals. Inversion of the signal is controlled via the IO_INP_CTRL1..2 register (see Table 24: Advanced register: Input control on page 112).

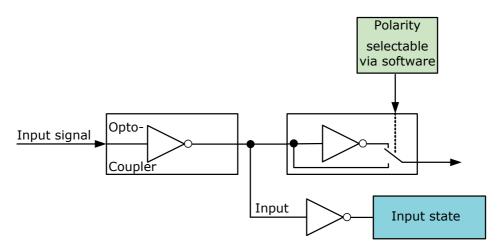


Figure 60: Input block diagram

Triggers

All inputs configured as triggers are linked by AND. If several inputs are being used as triggers, a high signal must be present on all inputs in order to generate a trigger signal. Each signal can be inverted. The camera must be set to **external triggering** to trigger image capture by the trigger signal.

Input/output pin control

All input and output signals running over the camera I/O connector are controlled by an advanced feature register.

Register	Name	Field	Bit	Description
0xF1000300	IO_INP_CTRL1	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[16]	Reserved
		Polarity	[7]	0: Signal not inverted
				1: Signal inverted
			[810]	Reserved
		InputMode	[1115]	Mode
				see Table 25: Input routing on page 112
			[1630]	Reserved
		PinState	[31]	RD: Current state of pin
0xF1000304	IO_INP_CTRL2	Same as IO_INP_C- TRL1		

Table 24: Advanced register: Input control

IO_INP_CTRL 1-2

The **Polarity** flag determines whether the input is low active (0) or high active (1). The **input mode** can be seen in the following table. The **PinState** flag is used to query the current status of the input.

The **PinState** bit reads the inverting optocoupler status after an internal negation. See Figure 60: Input block diagram on page 111.

This means that an open input sets the **PinState** bit to **0**. (This is different to Allied Vision Marlin, where an open input sets **PinState** bit to **1**.)

ID	Mode	Default
0x00	Off	
0x01	Reserved	
0x02	Trigger input	Input 1
0x03	Reserved	
0x06	Sequence Step	
0x07	Sequence Reset	
0x080x1F	Reserved	

Table 25: Input routing

Note

If you set more than 1 input to function as a trigger input, all trigger inputs are ANDed.

Trigger delay

Pike cameras feature various ways to delay image capture based on external trigger.

With IIDC V1.31 there is a standard CSR at Register F0F00534/834h to control a delay up to FFFh x time base value.

The following table explains the inquiry register and the meaning of the various bits.

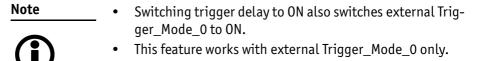
Register	Name	Field	Bit	Description
0xF0F00534	TRIGGER_DELAY_INQUIRY	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Abs_Control_Inq	[1]	Capability of control with absolute value
			[2]	Reserved
		One_Push_Inq	[3]	One-push auto mode (con- trolled automatically by the camera once)
		Readout_Inq	[4]	Capability of reading out the value of this feature
		ON_OFF	[5]	Capability of switching this feature ON and OFF
		Auto_Inq	[6]	Auto mode (controlled auto- matically by the camera)
		Manual_Inq	[7]	Manual mode (controlled by user)
		Min_Value	[819]	Minimum value for this fea- ture
		Max_Value	[2031]	Maximum value for this fea- ture

Table 26: Trigger delay inquiry register

Register	Name	Field	Bit	Description
0xF0F00834	TRIGGER_DELAY	Presence_Inq	[0]	Presence of this feature:
				0:N/
				1: Available
		Abs_Control	[1]	Absolute value control
				0: Control with value in the value field
				1: Control with value in the absolute value CSR. If this bit=1 the value in the value field has to be ignored.
			[25]	Reserved
		ON_OFF	[6]	Write ON or OFF this feature
				Read: Status of the feature
				0N=1
				OFF=0
			[719]	Reserved
		Value	[2031]	Value

Table 27: Trigger Delay CSR

The cameras also have an advanced register which allows even more precise image capture delay after receiving a hardware trigger.

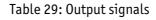

Trigger delay advanced register

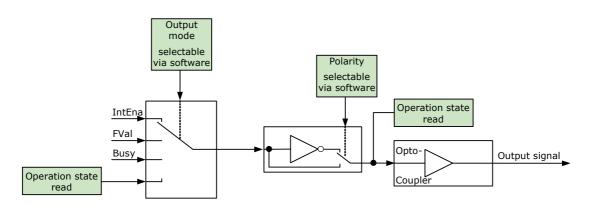
Register	Name	Field	Bit	Description
0xF1000400	TRIGGER_DELAY	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	-
		ON_OFF	[6]	Trigger delay on/off
			[710]	-
		DelayTime	[1131]	Delay time in µs

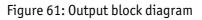
Table 28: Trigger delay advanced CSR

The advanced register allows the start of the integration to be delayed by max. 2^{21} µs, which is max. 2.1 s after a trigger edge was detected.

Outputs


Note


For a general description of the **outputs** and **warnings** see the **1394 Installation Manual**, Chapter **Pike output description**.


Output features are configured by software. Any signal can be placed on any output.

The main features of output signals are described below:

Signal	Description
IntEna (Integration Enable) signal	This signal displays the time in which exposure was made. By using a register this output can be delayed by up to 1.05 seconds.
Fval (Frame valid) signal	This feature signals readout from the sensor. This signal Fval follows IntEna.
Busy signal	This indicator appears when the exposure is being made; the sensor is being read from or data trans- mission is active. The camera is busy.

IO_OUTP_CTRL 1-4

The outputs (Output mode, Polarity) are controlled via 4 advanced feature registers (see Table 30: Advanced register: Output control on page 116).

The **Polarity** field determines whether the output is inverted or not. The **output mode** can be viewed in the table below. The current status of the output can be queried and set via the **PinState**.

It is possible to read back the status of an output pin regardless of the output mode. This allows for example the host computer to determine if the camera is busy by simply polling the BUSY output.

Note

Outputs in **Direct** Mode:

For correct functionality the **Polarity should always be set to 0** (SmartView: Trig/IO tab, Invert=No).

Register	Name	Field	Bit	Description
0xF1000320	IO_OUTP_CTRL1	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
		PWMCapable	[1]	Indicates if an output pin sup- ports the PWM feature.
				See Table 32: PWM configura- tion registers on page 119.
			[26]	Reserved
		Polarity	[7]	0: Signal not inverted
				1: Signal inverted
			[810]	Reserved
		Output mode	[1115]	Mode
				see Table 31: Output routing on page 117
			[1630]	Reserved
		PinState	[31]	RD: Current state of pin
				WR: New state of pin
0xF1000324	IO_OUTP_CTRL2	Same as IO_OUT- P_CTRL1		
0xF1000328	IO_OUTP_CTRL3	Same as IO_OUT- P_CTRL1		
0xF100032C	IO_OUTP_CTRL4	Same as IO_OUT- P_CTRL1		

Table 30: Advanced register: Output control

Output modes

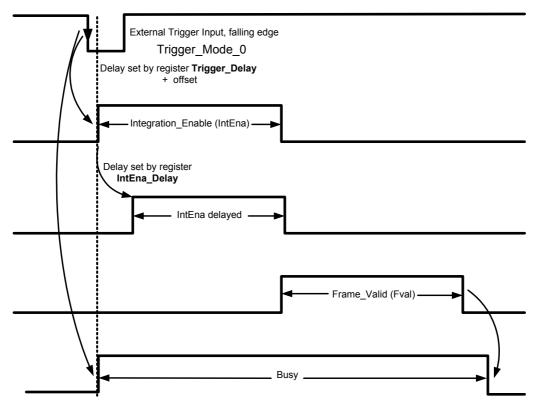
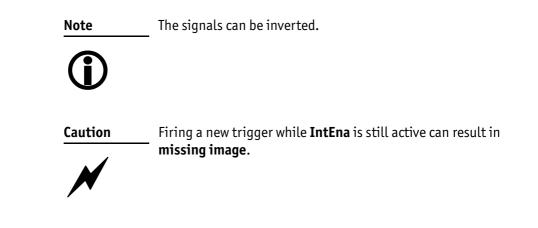

ID	Mode	Default / description
0x00	Off	
0x01	Output state follows PinState bit	Using this mode, the Polarity bit has to be set to 0 (not inverted). This is necessary for an error free display of the output status.
0x02	Integration enable	Output 1
0x03	Reserved	
0x04	Reserved	
0x05	Reserved	
0x06	FrameValid	
0x07	Busy	Output 2
0x08	Follow corresponding input (Inp1 \rightarrow Out1, Inp2 \rightarrow Out2)	
0x09	PWM (=pulse-width modulation)	
0x0A0x0F	Reserved	
0x100x1F	Reserved	

Table 31: Output routing


PinState 0 switches off the output transistor and produces a low level over the resistor connected from the output to ground.

The following diagram illustrates the dependencies of the various output signals.

Note

- **()**
- Note that trigger delay in fact delays the image capture whereas the IntEna_Delay only delays the leading edge of the IntEna output signal but does not delay the image capture.
- As mentioned before, it is possible to set the outputs by software. Doing so, the achievable maximum frequency is strongly dependent on individual software capabilities. As a rule of thumb, the camera itself will limit the toggle frequency to not more than 700 Hz.

Pulse-width modulation

The 2 inputs and 4 outputs are independent. Each output has pulse-width modulation (PWM) capabilities, which can be used (with additional external electronics) for motorized speed control or autofocus control.

Period (in μ s) and pulse width (in μ s) are adjustable via the following registers (see also examples in Chapter PWM: Examples in practice on page 120):

Register	Name	Field	Bit	Description
0xF1000800	IO_OUTP_PWM1	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[1]	Reserved
			[23]	Reserved
		MinPeriod	[419]	Minimum PWM period in µs (read only)
			[2027]	Reserved
			[2831]	Reserved
0xF1000804		PulseWidth	[015]	PWM pulse width in µs
		Period	[1631]	PWM period in µs
0xF1000808	IO_OUTP_PWM2	Same as IO_OUT-		
0xF100080C		P_PWM1		
0xF1000810	IO_OUTP_PWM3	Same as IO_OUT-		
0xF1000814		P_PWM1		
0xF1000818	IO_OUTP_PWM4	Same as IO_OUT-		
0xF100081C		P_PWM1		

Table 32: PWM configuration registers

To enable the PWM feature select output mode 0x09. Control the signal state via the **PulseWidth** and **Period** fields (all times in microseconds (μs)).

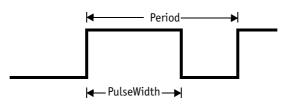
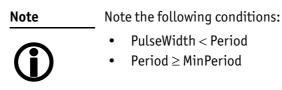



Figure 63: PulseWidth and Period definition

PWM: minimal and maximal periods and frequencies

In the following formulas you find the minimal/maximal periods and frequencies for the pulse-width modulation (PWM).

period_{min} = 3µs

$$\Rightarrow \text{ frequency}_{max} = \frac{1}{\text{period}_{min}} = \frac{1}{3\mu s} = 333.33 \text{ kHz}$$

$$\text{frequency}_{min} = \frac{1}{2^{16} \times 10^{-6} \text{ s}} = 15.26 \text{ Hz}$$

$$\Rightarrow \text{ period}_{max} = \frac{1}{\text{frequency}_{min}} = 2^{16} \mu \text{ s}$$

Formula 1: Minimal/maximal period and frequency

PWM: Examples in practice

In this chapter we give you two examples, how to write values in the PWM registers. All values have to be written in microseconds (μ s) in the PWM registers, therefore remember always the factor 10^{-6} s.

Example 1:

Set PWM with 1kHz at 30% pulse width.

RegPeriod = $\frac{1}{\text{frequency} \times 10^{-6} \text{s}} = \frac{1}{1 \text{kHz} \times 10^{-6} \text{s}} = 1000$

RegPulseWidth = RegPeriod \times 30% = 1000 \times 30% = 300

Formula 2: PWM example 1

Example 2:

Set PWM with 250 Hz at 12% pulse width.

RegPeriod = $\frac{1}{\text{frequency} \times 10^{-6} \text{s}} = \frac{1}{250 \text{Hz} \times 10^{-6} \text{s}} = 4000$

RegPulseWidth = RegPeriod \times 12% = 4000 \times 12% = 480

Formula 3: PWM example 2

Pixel data

Pixel data are transmitted as isochronous data packets in accordance with the 1394 interface described in IIDC V1.31. The first packet of a frame is identified by the **1** in the **sync bit** (sy) of the packet header.

 0-7
 8-15
 16-23
 24-31

 data_length
 tg
 channel
 tCode
 Sy

 header_CRC

 Video data payload

 data_CRC

Table 33: Isochronous data block packet format. Source: IIDC V1.31

sync bit

Field	Description
data_length	Number of bytes in the data field
tg	Tag field
	shall be set to zero
channel	Isochronous channel number , as programmed in the iso_channel field of the cam_sta_ctrl register
tCode	Transaction code
	shall be set to the isochronous data block packet tCode
sy	Synchronization value (sync bit)
	This is one single bit. It indicates the start of a new frame.
	It shall be set to 0001h on the first isochronous data block of a frame, and shall be set to zero on all other isochronous blocks
Video data payload	Shall contain the digital video information

Table 34: Description of data block packet format

- The video data for each pixel are output in either 8-bit or 14-bit format (**Packed 12-Bit Mode:** 12-bit format).
- Each pixel has a range of 256 or 16384 (**Packed 12-Bit Mode:** 4096) shades of gray.
- The digital value 0 is black and 255 or 16383 (**Packed 12-Bit Mode:** 4095) is white. In 16-bit mode the data output is MSB aligned.

Description of video data formats

The following tables provide a description of the video data format for the different modes. (Source: IIDC V1.31; packed 12-bit mode: Allied Vision)

<YUV8 (4:2:2) format>

Each component has 8-bit data.

	<yuv8 (4:2:2)="" format=""></yuv8>				
U _(K+0)	Y _(K+0)	V _(K+0)	Y _(K+1)		
U _(K+2)	U _(K+2) Y _(K+2)		Y _(K+3)		
U _(K+4)	U _(K+4) Y _(K+4)		Y _(K+5)		
	Y(K) Dr. ()	V _(K+Pn-6)	Y(K, part)		
U _(K+Pn-6)	Y _(K+Pn-6)		Y _(K+Pn-5)		
U _(K+Pn-4)	Y _(K+Pn-4)	V _(K+Pn-4)	Y _(K+Pn-3)		
U _(K+Pn-2)	Y _(K+Pn-2)	V _(K+Pn-2)	Y _(K+Pn-1)		

Table 35: YUV8 (4:2:2) format: Source: IIDC V1.31

<YUV8 (4:1:1 format)

Each component has 8-bit data.

<yuv8 (4:1:1)="" format=""></yuv8>			
U _(K+0)	Y _(K+0)	Y _(K+1)	V _(K+0)
Y _(K+2)	Y _(K+3)	U _(K+4)	Y _(K+4)
Y _(K+5)	V _(K+4)	Y _(K+6)	Y _(K+7)
U _(K+Pn-8)	Y _(K+Pn-8)	Y _(K+Pn-7)	V _(K+Pn-8)
Y _(K+Pn-6)	Y _(K+Pn-5)	U _(K+Pn-4)	Y _(K+Pn-4)
Y _(K+Pn-3)	V _(K+Pn-4)	Y _(K+Pn-2)	Y _(K+Pn-1)

Table 36: YUV8 (4:1:1) format: Source: IIDC V1.31

<Y (Mono8/Raw8) format>

Y component has 8-bit data.

<y (mono8="" format="" raw8)=""></y>			
Y _(K+0)	Y _(K+1)	Y _(K+2)	Y _(K+3)
Y _(K+4)	Y _(K+5)	Y _(K+6)	Y _(K+7)
Y _(K+Pn-8)	Y _(K+Pn-7)	Y _(K+Pn-6)	Y _(K+Pn-5)

Table 37: Y (Mono8) format: Source: IIDC V1.31 / Y (Raw8) format: Allied Vision

<Y (Mono16/Raw16) format>

Y component has 16-bit data.

<y (mono16)="" format=""></y>		
High byte	Low byte	
		_
Y _{(k}	(+0)	Y _(K+1)
Y _(K+2)		Y _(K+3)
Y _{(K+}	Pn-4)	Y _(K+Pn-3)
Y _(K+Pn-2)		Y _(K+Pn-1)

Table 38: Y (Mono16) format: Source: IIDC V1.31

<Y (Mono12/Raw12) format>

<y (mono12)="" format=""></y>				
Y _(K+0) [114]	Y _(K+1) [30]	Y _(K+1) [114]	Y _(K+2) [114]	
	Y _(K+0) [30]			
Y _(K+3) [30]	Y _(K+3) [114]	Y _(K+4) [114]	Y _(K+5) [30]	
Y _(K+2) [30]			Y _(K+4) [30]	
Y _(K+5) [114]	Y _(K+6) [114]	Y _(K+7) [30]	Y _(K+7) [114]	
		Y _(K+6) [30]		

Table 39: Packed 12-Bit Mode (mono and raw) Y12 format (Allied Vision)

<Y(Mono8/Raw8), RGB8>

Each component (Y, R, G, B) has 8-bit data. The data type is *Unsigned Char*.

Y, R, G, B	Signal level (decimal)	Data (hexadecimal)
Highest	255	0xFF
	254	0×FE
	•	
	•	
	1	0x01
Lowest	0	0x00

Figure 64: Data structure of Mono8, RGB8; Source: IIDC V1.31 / Y(Mono8/Raw8) format: Allied Vision

<YUV8>

Each component (Y, U, V) has 8-bit data. The Y component is the same as in the above table.

U, V	Signal level (decimal)	Data (hexadecimal)
Highest (+)	127	0xFF
	126	0xFE
	•	•
	•	
	1	0x81
Lowest	0	0x80
	-1	0x7F
	-127	0x01
Highest (-)	-128	0x00

Figure 65: Data structure of YUV8; Source: IIDC V1.31

<Y(Mono16)>

Y component has 16-bit data. The data type is Unsigned Short (big-endian).

Y	Signal level (decimal)	Data (hexadecimal)
Highest	65535	0xFFFF
	65534	0xFFFE
	•	•
	•	•
	1	0x0001
Lowest	0	0×0000

Figure 66: Data structure of Y(Mono16); Source: IIDC V1.31

<Y(Mono12)>

Y component has 12-bit data. The data type is *unsigned*.

Y	Signal level (decimal)	Data (hexadecimal)
Highest	4095	0x0FFF
	4094	0x0FFE
	•	
	•	
	1	0x0001
Lowest	0	0x0000

Table 40: Data structure of Packed 12-Bit Mode (mono and raw) (Allied Vision)

Description of the data path

Block diagrams of the cameras

The following diagrams illustrate the data flow and the bit resolution of image data after being read from the CCD sensor chip in the camera. The individual blocks are described in more detail in the following paragraphs. For sensor data see Chapter Specifications on page 45.

Black and white cameras

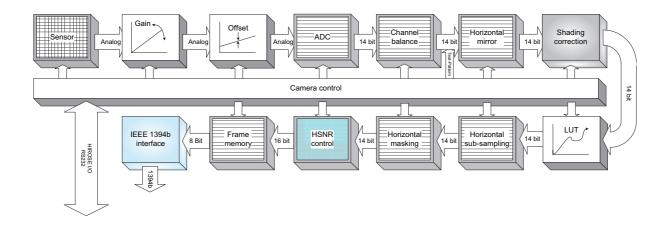


Figure 67: Block diagram b/w camera

Color cameras

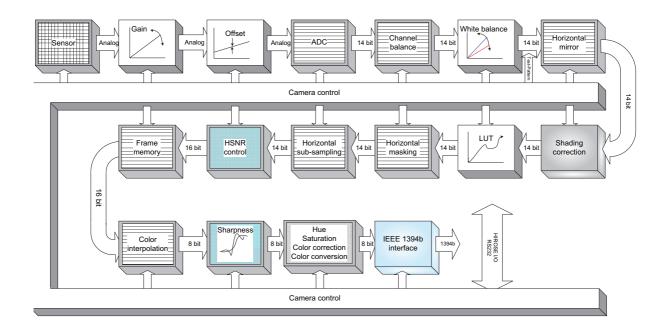


Figure 68: Block diagram color camera

Channel balance

All KODAK Pike sensors and the SONY sensor (of Pike F-505) are read out via two channels: the first channel for the left half of the image and the second channel for the right half of the image (divided by a central vertical line).

Pike F-1100 and Pike F-1600 can also be used in single-tap readout mode, to prevent channel balance related problems.

See Sensor digitization taps (Pike F-1100/1600 only) on page 348ff.

All KODAK equipped cameras come with a sensor-specific pre-adjusted channel balance.

However in some cases it may be advantageous to carry out a fine adjustment with the so-called channel balance.

To carry out a **gain adjustment** in an advanced register: see Table 174: Advanced register: Channel balance on page 340.

To carry out a **dual-tap offset adjustment** in an advanced register: see Table 175: Advanced register: Dual-tap offset adjustment on page 340

Note

Automatic adjustment of gain (and offset) is implemented in SmartView and is not available on register basis.

Channel adjustment with SmartView (>1.5)

Prerequisites:

- Test sheet with continuous b/w gradient
- Pike camera with defocused lens
- Pike color cameras set to RAW8 or RAW16 (debayering: none)
- In case of using AOI, be aware that the middle vertical line (+/- 20 pixel) is part of the AOI.

To carry out an adjustment in SmartView, perform the following steps:

1. In SmartView click **Extras** → **Adjust channels...** or use **Alt+Ctrl+A**.

The following window opens:

AFE channel adjustment	×
Channel adjustment	2047
Do one-push adjustment	Program

Figure 69: SmartView: channel adjustment (>1.5 up to 1.9.1)

Note

Program button is only available for Allied Vision factory.

- 2. To perform an automatic channel adjustment, click on **Do one-push** adjustment.
- 3. If the adjustment is not sufficient, repeat this step or adjust by clicking the arrow buttons.

The two channels are automatically adjusted. For the channel adjustment a region from +/-20 pixel around the middle vertical is taken into account.

before

after

Figure 70: Example of channel adjustment: Pike F-032B

Dual-tap offset adjustment with SmartView (1.10 or greater)

Prerequisites:

- Lens cap
- Test sheet with continuous b/w gradient
- Only following cameras: Pike F-032/Pike F-100/Pike F-210/Pike F-421/ Pike F-505/Pike F-1100/Pike F-1600
- Pike camera with defocused lens
- Pike color cameras set to RAW8 or RAW16 (debayering: none)
- In case of using AOI, be aware that the middle vertical line (+/- 20 pixel) is part of the AOI.
- First do offset adjustment, then do gain adjustment.

To carry out an adjustment (offset adjustment + gain adjustment) in SmartView, perform the following steps:

1. In SmartView click **Extras** → **Adjust channels...** or use **Alt+Ctrl+A**.

The following window opens:

AFE channel adjustment	×	
Gain adjustment	-296 🔷	
-2048	2047	
🗌 Gain auto adjustment	Program	
Offset adjustment	28	
-255	255	
Offset adjustment		
First step: for adjusting the offset balance, close the lens and set the gain slider to neutral position. Second step: for adjusting the gain balance, please select an image with an equalized vertical intensity distribution (all intensity values should be present)		

Figure 71: SmartView: channel adjustment (gain+offset) (1.10 and greater)

- 2. Put on lens cap.
- 3. Set gain adjustment slider and offset adjustment slider to 0.
- 4. Click several times **Offset adjustment** until the slider does not move any more.
- 5. Put off lens cap.
- 6. Take test sheet with vertical continuous b/w gradient, defocus lens and start image acquisition.
- 7. Activate Gain auto adjustment.

Now left and right channel should be adjusted for all grey values, so that vertical line is no more visible.

8. To save these settings in the user profiles: see Chapter User profiles on page 358ff. and Table 196: User profile: stored settings on page 360 (CHANNEL_ADJUST_CTRL, CHANNEL_ADJUST_VALUE, ADV_CHN_ADJ_OFF-SET, ADV_CHN_ADJ_OFFSET+1).

Note

Channel adjustment should be done in the same gain region as in your real application.

If you use a much greater gain in your application, it may be necessary to do the dual-tap offset adjustment again.

Dual-tap offset adjustment is done once in the Allied Vision factory and saved via **Program** button in User set 0.

The **Program** button is not available for the user.

White balance

There are two types of white balance:

- one-push white balance: white balance is done only once (not continuously)
- **auto white balance** (AWB): continuously optimizes the color characteristics of the image

Pike color cameras have both **one-push white balance** and **auto white balance**. White balance is applied so that non-colored image parts are displayed non-colored.

From the user's point, the white balance settings are made in register 80Ch of IIDC V1.31. This register is described in more detail below.

Register	Name	Field	Bit	Description
0xF0F0080C	DFOO8OC WHITE_BALANCE	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the Value field 1: Control with value in the Absolute value CSR If this bit=1, the value in the Value field will be ignored.
			[24]	Reserved
		One_Push	[5]	Write 1: begin to work (self-cleared after operation) Read: 1: in operation 0: not in operation If A_M_Mode = 1, this bit will be ignored.
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status 0: OFF 1: ON
		A_M_MODE	[7]	Write: set mode Read: read current mode 0: MANUAL 1: AUTO
		U/B_Value	[819]	U/B value This field is ignored when writing the value in Auto or OFF mode. If readout capability is not available, read- ing this field has no meaning.
		V/R_Value	[2031]	V/R Value
				This field is ignored when writing the value in Auto or OFF mode. If readout capability is not available, read- ing this field has no meaning.

Table 41: White balance register

The values in the **U/B_Value** field produce changes from green to blue; the **V/ R_Value** field from green to red as illustrated below.

Note

While lowering both U/B and V/R registers from 284 towards 0, the lower one of the two effectively controls the green gain.

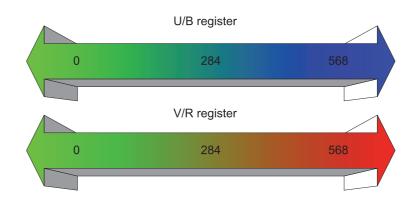


Figure 72: U/V slider range

Туре	Range	Range in dB
Pike color cameras	0 568	\pm 10 dB

Table 42: Manual range of U/B and V/R for the various Pike types

The increment length is ~0.0353 dB/step.

One-push white balance

Note

Configuration

To configure this feature in control and status register (CSR): See Table 41: White balance register on page 134.

The camera automatically generates frames, based on the current settings of all registers (GAIN, OFFSET, SHUTTER, etc.).

For white balance, in total **9** frames are processed. For the white balance algorithm the whole image or a subset of it is used. The R-G-B component values of the samples are added and are used as actual values for the **one-push white balance**.

This feature uses the assumption that the R-G-B component sums of the samples shall be equal; i.e., it assumes that the average of the sampled grid pixels is to be monochrome.

Note

The following ancillary conditions should be observed for successful white balance:

There are no stringent or special requirements on the image content, it requires only the presence of equally weighted RGB pixels in the image.

If the image capture is active (e.g. **IsoEnable** set in register 614h), the frames used by the camera for white balance are also output on the 1394 bus. Any previously active image capture is restarted after the completion of white balance.

The following flow diagram illustrates the **one-push white balance** sequence.

Figure 73: One-push white balance sequence

Finally, the calculated correction values can be read from the WHITE_BALANCE register 80Ch.

Auto white balance (AWB)

There is also an **auto white balance** feature available which continuously optimizes the color characteristics of the image.

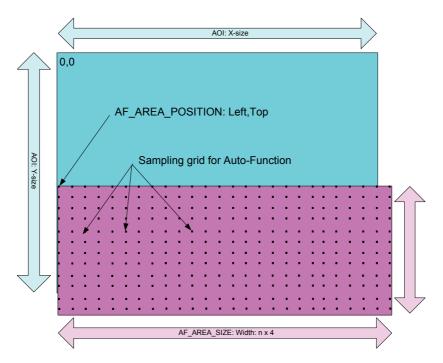
For the white balance algorithm the whole image or a subset of it is used.

Auto white balance can also be enabled by using an external trigger. However, if there is a pause of >10 seconds between capturing individual frames this process is aborted.

Note The following ancillary conditions should be observed for successful white balance:

- There are no stringent or special requirements on the image content, it requires only the presence of equally weighted RGB pixels in the image.
- Automatic white balance can be started both during active image capture and when the camera is in idle state.

Note



To set position and size of the control area (Auto_Function_AOI) in an advanced register: see Table 170: Advanced register: Autofunction AOI on page 337.

AUTOFNC_AOI affects the auto shutter, auto gain and auto white balance features and is independent of the Format7 AOI settings. If this feature is switched off the work area position and size will follow the current active image size.

Within this area, the R-G-B component values of the samples are added and used as actual values for the feedback.

The following drawing illustrates the AUTOFNC_AOI settings in greater detail.

Configuration

Figure 74: AUTOFNC_AOI positioning

Pike Technical Manual V5.2.0

The algorithm is based on the assumption that the R-G-B component sums of the samples are equal, i.e., it assumes that the mean of the sampled grid pixels is to be monochrome.

Auto shutter

In combination with auto white balance, Pike cameras are equipped with autoshutter feature.

When enabled, the auto shutter adjusts the shutter within the default shutter limits or within those set in advanced register F1000360h in order to reach the reference brightness set in auto exposure register.

Note

Target grey level parameter in **SmartView** corresponds to **Auto_exposure** register 0xF0F00804 (IIDC).

Increasing the auto exposure value increases the average brightness in the image and vice versa.

Increasing the auto exposure value increases the average brightness in the image and vice versa.

The applied algorithm uses a proportional plus integral controller (PI controller) to achieve minimum delay with zero overshot.

Register	Name	Field	Bit	Description
0xF0F0081C	SHUTTER	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the Value field 1: Control with value in the Absolute value CSR If this bit=1, the value in the Value field will be ignored.
			[24]	Reserved
		One_Push	[5]	Write 1: begin to work (self-cleared after opera- tion) Read: 1: in operation 0: not in operation If A_M_Mode = 1, this bit will be ignored.
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status O: OFF 1: ON
		A_M_MODE	[7]	Write: set mode Read: read current mode 0: MANUAL 1: AUTO
			[819]	Reserved
		Value	[2031]	Read/Write Value
				This field is ignored when writing the value in Auto or OFF mode. If readout capability is not available, reading this field has no meaning.

To configure this feature in control and status register (CSR):

Table 43: CSR: Shutter

Configuration

Note

To configure this feature in an advanced register: See Table 168: Advanced register: Auto shutter control on page 335.

Auto gain

All Pike cameras are equipped with auto gain feature.

Note

Configuration

To configure this feature in an advanced register: See Table 169: Advanced register: Auto gain control on page 336.

When enabled auto gain adjusts the gain within the default gain limits or within the limits set in advanced register F1000370h in order to reach the brightness set in auto exposure register as reference.

Increasing the auto exposure value (aka **target grey value**) increases the average brightness in the image and vice versa.

The applied algorithm uses a proportional plus integral controller (PI controller) to achieve minimum delay with zero overshot.

The following table shows both the gain and auto exposure CSR.

Register	Name	Field	Bit	Description
0xF0F00820	GAIN	Presence_Inq	[0]	Presence of this feature:
				0: N/A 1: Available
		Abs_Control	[1]	Absolute value control
				O: Control with value in the value field 1: Control with value in the absolute value CSR If this bit=1 the value in the value field has to be ignored.
			[24]	Reserved
		One_Push	[5]	Write: Set bit high to start Read: Status of the feature: Bit high: WIP Bit low: Ready
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status 0: OFF 1: ON
		A_M_MODE	[7]	Write: set mode Read: read current mode 0: MANUAL 1: AUTO
			[819]	Reserved
		Value	[2031]	Read/Write Value
				This field is ignored when writing the value in Auto or OFF mode.
				If readout capability is not available, reading this field has no meaning.

Table 44: CSR: Gain

Register	Name	Field	Bit	Description
0xF0F00804	AUTO_EXPOSURE	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the value field 1: Control with value in the absolute value CSR If this bit=1 the value in the value field has to be ignored.
			[24]	Reserved
		One_Push	[5]	Write: Set bit high to star Read: Status of the feature:
				Bit high: WIP
				Bit low: Ready
		ON_OFF	[6]	Write: ON or OFF this feature
				Read: read a status
				0: OFF 1: ON
		A_M_MODE	[7]	Write: set mode Read: read current mode
				0: MANUAL 1: AUTO
			[819]	Reserved
		Value	[2031]	Read/Write Value
				This field is ignored when writing the value in Auto or OFF mode.
				If readout capability is not available, reading this field has no meaning.

Table 45: CSR: Auto Exposure

To configure auto gain control in an advanced register: See Table 169: Advanced register: Auto gain control on page 336.

- Values can only be changed within the limits of gain CSR.
- Changes in auto exposure register only have an effect when auto gain is active.
- Auto exposure limits are 50..205. (SmartView→Ctrl1 tab: Target grey level)

Manual gain

Pike cameras are equipped with a gain setting, allowing the gain to be **manually** adjusted on the fly by means of a simple command register write.

The following ranges can be used when manually setting the gain for the analog video signal:

Туре	Range	Range in dB	Increment length
Pike color cameras	0 565	0 20 dB	$\sim 0.0252 dP/ctop$
Pike b/w cameras	1 630	0 22 dB	
Pike F-145B	0 900	0 32 dB	~0.0358 dB/step
Pike F-145C	0 900	0 32 dB	
Pike F-145B-15fps	0 900	0 32 dB	~0.0358 dB/step
Pike F-145C-15fps	0 900	0 32 dB	
Pike F-505B	0 670	0 24 dB	~0.0359 dB/step
Pike F-505C	0 670	0 24 dB	
Pike F-1100B	0 670	0 24 dB	~0.0359 dB/step
Pike F-1100C	0 670	0 24 dB	do.00009 db/ step
Pike F-1600B	0 670	0 24 dB	~0.0359 dB/step
Pike F-1600C	0 670	0 24 dB	0.0555 db/ step

Table 46: Manual gain range of the various Pike types

Note

- Setting the gain does not change the offset (black value)
 - A higher gain produces greater image noise. This reduces image quality. For this reason, try first to increase the brightness, using the aperture of the camera optics and/ or longer shutter settings.

Brightness (black level or offset)

It is possible to set the black level in the camera within the following ranges:

0 ... +16 gray values (@ 8 bit)

Increments @ 8 bit for Pike cameras:

Pike model	Increments [LSB]
F-032B/C	1/16
F-100B/C	1/16
F-145B/C	1/64
F-210B/C	1/16
F-421B/C	1/16
F-505B/C	1/64
F-1100B/C	1/64

Table 47: Increments for setting the black level

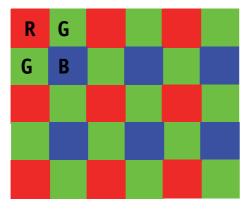
• Setting the gain does not change the offset (black value).

The IIDC register brightness at offset 800h is used for this purpose. The following table shows the BRIGHTNESS register.

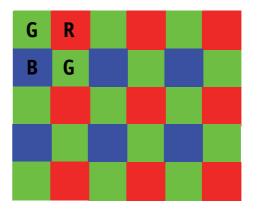
Register	Name	Field	Bit	Description
0×F0F00800	BRIGHTNESS	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the value field 1: Control with value in the absolute value CSR If this bit= 1 the value in the value field has to be ignored
			[24]	Reserved
		One_Push	[5]	Write: Set bit high to start Read: Status of the feature: Bit high: WIP Bit low: Ready
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status 0: OFF 1: ON
		A_M_MODE	[7]	Write: set mode Read: read current mode 0: MANUAL 1: AUTO
			[819]	Reserved
		Value	[2031]	Read/Write Value; this field is ignored when writing the value in Auto or OFF mode; if readout capability is not avail- able reading this field has no meaning

Table 48: CSR: Brightness

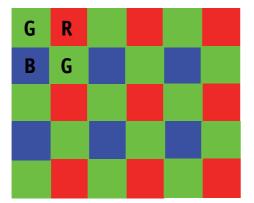
Horizontal mirror function

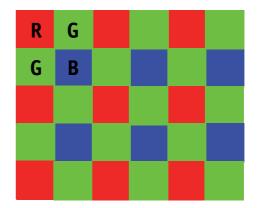

All Pike cameras are equipped with an electronic mirror function, which mirrors pixels from the left side of the image to the right side and vice versa. The mirror is centered to the actual **FOV** center and can be combined with all image manipulation functions, like **binning** and **shading**.

This function is especially useful when the camera is looking at objects with the help of a mirror or in certain microscopy applications.



Note	Configuration
()	To configure this feature in an advanced register: See Table 173: Advanced register: Mirror on page 339.
Note	The use of the mirror function with color cameras and image output in RAW format has implications on the BAYER-ordering
(i)	of the colors.




Mirror OFF: R-G-G-B for Pike F-145C and F-505C

Mirror ON: G-R-B-G Pike 145 C and Pike F-505C

Mirror OFF: G-R-B-G for all other Pikes

Mirror ON: R-G-G-B for all other Pikes

Figure 75: Mirror and Bayer order

Note During switchover one image may be temporarily corrupted.

Shading correction

Shading correction is used to compensate for non-homogeneities caused by lighting or optical characteristics within specified ranges.

To correct a frame, a multiplier from 1...2 is calculated for each pixel in 1/256 steps: this allows for shading to be compensated by up to 50%.

Besides generating shading data off-line and downloading it to the camera, the camera allows correction data to be generated automatically in the camera itself.

• Shading correction does not support the mirror function.

- If you use shading correction, don't change the mirror function.
- Due to binning and sub-sampling in the Format_7 modes read the following hints to build shading image in Format_7 modes.

Building shading image in Format_7 modes

- **horizontal** Binning/sub-sampling is always done after shading correction. Shading is always done on full horizontal resolution. Therefore shading image has always to be built in **full horizontal resolution**.
 - **vertical** Binning/sub-sampling is done in the sensor, before shading correction. Therefore shading image has to be built in the **correct vertical resolution**.

Build shading image always with the **full horizontal resolution** (0 x horizontal binning / 0 x horizontal sub-sampling), but with the **desired vertical binning/sub-sampling**.

First example

4 x horizontal binning, 2 x vertical binning ⇒ build shading image with 0 x horizontal binning and 2 x vertical binning

Second example

2 out of 16 horizontal sub-sampling, 2 out of 8 vertical sub-sampling ⇒ build shading image with 0 x horizontal binning and 2 out of 8 vertical subsampling

How to store shading image

There are two storing possibilities:

• After generating the shading image in the camera, it can be uploaded to the host computer for nonvolatile storage purposes.

• The shading image can be stored in the camera itself.

The following pictures describe the process of automatic generation of correction data (Pike F-032C). Surface plots and histograms were created using the **ImageJ** program.

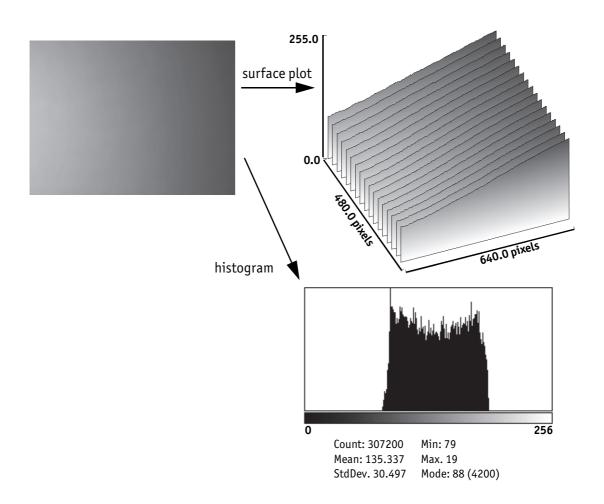


Figure 76: Shading correction: Source image with non-uniform illumination

- On the left you see the source image with non-uniform illumination.
- The surface plot on the right clearly shows a gradient of the brightness (0: brightest → 255: darkest pixels).
- The histogram shows a wide band of gray values.

By defocusing the lens, high-frequency image data is removed from the source image, therefore its not included in the shading image.

Automatic generation of correction data

Requirements

Shading correction compensates for non-homogeneities by giving all pixels the same gray value as the brightest pixel. This means that only the background must be visible and the brightest pixel has a gray value of less than 255 when automatic generation of shading data is started.

It may be necessary to use a neutral white reference, e.g. a piece of paper, instead of the real image.

Algorithm

After the start of automatic generation, the camera pulls in the number of frames set in the GRAB_COUNT register. Recommended values are 2, 4, 8, 16, 32, 64, 128 or 256. An arithmetic mean value is calculated from them (to reduce noise).

After this, a search is made for the brightest pixel in the mean value frame. The brightest pixel(s) remain unchanged. A factor is then calculated for each pixel to be multiplied by, giving it the gray value of the brightest pixel.

All of these multipliers are saved in a **shading reference image**. The time required for this process depends on the number of frames to be calculated and on the resolution of the image.

Correction alone can compensate for shading by up to 50% and relies on full resolution data to minimize the generation of missing codes.

How to proceed:

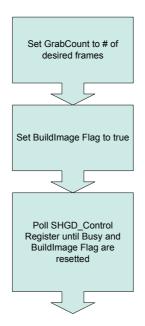


Figure 77: Automatic generation of a shading image

Pike Technical Manual V5.2.0

Note	
(

Note

Configuration and storing non-volatile

To configure this feature in an advanced register: See Table 163: Advanced register: Shading on page 330.

To store shading image data into **non-volatile memory**: See Chapter Non-volatile memory operations on page 331.

• The SHDG_CTRL register should not be queried at very short intervals. This is because each query delays the generation of the shading image. An optimal interval time is 500 ms.

Note

- The calculation of shading data is always carried out at the current resolution setting. If the AOI is later larger than the window in which correction data was calculated, none of the pixels lying outside are corrected.
- For Format_7 mode, it is advisable to generate the shading image in the largest displayable frame format. This ensures that any smaller AOIs are completely covered by the shading correction.
- The automatic generation of shading data can also be enabled when image capture is already running. The camera then pauses the running image capture for the time needed for generation and resumes after generation is completed.
- Shading correction can be combined with the image mirror and gamma functionality.
- Changing binning modes involves the generation of new shading reference images due to a change in the image size.

After the lens has been focused again the image below will be seen, but now with a considerably more uniform gradient.

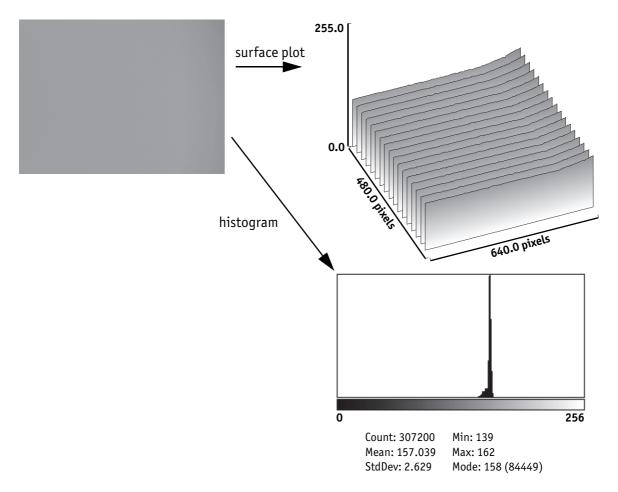


Figure 78: Example of shaded image

- On the left you see the image after shading correction.
- The surface plot on the right clearly shows nearly no more gradient of the brightness (0: brightest → 255: darkest pixels). The remaining gradient is related to the fact that the source image is lower than 50% on the right hand side.
- The histogram shows a peak with very few different gray values.

Loading a shading image out of the camera

GPDATA_BUFFER is used to load a shading image out of the camera. Because the size of a shading image is larger than GPDATA_BUFFER, input must be handled in several steps:

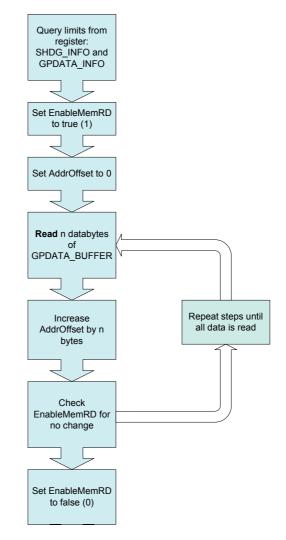


Figure 79: Uploading shading image to host

Configuration

- **(i)**
- To configure this feature in an advanced register: See Table 163: Advanced register: Shading on page 330.
- For information on GPDATA_BUFFER: See Chapter GPDATA_BUFFER on page 362.

Loading a shading image into the camera

GPDATA_BUFFER is used to load a shading image into the camera. Because the size of a shading image is larger than GPDATA_BUFFER, input must be handled in several steps (see also Chapter Reading or writing shading image from/into the camera on page 331):

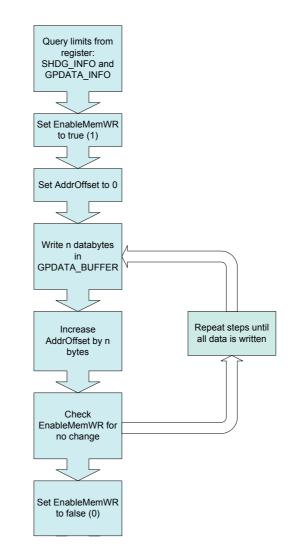


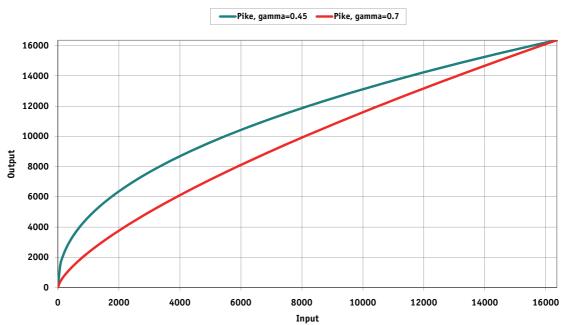
Figure 80: Loading the shading reference image

Look-up table (LUT) and gamma function

The Pike camera provides **sixteen (0-15)** user-defined look-up tables (LUT). The use of one LUT allows any function (in the form Output = F(Input)) to be stored in the camera's RAM and to be applied on the individual pixels of an image at run-time.

The address lines of the RAM are connected to the incoming digital data, these in turn point to the values of functions which are calculated offline, e.g. with a spreadsheet program.

This function needs to be loaded into the camera's RAM before use.


One example of using an LUT is the gamma LUT:

There are two gamma LUTs (gamma=0.7 and gamma=0.45)

 $Output = (Input)^{0.7}$ and $Output = (Input)^{0.45}$

These two gamma LUTs are used with all Pike models.

Gamma is known as compensation for the nonlinear brightness response of many displays e.g. CRT monitors. The look-up table converts the incoming **14 bit** from the digitizer to outgoing up to **14 bit**.

Output = f (Input)

Figure 81: LUTs with gamma=0.45, gamma=0.7

Note

- The input value is the **14-bit** value from the digitizer.
- The two gamma LUTs use LUT 14 and 15.
- Gamma 1 (gamma=0.7) switches on LUT 14, gamma 2 (gamma=0.45) switches on LUT 15. After overriding LUT 14 and 15 with a user defined content, gamma functionality is no longer available until the next full initialization of the camera.
- LUT content is volatile if you do not use the user profiles to save the LUT.

Loading an LUT into the camera

Loading the LUT is carried out through the data exchange buffer called GPDATA_BUFFER. As this buffer can hold a maximum of 2 kB, and a complete LUT at **16384 x 14 bit** is **28 kByte**, programming can not take place in a one block write step because the size of an LUT is larger than GPDATA_BUFFER. Therefore input must be handled in several steps. The flow diagram below shows the sequence required to load data into the camera.

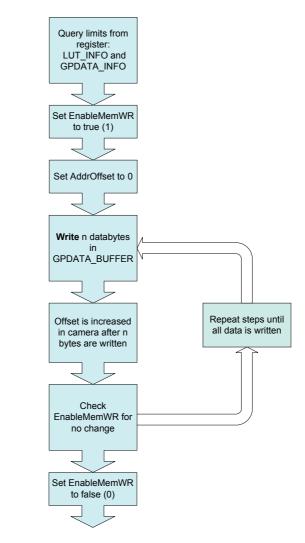


Figure 82: Loading an LUT

Note	
(i)

Configuration

- To configure this feature in an advanced register: See Table 162: Advanced register: LUT on page 327.
- For information on GPDATA_BUFFER: See Chapter GPDATA_BUFFER on page 362.

Defect pixel correction (Pike F-1100/1600 only)

Kodak sensors for Pike F-1100/1600 are delivered with standard class 2 sensors, which allow certain types of defect pixels according to the following KODAK definitions.

Defect pixel definitions for Pike F-1100

The following defect pixel definitions are according data sheet for KODAK KAI-11002.

Description	Definition	Class X	Class 0	Class 1	Class 2	Class 2
		Monochrome with microlens only	Monochrome with microlens only		Color only	Monochrome only
Major dark field defect pixel	Defect \geq 239 mV	100	100	100	200	200
Major bright field defect pixel	· · · · · · · · · · · · · · · · · · ·		100	100	200	200
Minor dark field defect pixel	Defect \geq 123 mV	1000	1000	1000	2000	2000
Cluster defect	A group of 2 to N contiguous major defect pixels, but no more than W adjacent defects horizontally.	0	1 N=10 W=3	20 N=10 W=3	20 N=10 W=3	20 N=12 W=5
Column defect	A group of more than 10 contiguous major defect pixels along a single column.	0	0	0	10	2

Table 49: Defect pixel definitions: Pike F-1100 (Kodak KAI-11002 sensors)

Defect pixel definitions for Pike F-1600

The following defect pixel definitions are according data sheet for KODAK KAI-16000.

Description	Definition	Class 1	Class 2	Class 2
			Monochrome only	Color only
Major dark field defect pixel	Defect \geq 245 mV	150	300	300
Major bright field defect pixel	$Defect \ge 15\%$	150	500	500
Minor dark field defect pixel	Defect \geq 126 mV	1500	3000	3000
Cluster defect	A group of 2 to N contiguous major	30	30	30
	defect pixels, but no	N=20	N=20	N=20
	more than W adjacent defects horizontally.	W=4	W=4	W=4
Column defect	A group of more than 10 contiguous major defect pixels along a single column.	0	4	15

Table 50: Defect pixel definitions: Pike F-1600 (Kodak KAI-16000 sensors)

Allied Vision factory default settings

For each Kodak 11 Megapixel and 16 Megapixel sensor, Kodak provides a defect pixel map according to their specifications, see Chapter Defect pixel definitions for Pike F-1100 on page 158 and Chapter Defect pixel definitions for Pike F-1600 on page 159.

The customer can see these defect pixel values via **SmartView**. It's recommended to make a backup of the factory default defect pixel map by saving this file via Smart view **before** adding some changes to the list, see Chapter Defect pixel editor in SmartView on page 161.

Allied Vision defect pixel map

Allied Vision has defined its own defect pixel list format. This results in the following advantages:

Advantages of the Allied Vision-own defect pixel map:

- You can specify partial columns instead of whole columns.
- You can use coordinates from final camera image: same as used e.g. in **SmartView**.
- You can use a CSV file format. Therefore also common spread-sheet applications like Microsoft Excel can be used as external editors.

Description of the data path

This is an example file of the Allied Vision-own defect pixel map format: Values are separated by semicolon:

X; Y; Height
3440;39;132
890;2157;1
891;2157;1
1724;752;1
1726;753;1
1724;753;1
1724;753;1
137;2486;1
2120;1384;1
14;38;1

X and Y coordinates show single defect pixel, if Height = 1.

X and Y coordinates show a column defect, if $\mathsf{Height} \geq 1$.

Number of lines starting at position (this is only true in Format_7 Mode_0 and with full AOI):

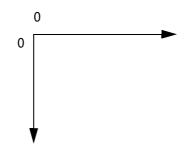


Figure 83: Coordinate system

Defect pixel editor in SmartView

With **SmartView** 1.13 or greater you can edit the defect pixels directly in the camera (**Adv 4** tab).

Info

We strongly recommend to make a backup of the factory default settings. Therefore save the defect pixel map (stored in the camera) into a csv file, before making any changes.

If you delete one or several pixels (or if you make any manipulations of the defect pixel list), you will loose the original defect pixel list.

Starting the camera or SmartView **does not** initiate the download of the defect pixel list.

To download the defect pixel data from the camera into SmartView defect pixel editor: open the defect pixel editor dialog (Adv4 tab, see screenshot below).

Pike F1600B [C 0, N 0] - AVT SmartView	X
Format Ctrl 1 Ctrl 2 Trig/IO LUT/Shdg. Adv 1 Adv 2 Adv 3 Adv 4	
Defect pixel correction	
Defect pixel correction on	
Edit sensor defects	
Hide 🔽 Don't auto hide 🕨 🍉 🔛	_

Figure 84: SmartView: Adv 4 tab: Defect pixel correction

Features:

- Upload from **SmartView** to the camera.
- Download from the camera to **SmartView**.

- Activate/Deactivate defect pixel correction (factory default setting: activated on startup of **SmartView**)
- Save/load of Allied Vision-own defect pixel map for external use
- Displaying current defect pixels of the camera
- Add/remove defect pixels

With an upload to and download from the camera you can manipulate the defect data stored in the camera. Additionally you can activate and deactivate defect pixel correction entirely.

Section	Check box / button/ combo box/ list / slider	Description
Defect pixel correction	Defect pixel correction on	Activate check box for applying defect pixel correction.
		Note: This check box is not activated on SmartView startup in general.
		Activation of DPC is factory default for the camera. Setting of the check box is only dependant on current setting in the camera, but not on startup of SmartView.
	Edit sensor defects	Loads current defect pixel data into the cam- era and opens the Defect pixel editor in SmartView .

Table 51: SmartView Edit settings: Adv 4 tab (Defect pixel correction)

Editor	Check box / buttons	Description
Edit defect pixels		
	Edits	ensor defects
	Defe	ect type X Y Height
	Save	file Load file Add defect Remove Clear
		pload Cancel
	Save file	Saves defect pixel data in a CSV file (Allied Vision -own
	Save me	defect pixel file).
	Load file	An Open dialog opens.
		Choose the following file type:
		• Allied Vision defect files (*.csv) [defect values are
		loaded into the Edit sensor defects dialog]
	Add defect	Here you can add more defect pixels manually. For a single defect pixel enter X and Y value.
		For a column enter X value only (whole column defect) or
	Remove	X and Y value and height (partial column defect).
	Kelliove	Mark one or more defect pixels and click Remove to delete defect pixels.
	Clear	Deletes all defect pixels from the editor.
	Upload	Changed defect pixel data are loaded into the camera. If you clicked Clear , the defect pixel map in the camera is
		deleted.
		Info We strongly recommend to save the
		defect pixel map (stored in the camera)
		• into a csv file, before uploading data.
	Cancel	Cancels all actions done in the editor.

Table 52: SmartView Edit settings: **Adv 4** tab (Defect pixel correction editor)

Defect Pixel editor: more details

Some reasons why you should use the editor:

- Depending on the environment conditions where the camera is used, it may happen that more defect pixels will occur. This depends on the operation time of the camera/sensor. In that case you are able to add new identified defect pixels to the list.
- The Kodak defect pixel file, used as the factory setting, lists the whole column as a defect column, although there may be only 10 or more defect pixels in this column. In this case you can define the real defect pixels.

To edit defect pixels in **Edit sensor defects** dialog manually:

1. Double-click defect pixel value or click Add defect.

Add defect dialog opens.

窗 Add se	ensor defect	$\overline{\mathbf{X}}$
Sensor ar	ea: 0/0 to 4871/3247 (S	ize: 4872/3248)
X 0		
Y O	Height 1	End Y 0
ОК		Cancel

Figure 85: Add defect dialog

 For a single defect pixel: Enter X and Y coordinates.
 For adjacent defect pixels in a column: Enter X and Y for starting point and End Y for the last of the adjacent defect pixels in this column. The height will be calculated automatically.

The defect pixels are stored non-volatile in the camera, when you click **Upload** in the **Edit sensor defects** dialog.

Where is the defect pixel correction done?

Defect pixel correction is done in the FPGA.

Note

Configuration

• To configure this feature in an advanced register: See Chapter Defect pixel correction on page 356

Binning (only Pike b/w models)

2 x / 4 x / 8 x binning

Definition Binning is the process of combining neighboring pixels while being read out from the CCD chip.

• Only **Pike b/w cameras** have this feature.

Binning does not change offset, brightness or blacklevel.

Binning is used primarily for 3 reasons:

- A reduction in the number of pixels; thus, the amount of data while retaining the original image area angle
- An increase in the frame rate (vertical binning only)
- A brighter image, resulting in an improvement in the signal-to-noise ratio of the image (depending on the acquisition conditions)

Signal-to-noise ratio (SNR) and **signal-to-noise separation** specify the quality of a signal with regard to its reproduction of intensities. The value signifies how high the ratio of noise is in regard to the maximum achievable signal intensity.

The higher this value, the better the signal quality. The unit of measurement used is generally known as the decibel (dB), a logarithmic power level. 6 dB is the signal level at approximately a factor of 2.

However, the advantages of increasing signal quality are accompanied by a reduction in resolution.

Only Format_7 Binning is possible only in video Format_7. The type of binning used depends on the video mode.

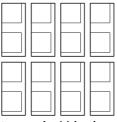
Note

Changing binning modes involves the generation of new shading reference images due to a change in the image size.

Types In general, we distinguish between the following types of binning (H=horizontal, V=vertical):

- 2 x H-binning
- 2 x V-binning
- 4 x H-binning
- 4 x V-binning
- 8 x H-binning
- 8 x V-binning

and the full binning modes:


- 2 x full binning (a combination of 2 x H-binning and 2 x V-binning)
- 4 x full binning (a combination of 4 x H-binning and 4 x V-binning)
- 8 x full binning (a combination of 8 x H-binning and 8 x V-binning)

Vertical binning

Vertical binning increases the light sensitivity of the camera by a factor of two (4 or 8) by adding together the values of two (4 or 8) adjoining vertical pixels output as a single pixel. This is done directly in the horizontal shift register of the sensor.

Format_7 Mode_2 By default and without further remapping use Format_7 Mode_2 for 2 x vertical binning.

This reduces vertical resolution, depending on the model.

2 x vertical binning

4 x vertical binning

Figure 86: 2 x vertical binning and 4 x vertical binning

Description of the data path

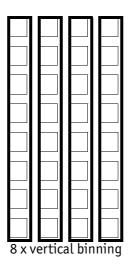


Figure 87: 8 x vertical binning

Note	Vertical resolution is reduced, but signal-to noise ratio (SNR) is increased by about 3, 6 or 9 dB (2 x, 4 x or 8 x binning).
Note	If vertical binning is activated the image may appear to be over-exposed and may require correction.
Note	The image appears vertically compressed in this mode and no longer exhibits a true aspect ratio.

Horizontal binning

In horizontal binning adjacent horizontal pixels in a line are combined digitally in the FPGA of the camera without accumulating the black level:

2 x horizontal binning: 2 pixel signals from 2 horizontal neighboring pixels are combined.

4 x horizontal binning: 4 pixel signals from 4 horizontal neighboring pixels are combined.

8 x horizontal binning: 8 pixel signals from 8 horizontal neighboring pixels are combined.

Light sensitivity This means that in horizontal binning the **light sensitivity** of the camera is also increased by a factor of two (**6 dB**), 4 (**12 dB**) or 8 (**18 dB**). Signal-to-noise separation improves by approx. 3, 6 or 9 dB.

Horizontal resolution Horizontal resolution is lowered, depending on the model.

Format_7 Mode_1 By default and without further remapping use **Format_7 Mode_1** for 2 x horizontal binning.

2	x horizont	al binni	ng

4 x horizontal binning

Figure 88: 2 x horizontal binning and 4 x horizontal binning

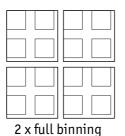
8 x horizontal hinning	

8 x horizontal binning

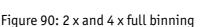
Figure 89: 8 x horizontal binning

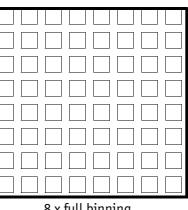
Note

The image appears **horizontally** compressed in this mode and does no longer show true aspect ratio.


If **horizontal binning** is activated the image may appear to be over-exposed and must eventually be corrected.

2 x full binning/4 x full binning/8 x full binning


If horizontal and vertical binning are combined, every 4 (16 or 64) pixels are consolidated into a single pixel. At first two (4 or 8) vertical pixels are put together and then combined horizontally.


This increases light sensitivity by a total of a factor of 4 (16 or 64) and at the same time signal-to-noise separation is improved by about 6 (12 or 18) dB. Resolution is reduced, depending on the model.

By default and without further remapping use **Format_7 Mode_3** for 2 x full binning.

4 x full binning			

8 x full binning

Figure 91: 8 x full binning

Sub-sampling (Pike b/w and color)

What is sub-sampling?

Definition Sub-sampling is the process of skipping neighboring pixels (with the same color) while being read out from the CCD chip.

Which Pike models have sub-sampling?

All Pike models, both color and b/w, have this feature.

Description of sub-sampling

Sub-sampling is used primarily for the following reason:

• A reduction in the number of pixels and thus the amount of data while retaining the original image area angle and image brightness

Similar to binning mode the cameras support horizontal, vertical and h+v sub-sampling mode.

Format_7 Mode_4

By default and without further remapping use Format_7 Mode_4 for

- b/w cameras: 2 out of 4 horizontal sub-sampling
- color cameras: 2 out of 4 horizontal sub-sampling

The different sub-sampling patterns are shown below.

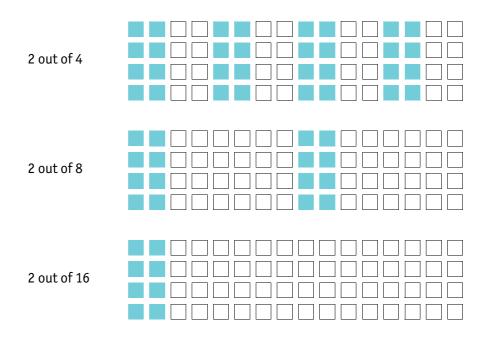
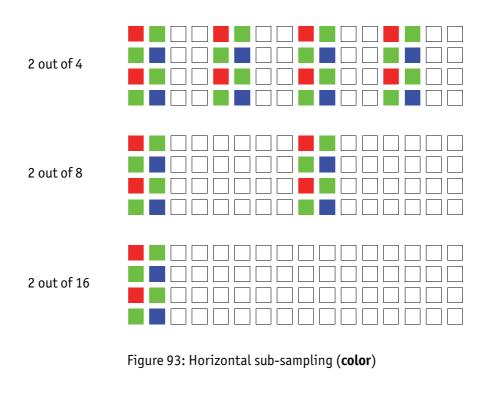



Figure 92: Horizontal sub-sampling (**b/w**)

The image appears **horizontally compressed** in this mode and no longer exhibits a true aspect ratio.

Format_7 Mode_5 By default and without further remapping use Format_7 Mode_5 for

- **b/w** cameras: 2 out of 4 vertical sub-sampling
- color cameras: 2 out of 4 vertical sub-sampling

The different sub-sampling patterns are shown below.



Figure 94: Vertical sub-sampling (**b/w**)

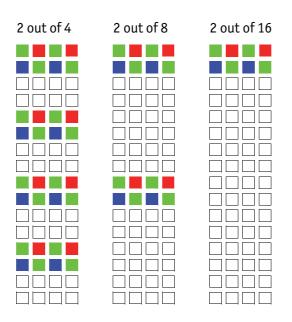
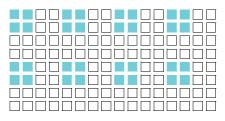
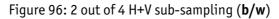


Figure 95: Vertical sub-sampling (color)

Note


The image appears vertically compressed in this mode and no longer exhibits a true aspect ratio.



Format_7 Mode_6 By default and without further remapping use Format_7 Mode_6 for 2 out of 4 H+V sub-sampling

The different sub-sampling patterns are shown below.

2 out of 4 H+V sub-sampling

2 out of 8 H+V sub-sampling

Figure 97: 2 out of 8 H+V sub-sampling (**b/w**)

2 out of 16 H+V sub-sampling

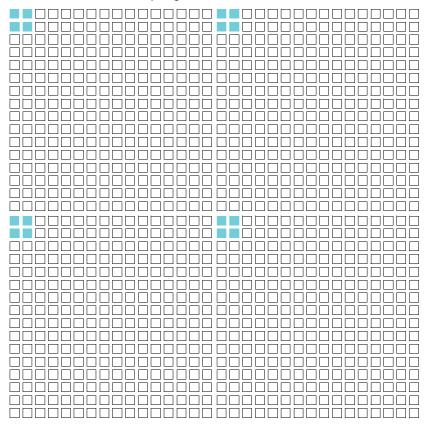
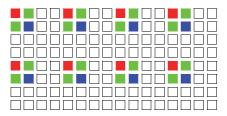
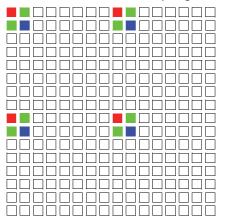
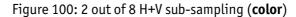


Figure 98: 2 out of 16 H+V sub-sampling (b/w)

2 out of 4 H+V sub-sampling


Figure 99: 2 out of 4 H+V sub-sampling (color)

Description of the data path

2 out of 8 H+V sub-sampling

2 out of 16 H+V sub-sampling

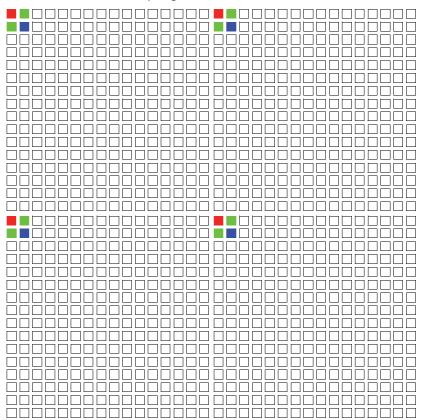


Figure 101: 2 out of 16 H+V sub-sampling (color)

Note

Changing sub-sampling modes involves the generation of new shading reference images due to a change in the image size.

Binning and sub-sampling access

The binning and sub-sampling modes described in the last two chapters are only available as pure binning or pure sub-sampling modes. A combination of both is not possible.

As you can see there is a vast amount of possible combinations. But the number of available Format_7 modes is limited and lower than the possible combinations.

Thus access to the binning and sub-sampling modes is implemented in the following way:

- Format_7 Mode_0 is fixed and can not be changed
- A maximum of 7 individual Allied Vision modes can be mapped to Format_7 Mode_1 to Mode_7 (see Figure 102: Mapping of possible Format_7 modes to F7M1...F7M7 on page 178)
- Mappings can be stored via register (see Chapter Format_7 mode mapping on page 349) and are uploaded automatically into the camera on camera reset.
- The **default settings** (per factory) in the Format_7 modes are listed in the following table

Format_7	Pike monochrome cameras Format_7	Pike color cameras Format_7
Mode_0	full resolution, no binning, no sub-sampling	full resolution, no sub-sampling
Mode_1	2 x horizontal binning	
Mode_2	2 x vertical binning	
Mode_3	2 x full binning	
Mode_4	2 out of 4 horizontal sub-sampling	2 out of 4 horizontal sub-sampling
Mode_5	2 out of 4 vertical sub-sampling	2 out of 4 vertical sub-sampling
Mode_6	2 out of 4 full sub-sampling	2 out of 4 full sub-sampling

Table 53: Default Format_7 binning and sub-sampling modes (per factory)

Note

- A **combination** of binning and sub-sampling modes is **not possible**.
- Use either pure binning or pure sub-sampling modes.
- The Format_ID numbers 0...31 in the binning / sub-sampling list do **not** correspond to any of the Format_7 modes.

7 modes		Forma	nt_ID (see p349) Allie	ed Vision modes	
ccording to IIDC 1394	1	0	0 x horizontal		
F7M0 (no change)		1	2 x horizontal	0 x vertical	
		2	4 x horizontal		eras
F7M1		3	8 x horizontal		ame
F7M2		4	0 x horizontal	2 x vertical	(only b/w cameras)
F7MZ		5	2 x horizontal		d VI
F7M3		6	4 x horizontal	_ // • • • • • • • •	lo)
	mapping of each of 32 modes	7	8 x horizontal		
F7M4	to F7M1F7M7	8	0 x horizontal	- 4 x vertical	D
F7M5	possible	9	2 x horizontal		F
	-	10	4 x horizontal		
F7M6		11	8 x horizontal		2
		12	0 x horizontal	8 x vertical	-
F7M7		13	2 x horizontal		b i
		14	4 x horizontal		
		15	8 x horizontal		
		16			
		17	2 out of 4 horizontal	2 out of 2 vertical	
		18	2 out of 8 horizontal		(M /
		19	2 out of 16 horizontal		q pu
		20	2 out of 2 horizontal		(color and b/w)
		21	2 out of 4 horizontal	2 out of 4 vertical	(col
		22	2 out of 8 horizontal	_	ס
		23	2 out of 16 horizontal		Ľ
		24 2 out of 2 horizontal		-	
		25	2 out of 4 horizontal	2 out of 8 vertical	р ц
		26	2 out of 8 horizontal		g
	\ \	27	2 out of 16 horizontal		s S
	28	2 out of 2 horizontal		q	
	\ \	29	2 out of 4 horizontal	2 out of 16 vertical	n s
	\ \	30	2 out of 8 horizontal		
		31	2 out of 16 horizontal		

Figure 102: Mapping of possible Format_7 modes to F7M1...F7M7

Configuration

To configure this feature in an advanced register: See Table 185: Advanced register: Format_7 mode mapping on page 349.

Quick parameter change timing modes

Why new timing modes?

Former timing of the Pike cameras showed the same behavior as Marlin cameras:

- Frame rate or transfer rate is always constant (precondition: shutter < transfer time)
- The delay from shutter update until the change takes place: up to 3 frames. Figure 103: Former standard timing on page 179 demonstrates this behavior. It shows that the camera receives a shutter update command while the sensor is currently integrating (Sync is low) with shutter setting 400. The camera continues to integrate and this image is output with the next FVal. The shutter change command becomes effective with the next falling edge of sync and finally the image taken with shutter 200 is output with a considerable delay.
- Parameters that are sent to the camera faster than the max. frame rate per second are stored in a FIFO and are activated in consecutive images.

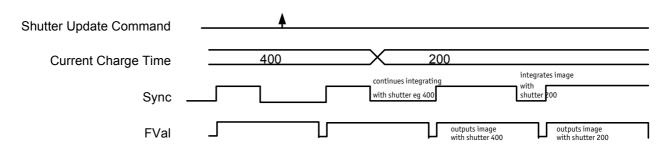


Figure 103: Former standard timing

Principally a Pike camera is not able to recognize how many parameter the user will change. Due to the fact that communication between host and camera is asynchronous, it may happen that one part of parameter changes is done in image n+1 and the other part is done in image n+2.

To optimize the transfer of parameter changes there is a new timing mode called **Quick Format Change Mode**, which effectively resets the current shutter.

Therefore you can choose between the following update timing modes:

• **Standard Parameter Update Timing** (slightly modified from previous Pike cameras)

• New: Quick Format Change Mode

In the following you find a short description of both timing modes:

Standard Parameter Update Timing

The **Standard Parameter Update Timing** keeps the frame rate constant and does not create any gaps between two image transfers via bus (precondition: exposure (shutter) time must be smaller than transfer time).

- Frame rate / transfer rate is always constant (if shutter time < transfer time)
- Delay from shutter update until change takes place is always 2 frames (delay from update command reception by FPGA and not by microcontroller)
- Parameters sent to the camera faster than max. frame rate are no longer stored in a FIFO. The last sent parameter will be activated for the next image. All others will be dropped. This ensures that the last image is shot with the last shutter setting.

New: Quick Format Change Mode (QFCM)

The **Quick Format Change Mode** creates gaps between two images. Current exposure is interrupted and the new exposure is started immediately with new parameters if during exposure (integration/shutter) an new shutter command is received.

- Frame rate / transfer rate can be *interrupted*. This is shown in the diagram below whenever FVal goes low after a reception of a new shutter command while Sync was low.
- Shutter will be interrupted, if the update command is received while camera integrates
- Delay from shutter update until change takes place is always 1 frame (the delay is calculated from update command reception by FPGA and not by microcontroller)

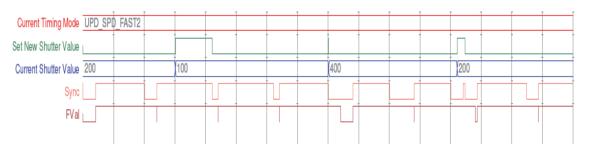


Figure 104: Quick Format Change Mode

How to transfer parameters to the camera

The following 3 variants of transferring the parameters are available with the firmware 3.x:

Transfer mode	Advantage 😊	Disadvantage 😕		
Encapsulated Update (begin/ end)	easy to use (standard quad writes in camera register is possible)	☺ one write access per register access		
Parameter-List Update	Only one write access for all parameters	 not so easy to use (block writes) 		
	© fastest host→camera transfer (from 5 parameters on faster than encapsulated mode)	⊗ max. 64 entries for parameter list		
	In handling of parameter list easy			
Standard Update (IIDC)	© compliant with IIDC V1.31	⊗ non deterministic change of parameters		

Table 54: Comparison of 3 transfer modes

In the following you find a short description of each variant:

Encapsulated Update (begin/end)

The Encapsulated Update (begin/end) has the following characteristics:

- Host will set a parameter update begin flag in the camera (UpdActive Field in Register 0xF1000570, see Table 180: Advanced register: Update timing modes on page 345)
- Host will send several parameters to the camera and then signalize end by resetting the flag
- All parameters will become active for the same next image
- Dependent on timing mode, the camera
 - (standard Update): uses the previous parameters until the update flag (UpdActive Field in Register 0xF1000570) is reset
 - (**Quick Format Change Mode**): Camera stops and waits until the update flag (UpdActive Field in Register 0xF1000570) is reset.

In the **Encapsulated Update (begin/end)** the exact sequence is:

- 1. Parameter update begin (advanced feature register)
- 2. Standard IIDC register update (1..N register) (standard feature register)
- 3. Parameter update end (advanced feature register)

Camera timing behavior is like this:

Fast Parameter Update Timing	Quick Format Change Mode
After the parameter update stop command all changed parameters are valid for the available next image. Frame rate is constant.	After the parameter update start command a cur- rent transfer is interrupted. A started exposure will be interrupted until the next parameter update stop command. Exposure of the next image with new parameters is started. There may be a gap between two succeeding images but images are always transmitted compeletely.

Table 55: Encapsulated Update (begin/end): comparison of standard timing and fast timing 2

If after end of time-out (10 seconds after **Quick Format Change Mode**) no **parameter update end** is sent, all changes will become valid.

A new write event of **parameter update begin** starts time-out again.

Parameter-List Update

In the **Parameter-List Update** mode a complete list with IIDC addresses and values of up to 64 parameters is sent to the camera.

- Host sends a list with parameters to the camera (advanced feature space)
- Microcontroller processes that list
- All parameters will become active for the same image
- Dependent on timing mode, the camera will:
 - **Standard Format Change Mode:** use the previous parameters until the new parameter set is copied to the FPGA
 - Quick Format Change Mode (QFCM): waits until all parameters have been copied to the FPGA and may interrupt an already started integration for a new integration with the new settings

Example of parameter list:

Address	Value
0xF0F0081C	0x80000100
0xF0F00820	0x800000ac
0xF0F00818	0x82000001

Table 56: Example of parameter list

The exact sequence is:

Block-write (this needs to be a functionality of the underlying software stack (e.g. **FirePackage**). It may not be available for third party IIDC software stacks.) of list to advanced feature address

Camera timing behavior is like this:

Fast Parameter Update Timing	Quick Format Change Mode (QFCM)
After block write command is processed in the camera all changed parameters are valid for the available next image. Frame rate is constant.	After transfer of the parameter list via block write a current transfer will be finished. A started exposure will be interrupted until the microcontroller has processed the list and copied it into the FPGA. Exposure of the next image with new parameters is started. There may be a gap between two images.

Table 57: Parameter-List Update: comparison of standard timing and QFCM

Standard Update (IIDC)

In the **Standard Update (IIDC)** mode single parameter are sent to the camera.

- **Standard Update (IIDC)** shows same behavior as Marlin
- Parameter will be sent from host to camera and will be activated as soon as possible without interruption of the transfer
- If the host updates more than one parameter (without block write) the parameters may become active in different images
- **Standard Update (IIDC)** can be combined with the new parameter update timing modes

Camera timing behavior is like this:

Fast Parameter Update Timing	Quick Format Change Mode (QFCM)	
After sending a new parameter value, the changed parameter value is valid for the available next image. Frame rate is constant.	After sending a new parameter value, the changed parameter value is valid for the available next image.	
	A running exposure will be interrupted and the image is dropped.	
	There may be a gap between two consecutive image transfers.	

Table 58: Standard Update (IIDC): comparison of Standard Format Change Mode and QFCM

Packed 12-Bit Mode

All Pike cameras have the so-called **Packed 12-Bit Mode**. This means: two 12-bit pixel values are packed into 3 bytes instead of 4 bytes.

B/w cameras	Color cameras		
Packed 12-Bit MONO camera mode	Packed 12-Bit RAW camera mode		
SmartView: MON012	SmartView: RAW12		
Mono and raw mode have the same implementation.			

Table 59: Packed 12-Bit Mode

Note

For data block packet format see Table 39: Packed 12-Bit Mode (mono and raw) Y12 format (Allied Vision) on page 125.

For data structure see Table 40: Data structure of Packed 12-Bit Mode (mono and raw) (Allied Vision) on page 127.

The color codings are implemented via Vendor Unique Color_Coding according to IIDC V1.31: COLOR_CODING_INQ @ 024h...033h, IDs=128-255)

See Table 151: Format_7 control and status register on page 313.

Mode	Color_Coding	ID
Packed 12-Bit MONO	ECCID_MON012	ID=132
Packed 12-Bit RAW	ECCID_RAW12	ID=136

Table 60: Packed 12-Bit Mode: color coding

High SNR mode (High Signal Noise Ratio)

Note

To configure this feature in an advanced register: See Table 177: Advanced register: High Signal Noise Ratio (HSNR) on page 342.

In this mode the camera grabs and averages a set number of images and outputs one image with the same bit depth and the same brightness. This means that the camera will output an 8-bit averaged image when an 8-bit image format is selected (although the internal calculations are done with 14 bit).

Because of the fact that normally uncorrelated (photon-, amplifier-) noise dominates over correlated noise (fixed pattern noise), adding two images will double (6 dB) the gray levels but only increase the noise levels by $\sqrt{2}$ (3 dB).

This enhances both the dynamic range as well as the signal-to-noise ratio.

Consequently adding 256 8-bit images will lead to a potential signal-to-noise enhancement of 24 dB or a resulting bit depth of 16 bit.

- The camera must be idle to toggle this feature on/off. Idle means: no image acquisition, no trigger.
- Set grab count and activation of HighSNR in one single write access.

Note

- The averaged image is output at a lower frame rate roughly equivalent to fps_old/N, where N is the number of images averaged. In fact, due to camera internal conditions, and according to which format and mode settings are in use, it can vary slightly to be closer sometimes to 1/ ((N/fps_old) + T_shutter). It's impractical to express in a formula or tables, across all camera models and modes. But these notes should be sufficient to help each user determine that the camera behaves as described.
- The potential SNR enhancement may be lower when using more than 8-bit original bit depth.
- Select 16-bit image format in order to take advantage of the full potential SNR and DNR (DyNamic Range) enhancements.
- For 8-bit video modes, the internal HSNR calculations are done with 14 bit.

Frame memory and deferred image transport

An image is normally captured and transported in consecutive steps. The image is taken, read out from the sensor, digitized and sent over the 1394 bus.

Deferred image transport

As all Pike cameras are equipped with built-in image memory, this order of events can be paused or delayed by using the **deferred image transport** feature.

Pike cameras are equipped with 64 MB of RAM (Pike F-1100/1600: 256 MB). The table below shows how many frames can be stored by each model. The memory operates according to the FIFO (first in, first out) principle. This makes addressing for individual images unnecessary.

Model	Memory size	
Pike F-032B/C	105 frames	
Pike F-032B/C fiber	105 frames	
Pike F-100B/C	32 frames	
Pike F-100B/C fiber	JE mames	
Pike F-145B/C	22 frames	
Pike F-145B/C fiber		
Pike F-145B/C-15fps	22 frames	
Pike F-145B/C fiber-15fps	EE fruines	
Pike F-210B/C	15 frames	
Pike F-210B/C fiber	15 maines	
Pike F-421B/C	6 frames	
Pike F-421B/C fiber		
Pike F-505B/C	5 frames	
Pike F-505B/C fiber		
Pike F-1100B/C	11 frames	
Pike F-1100B/C fiber		
Pike F-1600B/C	7 frames	
Pike F-1600B/C fiber	/ frames	

Table 61: FIFO memory size

Deferred image transport is especially useful for multi-camera applications:

Assuming several cameras acquire images concurrently. These are stored in the built-in image memory of every camera. Until this memory is full, the limiting factor of available bus bandwidth, DMA- or ISO-channel is overcome.

Image transfer is controlled from the host computer by addressing individual cameras one after the other and reading out the desired number of images.

Note Configuration

To configure this feature in an advanced register: See Table 165: Advanced register: Deferred image transport on page 333.

HoldImg mode

By setting the **HoldImg** flag, transport of the image over the 1394 bus is stopped completely. All captured images are stored in the internal **ImageFiFo**. The camera reports the maximum possible number of images in the **FiFoSize** variable.

- Pay attention to the maximum number of images that can be stored in **FiFo**. If you capture more images than the number in **FiFoSize**, the oldest images are overwritten.
- The extra **SendImage** flag is set to **true** to import the images from the camera. The camera sends the number of images set in the **NumOfImages** parameter.
- If **NumOfImages** is **O**, all images stored in FIFO will be sent.
- If **NumOfImages** is not **O**, the corresponding number of images will be sent.
- If the **HoldImg** field is set to **false**, all images in **ImageFIFO** will be deleted. No images will be sent.
- The last image in the FiFo will be corrupted, when simultaneously used as input buffer while being read out. In this case read out one image less than max. buffer size.
- **NumOfImages** is incremented after an image was read out of the sensor and therefore stored into the onboard image FIFO.
- **NumOfImages** is decremented after the last isochronous packet of an image was handed over to the IEEE1394 chipset of the camera.

The following screenshot shows the sequence of commands needed to work with deferred mode.

Pi	Pike F032C (C0, N0) - Direct access 🛛 🛛 🛛						
	Regist	er:	ADV_DEFERR	REDTRANS			
	Addre	ss:	F1000260	Read			
	Data:	[82006900	Write			
	#	rw	Address	Value			
	10	rd	F1000260	82006900			
	9	wr	F1000260	82006901			
	8	rd	F1000260	82006901			
	7	wr	F1000260	82006901			
	6	rd	F1000260	82006902			
	5	wr	F0F0061C	82000000			
	4	wr	F0F0061C	82000000			
	3	wr	F1000260	82006900			
	2	rd	F1000260	80006900			
	1	wr	F0F00614	00000000			

Figure 105: Example: Controlling deferred mode (SmartView - Direct Access; Pike F-032C)

#	rw	Address	Value	Description
10	rd	F1000260	82006900h	Check how many images are left in FiFo
9	wr	F1000260	86006901h	Read out the second image of FiFo
8	rd	F1000260	82006901h	Check how many images are left in FiFo
7	wr	F1000260	86006901h	Read out the first image of FiFo
6	rd	F1000260	82006902h	Check that two images are in FiFo
5	wr	F0F0061C	82000000h	Do second one-shot
4	wr	F0F0061C	82000000h	Do first one-shot
3	wr	F1000260	82006900h	Switch deferred mode on
2	rd	F1000260	80006900h	Check pres. of deferred mode and FiFo size (69h $ ightarrow$ 105 frames)
1	wr	F0F00614	00000000h	Stop continuous mode of camera

For a description of the commands see the following table:

Table 62: Example: Controlling deferred mode (SmartView - Direct Access; Pike F-032C)

FastCapture mode

This mode can be activated only in Format_7.

Note

By setting FastCapture to false, the maximum frame rate both for image acquisition and read out is associated with the packet size set in the BYTE_PER_PACKET register. The lower this value is, the lower the attainable frame rate is.

By setting **FastCapture** to **true**, all images are recorded at the highest possible frame rate, i.e. the setting above does not affect the frame rate for the image intake but only the read out. The speed of the image transport over the 1394 bus can be defined via the BytesPerPacket register. This mode is ideal for applications where a burst of images need to be recorded at the highest sensor speed but the output can be at a lower frame frequency to save bandwidth.

Similar to the HoldImg mode, captured images will be stored in the internal image FIFO, if the transport over the 1394 bus is slower than images are captured.

Color interpolation (BAYER demosaicing)

The color sensors capture the color information via so-called primary color (R-G-B) filters placed over the individual pixels in a **BAYER mosaic** layout. An effective BAYER \rightarrow RGB color interpolation already takes place in all Pike color version cameras.

In color interpolation a red, green or blue value is determined for each pixel. An Allied Vision proprietary BAYER demosaicing algorithm is used for this interpolation (max. 3x3), optimized for both sharpness of contours as well as reduction of false edge coloring.

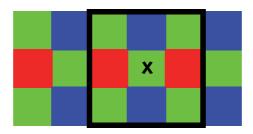


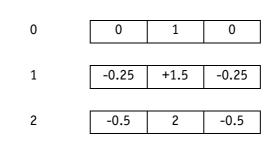
Figure 106: BAYER demosaicing (example of 3x3 matrix)

Color processing can be bypassed by using so-called RAW image transfer.

RAW mode is primarily used to

- save bandwidths on the IEEE 1394 bus
- achieve higher frame rates
- use different BAYER demosaicing algorithms on the PC (for Pike F-145 and Pike F-505 the first pixel of the sensor is RED, for all other Pike the first pixel is GREEN followed by RED).

If the PC does not perform BAYER to RGB post-processing, the b/w image will be superimposed with a checkerboard pattern.



Sharpness

The Pike color models are equipped with a two step sharpness control, applying a discreet horizontal high pass in the Y channel as shown in the next three line profiles.

Sharpness 0, 1 and 2 is calculated with the following scheme:

Sharpness value

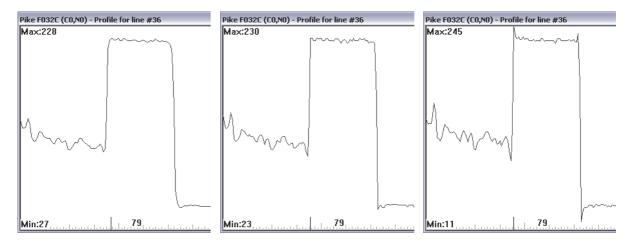
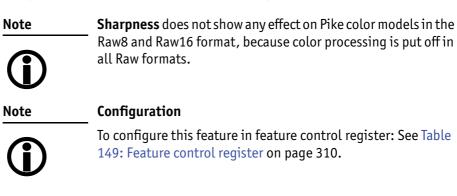



Figure 107: Sharpness: left: 0, middle: 1, right: 2

Hue and saturation

Pike CCD color models are equipped with hue and saturation registers.

The **hue register** at offset 810h allows the color of objects to be changed without altering the white balance, by +/-40 steps ($+/-10^{\circ}$) from the nominal perception. Use this setting to manipulate the color appearance after having carried out the white balance.

The **saturation register** at offset 814h allows the intensity of the colors to be changed between 0 and 200% in steps of 1/256.

This means a setting of zero changes the image to black and white and a setting of 511 doubles the color intensity compared to the nominal one at 256.

Note	
(i)	

Configuration

To configure this feature in feature control register: See Table 149: Feature control register on page 310.

Note

Hue and saturation do not show any effect on Pike color models in the Raw8 and Raw16 format, because color processing is switched off in all Raw formats.

Color correction

Why color correction?

The spectral response of a CCD is different of those of an output device or the human eye. This is the reason for the fact that perfect color reproduction is not possible. In each Pike camera there is a factory setting for the color correction coefficients, see Chapter GretagMacbeth ColorChecker on page 193.

Color correction is needed to eliminate the overlap in the color channels. This overlap is caused by the fact that:

- Blue light: is seen by the red and green pixels on the CCD
- Red light: is seen by the blue and green pixels on the CCD
- Green light: is seen by the red and blue pixels on the CCD

The color correction matrix subtracts out this overlap.

Color correction in Allied Vision cameras

In Allied Vision cameras the color correction is realized as an additional step in the process from the sensor data to color output.

Color correction is used to harmonize colors for the human eye. With other Allied Vision (color) cameras so far, you had the opportunity to use it or to switch it off.

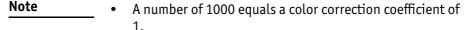
Pike cameras introduce for the first time the so-called color correction matrix. This means: you are now able to manipulate the color-correction coefficients yourself.

Color correction: formula

Before converting to the YUV format, color correction on all color models is carried out after BAYER demosaicing via a matrix as follows:

red* = Crr × red + Cgr × green + Cbr × blue
green* = Crg × red + Cgg × green + Cbg × blue
blue* = Crb × red + Cgb × green + Cbb × blue

Formula 4: Color correction


GretagMacbeth ColorChecker

Sensor-specific coefficients C_{xy} are scientifically generated to ensure that GretagMacbeth^{\mbox{\tiny M}} ColorChecker®-colors are displayed with highest color fidelity and color balance.

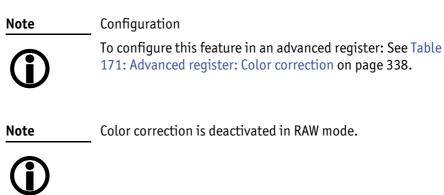
These coefficients are stored in user set 0 and can not be overwritten (factory setting).

Changing color correction coefficients

You can change the color-correction coefficients according to your own needs. Changes are stored in the user settings.

- To obtain an identity matrix set values of 1000 for the diagonal elements an 0 for all others. As a result you get colors like in the RAW modes.
- The sums of all rows should be equal to each other. If not, you get tinted images.
- Color correction values range -1000 ... +2000 and are signed 32 bit.
- In order for white balance to work properly ensure that the row sum equals 1000.
- Each row should sum up to 1000. If not, images are less or more colorful.
- The maximum row sum is limited to 2000.

Note		


Configuration

To configure the color-correction coefficients in an advanced register: See Table 171: Advanced register: Color correction on page 338.

To change the color-correction coefficients in SmartView, go to Adv3 tab.

Switch color correction on/off

Color correction can also be switched off in YUV mode:

Color conversion (RGB \rightarrow YUV)

The conversion from RGB to YUV is made using the following formulae:

 $Y = 0.3 \times R + 0.59 \times G + 0.11 \times B$ $U = -0.169 \times R - 0.33 \times G + 0.498 \times B + 128 (@ 8 bit)$ $V = 0.498 \times R - 0.420 \times G - 0.082 \times B + 128 (@ 8 bit)$

Formula 5: RGB to YUV conversion

- **(i)**
- As mentioned above: Color processing can be bypassed by using so-called RAW image transfer.
 - RGB → YUV conversion can be bypassed by using RGB8 format and mode. This is advantageous for edge color definition but needs more bandwidth (300% instead of 200% relative to b/w or RAW consumption) for the transmission, so that the maximal frame frequency will drop.

Bulk Trigger

See Chapter Trigger modi on page 200 and the following pages.

Level Trigger

See Trigger Mode 1 in Chapter Trigger modi on page 200.

Serial interface

All Pike cameras are equipped with the SIO (serial input/output) feature as described in IIDC V1.31. This means that the Pike's serial interface can be used as a general RS232 interface.

Data written to a specific address in the IEEE 1394 address range will be sent through the serial interface. Incoming data of the serial interface is put in a camera buffer and can be polled via simple read commands from this buffer. Controlling registers enable the settings of baud rates and the check of buffer sizes and serial interface errors.

• Hardware handshaking is not supported.

Typical PC hardware does not usually support 230400 bps or more.

Base address for the function is: F0F02100h.

Offset	Name	Field	Bit	Description
000h	SERIAL_MODE_REG	Baud_Rate	[07]	Baud rate setting WR: Set baud rate RD: Read baud rate 0: 300 bps 1: 600 bps 2: 1200 bps 3: 2400 bps 4: 4800 bps 5: 9600 bps 6: 19200 bps 7: 38400 bps 8: 57600 bps 9: 115200 bps 10: 230400 bps 0ther values reserved
		Char_Length	[815]	Character length setting WR: Set data length (7 or 8 bit) RD: Get data length 7: 7 bits 8: 8 bits Other values reserved
		Parity	[1617]	Parity setting WR: Set parity RD: Get parity setting 0: None 1: Odd 2: Even
		Stop_Bit	[1819]	Stop bits WR: Set stop bit RD: Get stop bit setting 0: 1 1: 1.5 2: 2
			[2023]	Reserved
		Buffer_Size_Inq	[2431]	Buffer Size (RD only) This field indicates the maximum size of receive/transmit data buffer. If this value=1, Buffer_Status_Control and SIO_Data_Register Char 1-3 should be ignored.

To configure this feature in access control register (CSR):

Table 64: Serial input/output control and status register (SIO CSR)

Offset Name	Field	Bit	Description
0004h SERIAL_CONTROL_REG	RE	[0]	Receive enable RD: Current status WR: O: Disable 1: Enable
	TE	[1]	Transmit enable RD: Current status WR: 0: disable 1: Enable
		[27]	Reserved
SERIAL_STATUS_REG	TDRD	[8]	Transmit data buffer ready Read only 0: not ready 1: ready
		[9]	Reserved
	RDRD	[10]	Receive data buffer ready Read only 0: not ready 1: ready
		[11]	Reserved
	ORER	[12]	Receive data buffer overrun error Read: current status WR: O: no error (to clear status) 1: Ignored
	FER	[13]	Receive data framing error Read: current status WR: O: no error (to clear status) 1: Ignored
	PER	[14]	Receive data parity error Read: current status WR: 0: no error (to clear status) 1: Ignored
		[1531]	Reserved

Table 64: Serial input/output control and status register (SIO CSR)

Offset	Name	Field	Bit	Description
008h	RECEIVE_BUFFER_ STATUS_CONTRL	RBUF_ST	[07]	SIO receive buffer status RD: Number of bytes pending in receive buffer WR: Ignored
		RBUF_CNT	[815]	SIO receive buffer control RD: Number of bytes to be read from the receive FiFo WR: Number of bytes left for readout from the receive FiFo
			[1631]	Reserved
00Ch	TRANSMIT_BUFFER_ STATUS_CONTRL	TBUF_ST	[07]	SIO output buffer status RD: Space left in TX buffer WR: Ignored
		TBUF_CNT	[815]	SIO output buffer control RD: Number of bytes written to transmit FiFo WR: Number of bytes to transmit
			[1631]	Reserved
010h 0FFh				Reserved
100h	SIO_DATA_REGISTER	CHAR_0	[07]	Character_0 RD: Read character from receive buffer WR: Write character to transmit buffer
	SIO_DATA_REGISTER	CHAR_1	[815]	Character_1 RD: Read character from receive buffer+1 WR: Write character to transmit buffer+1
	SIO_DATA_REGISTER	CHAR_2	[1623]	Character_2 RD: Read character from receive buffer+2 WR: Write character to transmit buffer+2
	SIO_DATA_REGISTER	CHAR_3	[2431]	Character_3 RD: Read character from receive buffer+3 WR: Write character to transmit buffer+3
104h 1FFH	SIO_DATA_REGIS- TER_ALIAS		[031]	Alias SIO_Data_Register area for block transfer

Table 64: Serial input/output control and status register (SIO CSR)

To read data:

1. Query RDRD flag (buffer ready?) and write the number of bytes the host wants to read to RBUF_CNT.

- 2. Read the number of bytes pending in the receive buffer RBUF_ST (more data in the buffer than the host wanted to read?) and the number of bytes left for reading from the receive FiFo in RBUF_CNT (host wanted to read more data than were in the buffer?).
- 3. Read received characters from SIO_DATA_REGISTER, beginning at char 0.
- 4. To input more characters, repeat from step 1.

To write data:

- 1. Query TDRD flag (buffer ready?) and write the number of bytes to send (copied from SIO register to transmit FiFo) to TBUF_CNT.
- 2. Read the available data space left in TBUF_ST (if the buffer can hold more bytes than are to be transmitted) and number of bytes written to transmit buffer in TBUF_CNT (if more data is to be transmitted than fits in the buffer).
- 3. Write character to SIO_DATA_REGISTER, beginning at char 0.
- 4. To output more characters, repeat from step 1.

Note

- Contact your local dealer if you require further information or additional test programs or software.
- Allied Vision recommends the use of Hyperterminal™ or other communication programs to test the functionality of this feature. Alternatively use SmartView to try out this feature.

Controlling image capture

Shutter modes	The cameras support the SHUTTER_MODES specified in IIDC V1.31. For all models this shutter is a global pipelined shutter ; meaning that all pixels are exposed to the light at the same moment and for the same time span.
Pipelined	Pipelined means that the shutter for a new image can already happen, while the preceding image is transmitted.
Continuous mode	In continuous modes the shutter is opened shortly before the vertical reset happens, thus acting in a frame-synchronous way.
External trigger	Combined with an external trigger, it becomes asynchronous in the sense that it occurs whenever the external trigger occurs. Individual images are recorded when an external trigger impulse is present. This ensures that even fast moving objects can be grabbed with no image lag and with minimal image blur.
Camera I/O	The external trigger is fed as a TTL signal through Pin 4 of the camera I/O connector.

Trigger modi

Pike cameras support IIDC conforming Trigger_Mode_0 and Trigger_Mode_1 and special Trigger_Mode_15 (bulk trigger).

Trigger Mode	also known as	Description
Trigger_Mode_0	Edge mode	Sets the shutter time according to the value set in the shutter (or extended shutter) register
Trigger_Mode_1	Level mode	Sets the shutter time according to the active low time of the pulse applied (or active high time in the case of an inverting input)
Trigger_Mode_15	Programmable mode	Is a bulk trigger , combining one external trigger event with continuous or one-shot or multi-shot internal trigger

Table 65: Trigger modi

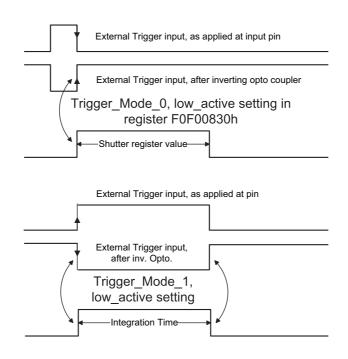


Figure 108: Trigger_Mode_0 and 1

Bulk Trigger (Trigger_Mode_15)

Trigger_Mode_15 is an extension to the IIDC trigger modes. One external trigger event can be used to trigger a multitude of internal image intakes.

This is especially useful for:

- Grabbing exactly one image based on the first external trigger.
- Filling the camera's internal image buffer with one external trigger without overriding images.
- Grabbing an unlimited amount of images after one external trigger (surveillance)

The Figure below illustrates this mode.

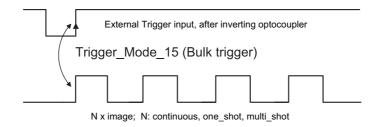


Figure 109: Trigger_Mode_15 (bulk trigger)

The functionality is controlled via bit [6] and bitgroup [12-15] of the following register:

Register	Name	Field	Bit	Description
0xF0F00830	TRIGGER_MODE	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the Value field 1: Control with value in the Absolute value CSR If this bit = 1 the value in the Value field has to be ignored
			[25]	Reserved
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status 0: OFF 1: ON In this bit = 0, other fields will be read only.
		Trigger_Polarity	[7]	Select trigger polarity (Except for software trigger)
				If Polarity_Inq is 1: Write to change polarity of the trigger input. Read to get polarity of the trigger input.
				If Polarity_Inq is 0: Read only. 0: Low active input 1: High active input
		Trigger_Source	[810]	Select trigger source
				Set trigger source ID from trigger source ID_Inq
		Trigger_Value	[11]	Trigger input raw signal value read only
				0: Low 1: High
		Trigger_Mode	[1215]	Trigger_Mode
				(Trigger_Mode_015)
			[1619]	Reserved
		Parameter	[2031]	Parameter for trigger function, if required (optional)

Table 66: Trigger_Mode_15 (Bulk Trigger)

The screenshots below illustrate the use of Trigger_Mode_15 on a register level:

- Line #1switches continuous mode off, leaving viewer in listen mode.
- Line #2 prepares 830h register for external trigger and Mode_15.

Left = continuous	Middle = one-shot	Right = multi-shot
Line #3 switches camera back to	Line #3 toggles one-shot bit [0]	Line #3 toggles multi-shot bit [1]
continuous mode. Only one	of the one-shot register 61C so	of the one-shot register 61C so
image is grabbed precisely with the first external trigger.	that only one image is grabbed, based on the first external trig-	that Ah images are grabbed, starting with the first external
To repeat rewrite line three.	ger.	trigger.
	To repeat rewrite line three.	To repeat rewrite line three.

Table 67: Description: using Trigger_Mode_15: continuous, one-shot, multi-shot

Figure 110: Using Trigger_Mode_15: continuous, one-shot, multi-shot

Note

Shutter for the images is controlled by shutter register.

Trigger delay

As already mentioned earlier the cameras feature various ways to delay image capture based on external trigger.

With IIDC V1.31 there is a standard CSR at Register F0F00534/834h to control a delay up to FFFh x time base value.

The following table explains the Inquiry register and the meaning of the various bits.

Register	Name	Field	Bit	Description
0xF0F00534	TRIGGER_DLY_INQUIRY	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Abs_Control_Inq	[1]	Capability of control with absolute value
			[2]	Reserved
		One_Push_Inq	[3]	One Push auto mode (controlled automatically by the camera once)
		ReadOut_Inq	[4]	Capability of reading out the value of this feature
		On_Off_Inq	[5]	Capability of switching this feature ON and OFF
		Auto_Inq	[6]	Auto Mode (controlled automati- cally by the camera)
		Manual_Inq	[7]	Manual Mode (controlled by user)
		Min_Value	[819]	Minimum value for this feature
		Max_Value	[2031]	Maximum value for this feature

Table 68: Trigger delay inquiry register

Register	Name	Field	Bit	Description
0xF0F00834	TRIGGER_DELAY	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the Value field 1: Control with value in the Absolute value CSR If this bit = 1, the value in the Value field has to be ignored
		-	[25]	Reserved
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status 0: OFF 1: ON In this bit = 0, other fields will be read only.
		-	[719]	Reserved
		Value	[2031]	Value
				If you write the value in OFF mode, this field will be ignored.
				If ReadOut capability is not available, then the read value will have no meaning.

Table 69: CSR: Trigger delay

Trigger delay advanced register

In addition, the cameras have an advanced register which allows even more precise image capture delay after receiving a hardware trigger.

Register	Name	Field	Bit	Description
0xF1000400	TRIGGER_DELAY	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[15]	-
		ON_OFF	[6]	Trigger delay on/off
			[710]	-
		DelayTime	[1131]	Delay time in µs

Table 70: Advanced CSR: Trigger delay

The advanced register allows start of the integration to be delayed by max. $2^{21} \mu s$, which is max. 2.1 s after a trigger edge was detected.

- Switching trigger delay to ON also switches external Trigger_Mode_O to ON.
- This feature works with external Trigger_Mode_0 only.

Debounce

Only for input ports:

There is an adjustable debounce time for trigger: separate for each input pin. The debounce time is a waiting period where no new trigger is allowed. This helps you to set exact one trigger.

The debounce feature is applied in cases of bad signals. The aim is to let the trigger run, when the signal is debounced.

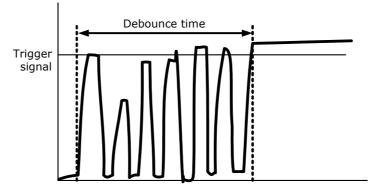


Figure 111: Example of debounce time for trigger

To set this feature in an advanced register: see Chapter Debounce time on page 208.

To set this feature in SmartView: **Trig/IO** tab, **Input pins** table, **Debounce** column.

- Low pass Debounce acts like a low-pass filter with debounce time acting as resistancecapacitance element. That means: with increasing debounce time trigger will release later.
- **Example** Debounce time set to 20 µs.

A switch debounces with 5 μ s high pulse and 1 μ s low pulse. During high pulse an internal counter adds one cycle, during low pulse the counter subtracts one cycle. Therefore high pulses at input pin have to be \geq 20 μ s.

Internal counter sees: 5 μ s - 1 μ s = 4 μ s

Number of periods during debounce time: $20 \ \mu s / 4 \ \mu s = 5$ That means 5 periods x 6 $\mu s = 30 \ \mu s$

The trigger starts after 30 μ s while the debounce time was set to 20 μ s.

Note

The pulse width (total time of high and low pulses) must be greater than the debounce time.

Debounce time

This register controls the debounce feature of the cameras input pins. The debounce time can be set for each available input separately.

Increment is 500 ns

Debounce time is set in Time x 500 ns

Minimum debounce time is 1.5 μ s \Rightarrow 3 x 500 ns

Maximum debounce time is ~16 ms \Rightarrow (2¹⁵-1) x 500 ns

Offset	Name	Field	Bit	Description
0xF1000840	IO_INP_DEBOUNCE_1	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[27]	Reserved
		Time	[831]	Debounce time in steps of 500 ns (24 bit) see examples above
0xF1000844		MinValue	[031]	Minimum debounce time
0xF1000848		MaxValue	[031]	Maximum debounce time
0xF100084C			[031]	Reserved
0xF1000850	IO_INP_DEBOUNCE_2			same as IO_INP_DEBOUNCE_1
0xF1000860	IO_INP_DEBOUNCE_3			same as IO_INP_DEBOUNCE_1
0xF1000870	IO_INP_DEBOUNCE_4			same as IO_INP_DEBOUNCE_1
0xF1000880				Reserved
0xF1000890				Reserved
0xF10008A0				Reserved
0xF10008B0				Reserved

Table 71: Advanced register: **Debounce time for input ports**

- The camera corrects invalid values automatically.
- This feature is not stored in the user settings.

Exposure time (shutter) and offset

The exposure (shutter) time for continuous mode and Trigger_Mode_0 is based on the following formula:

Shutter register value x time base + offset

The register value is the value set in the corresponding IIDC 1.31 register (SHUTTER [81Ch]). This number is in the range between 1 and 4095.

The shutter register value is multiplied by the time base register value (see Table 159: Time base ID on page 324). The default value here is set to 20 µs.

A camera-specific offset is also added to this value. It is different for the camera models:

Camera model	Exposure time offset
Pike F-032	17 µs
Pike F-100	42 µs
Pike F-145	38 µs
Pike F-145-15fps	70 µs
Pike F-210	42 µs
Pike F-421	69 µs
Pike F-505	26 µs
Pike F-1100	128 µs
Pike F-1600	635 µs

Exposure time offset

Table 72: Camera-specific exposure time offset

Minimum exposure time

Camera model	Minimum exposure time	Effective min. exp. time = Min. exp. time + offset
Pike F-032	1 µs	1 μs + 17 μs = 18 μs
Pike F-100	1 µs	1 μs + 42 μs = 43 μs
Pike F-145	1 µs	1 μs + 38 μs = 39 μs
Pike F-145-15fps	1 µs	1 μs + 70 μs = 71 μs
Pike F-210	1 µs	1 μs + 42 μs = 43 μs
Pike F-421	1 µs	1 μs + 69 μs = 70 μs

Table 73: Camera-specific minimum exposure time

Camera model	Minimum exposure time	Effective min. exp. time = Min. exp. time + offset	
Pike F-505	1 µs	1 μs + 26 μs = 27 μs	
Pike F-1100	1 µs	1 μs + 128 μs = 129 μs	
Pike F-1600	1 µs	1 μs + 635 μs = 636 μs	

Table 73: Camera-specific minimum exposure time

Example: Pike F-032

Camera	Register value	Time base (default)	
Pike F-032	100	20 µs	

Table 74: Register value and time base for **Pike F-032**

register value x time base = exposure time

100 x 20 μ s + 17 μ s = 2017 μ s exposure time

The minimum adjustable exposure time set by register is $1 \mu s$. \rightarrow The real minimum exposure time of **Pike F-032** is then: $1 \mu s + 17 \mu s = 18 \mu s$

Extended shutter

The exposure time for long-term integration of up to 67 seconds can be extended via the advanced register: EXTENDED_SHUTTER

Register	Name	Field	Bit	Description
0xF100020C	EXTD_SHUTTER	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[1 5]	
		ExpTime	[631]	Exposure time in µs

Table 75: Advanced register: **Extended shutter**

The longest exposure time, 3FFFFFh, corresponds to 67.11 sec.

The lowest possible value of **ExpTime** is camera-specific (see Table 73: Camera-specific minimum exposure time on page 209).

Note

- Exposure times entered via the 81Ch register are mirrored in the extended register, but not vice versa.
- Longer integration times not only increase sensitivity, but may also increase some unwanted effects such as noise and pixel-to-pixel non-uniformity. Depending on the application, these effects may limit the longest usable integration time.
- Changes in this register have immediate effect, even when the camera is transmitting.
- Extended shutter becomes inactive after writing to a format/mode/frame rate register.

One-shot

The camera can record an image by setting the **one-shot bit** in the 61Ch register. This bit is automatically cleared after the image is captured. If the camera is placed in ISO_Enable mode (see Chapter ISO_Enable / free-run on page 215), this flag is ignored.

If **one-shot mode** is combined with the external trigger, the **one-shot** command is used to arm it. The following screenshot shows the sequence of commands needed to put the camera into this mode. It enables the camera to grab exactly one image with an external trigger edge.

If there is no trigger impulse after the camera has been armed, **one-shot** can be cancelled by clearing the bit.

Pike F0320	C (CO, NO) - Direc	t access 🛛 🔀
Register:	ONE_SHOT	~
Address:	F0F0061C 🗸	Read
Data:	8000000	Write
# rw	Address	Value
7 wr 6 rd 5 wr 4 rd 3 wr 2 rd 1 rd	F0F0061C F0F0061C F0F00830 F0F00830 F0F00614 F0F00614 F0F00614	8000000 0000000 8200000 0000000 8000000 8000000 0000000

Figure 112: One-shot control (SmartView)

#	Read = rd Write = wr	Address	Value	Description
7	wr	F0F0061C	80000000	Do one-shot.
6	rd	F0F0061C	0000000	Read out one-shot register.
5	wr	F0F00830	82000000	Switch on external trigger mode 0.
4	rd	F0F00830	8000000	Check trigger status.
3	wr	F0F00614	0000000	Stop free-run.
2	rd	F0F00614	80000000	Check Iso_Enable mode (\rightarrow free-run).
1	rd	F0F00614	0000000	This line is produced by SmartView.

Table 76: One-shot control: descriptions

Pike Technical Manual V5.2.0

One-shot command on the bus to start of exposure

The following sections describe the time response of the camera using a single frame (one-shot) command. As set out in the IIDC specification, this is a software command that causes the camera to record and transmit a single frame.

The following values apply only when the camera is idle and ready for use. Full resolution must also be set.

Feature	Value
	\leq 150 µs (processing time in the microcontroller)
μ C-Sync/ExSync \rightarrow integration start	8 µs

Table 77: Values for one-shot

Microcontroller sync is an internal signal. It is generated by the microcontroller to initiate a trigger. This can either be a direct trigger or a release for ExSync if the camera is externally triggered.

End of exposure to first packet on the bus

After the exposure, the CCD sensor is read out; some data is written into the FRAME_BUFFER before being transmitted to the bus.

The time from the end of exposure to the start of transport on the bus is:

710 μs \pm 62.5 μs

This time '*jitters* with the cycle time of the bus (125 μ s).

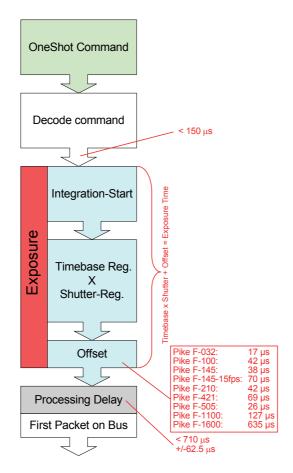


Figure 113: Data flow and timing after end of exposure

Multi-shot

Setting **multi-shot** and entering a quantity of images in **Count_Number** in the 61Ch register enables the camera to record a specified number of images.

The number is indicated in bits 16 to 31. If the camera is put into **ISO_Enable** mode (see Chapter ISO_Enable / free-run on page 215), this flag is ignored and deleted automatically once all the images have been recorded.

If **multi-shot** mode is activated and the images have not yet all been captured, it can be cancelled by resetting the flag. The same result can be achieved by setting the number of images to **0**.

Multi-shot can also be combined with the external trigger in order to grab a certain number of images based on an external trigger. This is especially helpful in combination with the so called **deferred mode** to limit the number of grabbed images to the FIFO size.

ISO_Enable / free-run

Setting the MSB (bit 0) in the 614h register (ISO_ENA) puts the camera into **ISO_Enable mode** or **Continuous_Shot (free-run)**. The camera captures an infinite series of images. This operation can be quit by deleting the **0** bit.

Asynchronous broadcast

The camera accepts asynchronous broadcasts. This involves asynchronous write requests that use node number 63 as the target node with no acknowledge.

This makes it possible for all cameras on a bus to be triggered by software simultaneously - e.g. by broadcasting a **one-shot**. All cameras receive the **one-shot** command in the same IEEE 1394 bus cycle. This creates uncertainty for all cameras in the range of 125 μ s.

Inter-camera latency is described in Chapter Jitter at start of exposure on page 216.

The following screenshot shows an example of broadcast commands sent with the Firedemo example of FirePackage:

cess	×
F0F0061C	<u>R</u> ead
82000000	Write
614 <- 0000000 61C <- 8200000	
	F0F0061C 82000000 514 <- 0000000

Figure 114: Broadcast one-shot

- Line 1 shows the broadcast command, which stops all cameras connected to the same IEEE 1394 bus. It is generated by holding the <shift> key down while clicking on <Write>.
- Line 2 generates a **broadcast one_shot** in the same way, which forces all connected cameras to simultaneously grab one image.

Jitter at start of exposure

The following chapter discusses the latency time which exists for all Pike CCD models when either a hardware or software trigger is generated, until the actual image exposure starts.

Owing to the well-known fact that an **Interline Transfer CCD** sensor has both a light sensitive area and a separate storage area, it is common to interleave image exposure of a new frame and output that of the previous one. It makes continuous image flow possible, even with an external trigger.

The uncertain time delay before the start of exposure depends on the state of the sensor. A distinction is made as follows:

FVal is active \rightarrow the sensor is reading out, the camera is busy

In this case the camera must not change horizontal timing so that the trigger event is synchronized with the current horizontal clock. This introduces a max. uncertainty which is equivalent to the line time. The line time depends on the sensor used and therefore can vary from model to model.

FVal is inactive \rightarrow the sensor is ready, the camera is idle

Model	Exposure start jitter (while FVal)	Exposure start jitter (while camera idle)
Pike F-032	± 4.9 μs	± 375 ns
Pike F-100	± 8.2 μs	± 1.65 μs
Pike F-145	± 16 µs	± 2.9 μs
Pike F-145-15fps	± 30 μs	± 5.4 μs
Pike F-210	± 14.25 µs	± 1.8 µs
Pike F-421	± 15 µs	± 1.65 µs
Pike F-505	± 17 μs	± 5.7 μs
Pike F-1100	single tap: \pm 141 µs dual tap: \pm 74.5 µs	± 7.64 μs (single+dual tap)
Pike F-1600	single tap: \pm 177 µs dual tap: \pm 95.7 µs	± 13.6 μs (single+dual tap)

In this case the camera can resynchronize the horizontal clock to the new trigger event, leaving only a very short uncertainty time of the master clock period.

Table 78: Jitter at exposure start (no binning, no sub-sampling)

• Jitter at the beginning of an exposure has no effect on the length of exposure, i.e. it is always constant.

Sequence mode

Generally all Pike cameras enable certain image settings to be modified on the fly, e.g. gain and shutter can be changed by the host computer by writing into the gain and shutter register even while the camera is running. An uncertainty of up to 3 images remains because normally the host does not know (especially with external trigger) when the next image will arrive.

Sequence mode is a different concept where the camera holds a set of different image parameters for a sequence of images. The parameter set is stored volatile in the camera for each image to be recorded. This sequence of parameter sets is simply called a sequence. The advantage is that the camera can easily synchronize this parameter set with the images so that no uncertainty can occur. All Pike cameras support 32 different sequence parameters.

Additionally to the sequence mode known from Marlin cameras, the Pike cameras have:

- Repeat counter per sequence item
- Incrementing list pointer on input status (on/off)

• Pointer reset (software command; on input pin)

Examples For a sequence of images, each image can be recorded with a different shutter or gain to obtain different brightness effects.

The image area (AOI) of a sequence of images can automatically be modified, thus creating a panning or sequential split screen effect.

The following registers can be modified to affect the individual steps of the sequence. Different configurations can be accessed via e.g a foot switch which is connected to an input.

Mode	this registers can be modified
All modes	Cur_V_Mode, Cur_V_Format, ISO_Channel, ISO_Speed, Brightness, White_Balance (color cameras only), Shutter, Gain, LUT, TestImage, Image-Mirror, HSNR, Output-Ctrl, ColorCorrection matrix (color cam- eras only), ISO-Channel, Shading-Ctrl, Sequence-Stepping Mode, SIS_UserValue
Fixed modes only	Cur_V_Frm_Rate
Format_7 only	Image_Position (AOI-Top, AOI-Left), Image_Size (AOI-Width, AOI- Height), Color_Coding_ID*, Binning*, Sub-Sampling*, Byte_Per_Packet *hidden in video formats and video modes

Table 79: Registers to be modified within a sequence

Note	Sequence mode requires not only firmware 3.x but also special
()	care if changing image size, Color_Coding_ID and frame rate related parameters. This is because these changes not only affect settings in the camera but also require corresponding settings in the receiving software in the PC.

Caution

N

subsequent images. Please ask for detailed support when you want to use this

Incorrect handling may lead to image corruption or loss of

Please ask for detailed support when you want to use this feature.

How is sequence mode implemented?

There is a FIFO (first in first out) memory for each of the IIDC V1.31 registers listed above. The depth of each FIFO is fixed to 32(dez) complete sets. Functionality is controlled by the following advanced registers.

Register	Name	Field	Bit	Description
0xF1000220	SEQUENCE_CTRL	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[14]	Reserved
		AutoRewind	[5]	
		ON_OFF	[6]	Enable/disable this feature
		SetupMode	[7]	Sequence setup mode
			[815]	Reserved
		MaxLength	[1623]	Maximum possible length of a sequence (read only)
		SeqLength	[2431]	Length of the sequence (32 dez for all CCD models)
0xF1000224	SEQUENCE_PARAM		[04]	Reserved
		ApplyParameters	[5]	Apply settings to selected image of sequence; auto-reset
			[67]	Reserved
		SeqStepMode	[815]	Sequence stepping mode
		ImageRepeat	[1623]	Image repeat counter
		ImageNo	[2431]	Number of image within a sequence
0xF1000228	SEQUENCE_STEP	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[14]	Reserved
		PerformStep	[5]	Sequence is stepped one item for- ward
		PerformReset	[6]	Reset the sequence to start position
			[723]	Reserved
		SeqPosition	[2431]	Get the current sequence position

Table 80: Advanced register: Sequence mode

Enabling this feature turns the camera into a special mode. This mode can be used to set up a bunch of parameter sets for up to **MaxLength** consecutive images.

Note

The sequence mode of the Pike 3.x series firmware behaves slightly different than the sequence mode of e.g. the Marlin series and implements some new controlling features. You may use a sequence with internal or external trigger and with the **Deferred Transport** feature.

Setup mode (new for 3.x)

The **SetupMode** flag allows you to set up a sequence while capturing images. Using this flag you get a visual feedback of the settings.

Set **SetupMode** flag when setting up the sequence and reset the flag before using the sequence.

Sequence step mode (new for 3.x)

The SeqMode field selects the signal source for stepping the sequence one parameter set further.

SeqMode description

Sequence mode	Description
0x80	This mode is the default sequence mode and stepping the sequence is compatible to e.g. the Marlin series. With each image integration start the sequence is stepped one item further and the new parameter set becomes active for the next image.
0x82	Stepping of the sequence is controlled by a rising edge of an external signal . The new parameter set becomes active with the next integration start. When using this mode select the suitable input mode of the input lines.
0x84	Stepping of the sequence is controlled by a high level of an external signal . The new parameter set becomes active with the next integration start. When using this mode select the suitable input mode of the input lines.
Other mode	Choosing any other mode value, automatically defaults to mode 0x80.

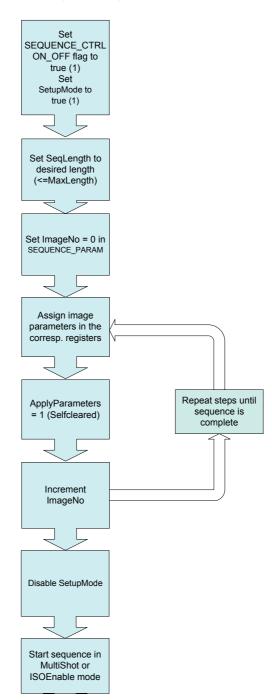
Table 81: Sequence mode description

It is also possible, that a sequence consists of parameter sets with different sequence modes. This can be achieved by using the SeqMode and the ImageNo fields within the Sequence_Param register.

Sequence repeat counter (new for 3.x)

For each parameter set one can define an image repeat counter. Using the image repeat counter means that a parameter set can be used for n consecutive images before the next parameter set is applied.

Setting the **ImageRepeat** field to 0 has the same effect like setting this field to 1.


Manual stepping & reset (new for 3.x)

With firmware 3.x a sequence can be stepped further with a software command. To use manual stepping use stepping mode 0x82 or 0x84, but do not setup any input pin for external sequence stepping.

Every time the **PerformStep** flag is set the sequence will be stepped one parameter set further. Manual stepping observes the repeat counter also.

For some application it could be useful to reset the sequence during runtime. Simply set the **PerformReset** flag to one: the sequence starts over with the very first parameter set.

The following flow diagram shows how to set up a sequence.

Figure 115: Sequence mode flow diagram

During sequencing, the camera obtains the required parameters, image by image, from the corresponding FIFOs (e.g. information for exposure time).

Which new sequence mode features are available?

New features:

- Repeat one step of a sequence n times where n can be set by the variable **ImageRepeat** in SEQUENCE_PARAM.
- Define one or two hardware inputs in Input mode field of IO_INP_CTRL as:
 - Sequence step input (if two are set as input, they are AND gated) or
 - Sequence reset input

Note

From now on:

sequence step is I/O controlled sequence stepping mode

sequence reset is I/O controlled sequence pointer reset

Setup mode

The **SetupMode** flag allows you to set up a sequence while capturing images. Using this flag you get a visual feedback of the settings. Set this flag when setting up the sequence and reset the flag before using the sequence.

I/O controlled sequence stepping mode

The I/O controlled sequence stepping mode can be done level controlled or edge controlled:

Level controlled	Edge controlled
 As long as the input is in high state the sequence pointer will be incremented from image to image. Can be combined with Quick For- mat Change Modes. See Chapter Standard Parameter Update Tim- ing on page 180 and Chapter New: Quick Format Change Mode (QFCM) on page 180. Level change is asynchronous to image change. 	 A rising edge on the input will cause one pointer increment immediately. Can be combined with Quick Format Change Modes. See Chapter Standard Parameter Update Timing on page 180 and Chapter New: Quick Format Change Mode (QFCM) on page 180.

Table 82: Description of sequence stepping control

The I/O controlled sequence stepping mode can be set for every single sequence entry. Thus a sequence can be controlled in a very flexible manner.

I/O controlled sequence pointer reset

I/O controlled sequence pointer reset is always edge controlled. A rising edge on the input pin resets the pointer to the first entry.

I/O controlled sequence pointer reset can be combined with **Quick Format Change Modes.** See Chapter Standard Parameter Update Timing on page 180 and Chapter New: Quick Format Change Mode (QFCM) on page 180.

I/O controlled sequence stepping mode and I/O controlled sequence pointer reset via software command

Both sequence modes can be controlled via software command.

Points to pay attention to when working with a sequence

• If more images are recorded than defined in **SeqLength**, the settings for the last image remain in effect.

- If **sequence** mode is cancelled, the camera can use the FIFO for other tasks. For this reason, a sequence must be loaded back into the camera after **sequence** mode has been cancelled.
- To repeat the sequence, stop the camera and send the **multi-shot** or **IsoEnable** command again. Each of these two commands resets the sequence.
- Using **SingleShot** mode in combination with a sequence does not make sense, because **SingleShot** mode restarts the sequence every time.
- The sequence may not be active when setting the AutoRewind flag. For this reason it is important to set the flag before the **multi-shot** or **IsoEnable** commands.
- If the sequence is used with the **deferred transport** feature, the number of images entered in **Seq_Length** may not be exceeded.

The following screenshot shows an example of a sequence for eight different image settings. It uses the **Firetool program** as graphical representation. Please note the changes in the shutter time; that creates descending image brightness, and the change in the image position; which creates a panning effect.

Img.	VFormat	VMode	VFps	ISOChn	IsoSpd	Brightn.	WhiteBalVR	WhiteBalUB	Shutter	Gain	LUT	TestImg	ImgPosL	ImgPosT	ImgSizeW	ImgSizeH	ColorID	BytePacket
1	7	0	2			16	0	0	1000	1	0	0	0	0	640	480	0	200
2	7	0	2			16	0	0	900	1	0	0	100	0	640	480	0	200
3	7	0	2			16	0	0	800	1	0	0	200	0	640	480	0	200
4	7	0	2			16	0	0	700	1	0	0	300	0	640	480	0	200
5	7	0	2			16	0	0	600	1	0	0	300	100	640	480	0	200
5	7	0	2			16	0	0	500	1	0	0	300	200	640	480	0	200
7	7	0	2			16	0	0	400	1	0	0	300	300	640	480	0	200
3	7	0	2			16	0	0	300	1	0	0	300	400	640	480	0	200
1																		

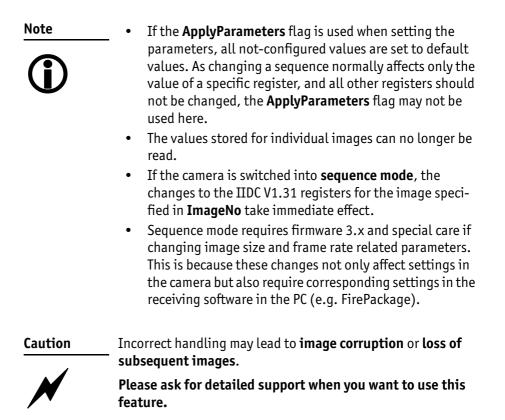
Figure 116: Example of sequence mode settings

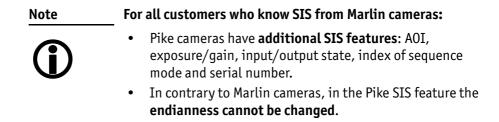
Instead of **Firetool** you also can use **SmartView** (Version 1.7.0 or greater), but image and transfer formats have to be unchanged (height, width, ColorID).

To open the **Sequence editor** in SmartView:

1. Click Extras → Sequence dialog

itep	RepCnt	StepMode	VFormat	VMode	VFps	IsoChn	IsoSpd	Brightnes	s WhiteBalVR	WhiteBalUB	Shutter	Gain	HighSNR	LUT	Shading	ImgMirr	or ImgPo:	sL ImgPo
		Default	2	O		0	5800		284	284	1000		піўпэічк Э	Off	Off	Off	or i ingeo:	st ingPo
		Default	2	0		0	5800	16 16	284	284	900)	Off	Off	Off		
		Default	2	0		0	5800	16	284	284	900)	Off	Off	Off		
		Default		0		0	5800	16	284	284	700)	Off	Off	Off		
		Default	2	0							600)	Off	Off	Off		
						0	5800	16	284	284					Off	Off		
		Default	2	0		0	5800	16	284	284	500		2	Off			0	0
		Default	2	0		0	5800	16	284	284	400		0	Off	Off	Off	0	0
	0	Default	2	0	15	0	5800	16	284	284	300	1)	Off	Off	Off	0	0
] Auto-	-rewind [Get current :	None		v										En	abled 🗌 🗛	pply Seque
Auto-	-rewind [efault Sequer		None		~	_					_	_		_	En	abled 🗌 🗛	pply Seque
Auto-	-rewind [efault Sequer	nce Step Mode	None	.7.0		CCCoeff2	CCCoeff3	CCCcoeff4 CCCC	neff5 CCCoeff	CCCoeff7	CCC00	eff8 CCC	oeff9	Output 1	En	abled A	pply Sequer Output4
Auto- ence e ImgSize	-rewind [ditorPike F2	10C - AVT [C C H ColorID YUV422	nce Step Mode D, N 1] - AVT Sr BytePacket 8192	None		Coeff1 5 7.	1 -	-96	-229 1371	-142	57	-411	1354	I	ntEna(-)	Output2 FollowInp(-)	Output3 Busy(-)	Output4
ence e ImgSize 920	-rewind C ditorPike F2	10C - AVT [C C 4 ColorID YUV422	bytePacket 8192	None None		Coeff1 5 7 5 7	1 -	96	-229 1371 -229 1371	-142 -142	57 57	-411 -411	1354 1354	I	ntEna(-) ntEna(-)	Output2 FollowInp(-) FollowInp(-)	Output3 Busy(-) Busy(-)	Output4 Off
ence e ImgSize 920 920 920	-rewind C ditorPike F2 W ImgSize 1080 1080	IOC - AVT [C C IOC - AVT [C C I ColorID YUV422 YUV422	bytePacket 8192 8192 8192	None None ColCorr On On On		Coeff1 5 7. 5 7. 5 7. 5 7.	1 - 1 -	96 96 96	229 1371 229 1371 229 1371	-142 -142 -142	57 57 57	-411 -411 -411	1354 1354 1354	I I I	ntEna(-) ntEna(-) ntEna(-)	Output2 FollowInp(-) FollowInp(-) FollowInp(-)	Output3 Busy(-) Busy(-) Busy(-)	Output4 Off Off
ence e ImgSize 920 920 920 920	-rewind C ditorPike F2 2000 1080 1080 1080 1080	IOC - AVT [C C H ColorID YUV422 YUV422 YUV422 YUV422 YUV422 YUV422	bytePacket 8192 8192	None None ColCorr On On On On On On	1.7.0 	Coeff1 5 7 5 7 5 7 5 7 5 7 5 7	1	96 96 96 96	-229 1371 -229 1371 -229 1371 -229 1371 -229 1371	-142 -142 -142 -142	57 57 57 57	-411 -411 -411 -411	1354 1354 1354 1354	I I I I	ntEna(-) ntEna(-) ntEna(-) ntEna(-)	Output2 FollowInp(-) FollowInp(-) FollowInp(-) FollowInp(-)	Output3 Busy(-) Busy(-) Busy(-) Busy(-)	Output4 Off Off
Auto- ence e ImgSize 920 920 920 920 920	-rewind [-rewind [Ioc - Avt [C 0 Ioc - Avt [C 0 I ColorID YUV422 YUV422 YUV422 YUV422 YUV422 YUV422	BytePacket 8192 8192 8192 8192 8192 8192 8192 8192	None None ColCom On On On On On On		Coeff1 5 7 5 7 5 7 5 7 5 7 5 7 5 7	1	96 - 96 - 96 - 96 -	229 1371 229 1371 229 1371 229 1371 229 1371 229 1371	-142 -142 -142 -142 -142 -142	57 57 57 57 57 57	-411 -411 -411 -411 -411	1354 1354 1354 1354 1354 1354	I I I I I	ntEna(-) ntEna(-) ntEna(-) ntEna(-) ntEna(-)	Output2 FollowInp(-) FollowInp(-) FollowInp(-) FollowInp(-) FollowInp(-)	Output3 Busy(-) Busy(-) Busy(-) Busy(-) Busy(-)	Output4 Off Off Off Off
ence e ImgSize 920 920 920 920 920 920 920	-rewind [-rewind [-ditorPike F2 -ditorPike F2	IOC - AYT [C C H ColorID YUV422 YUV422	bytePacket 8192 8	None None ColCorr On On On On On On On On		Coeff1 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	1	96 96 96 96 96 96 96	-229 1371 -229 1371 -229 1371 -229 1371 -229 1371 -229 1371 -229 1371 -229 1371	-142 -142 -142 -142 -142 -142 -142	57 57 57 57 57 57 57 57	-411 -411 -411 -411 -411 -411	1354 1354 1354 1354 1354 1354	I I I I I I I	ntEna(-) ntEna(-) ntEna(-) ntEna(-) ntEna(-) ntEna(-)	Output2 FollowInp(-) FollowInp(-) FollowInp(-) FollowInp(-) FollowInp(-)	Output3 Busy(-) Busy(-) Busy(-) Busy(-) Busy(-) Busy(-)	Off Off Off Off Off Off
Auto- ence e ImgSize 920 920 920 920 920	-rewind [-rewind [Ioc - Avt [C 0 Ioc - Avt [C 0 I ColorID YUV422 YUV422 YUV422 YUV422 YUV422 YUV422	BytePacket 8192 8192 8192 8192 8192 8192 8192 8192	None None ColCom On On On On On On		Coeff1 7 5	1	96 96 96 96 96 96 96 96	229 1371 229 1371 229 1371 229 1371 229 1371 229 1371	-142 -142 -142 -142 -142 -142	57 57 57 57 57 57	-411 -411 -411 -411 -411	1354 1354 1354 1354 1354 1354	I I I I I I I I	ntEna(-) ntEna(-) ntEna(-) ntEna(-) ntEna(-) ntEna(-) ntEna(-)	Output2 FollowInp(-) FollowInp(-) FollowInp(-) FollowInp(-) FollowInp(-)	Output3 Busy(-) Busy(-) Busy(-) Busy(-) Busy(-) Busy(-) Busy(-)	Output4 Off Off Off Off


Figure 117: SmartView: **Extras** → **Sequence dialog**


Changing the parameters within a sequence

To change the parameter set for one image, it is not necessary to modify the settings for the entire sequence. The image can simply be selected via the **ImageNo** field and it is then possible to change the corresponding IIDC V1.31 registers.

Points to pay attention to when changing the parameters

Secure image signature (SIS): definition and scenarios

SIS: Definition

Secure image signature (SIS) is the synonym for data, which is inserted into an image to improve or check image integrity.

With the new firmware 3.x, all Pike models can insert

- Time stamp (1394 bus cycle time at the beginning of integration)
- Trigger counter (external trigger seen only)
- Frame counter (frames read out of the sensor)
- AOI (x, y, width, height)
- Exposure (shutter) and gain
- Input and output state on exposure start
- Index of sequence mode
- Serial number
- User value

into a selectable line position within the image. Furthermore the trigger counter and the frame counter are available as advanced registers to be read out directly.

SIS: Scenarios

The following scenarios benefit from this feature:

- Assuming camera runs in **continuous mode**, the check of monotonically changing bus cycle time is a simple test that no image was skipped or lost in the camera or subsequently in the image processing chain.
- In (synchronized) **multi camera applications**, the time stamp can be used to identify those images, shot at the same moment in time.
- The cross-check of the frame counter of the camera against the frame counter of the host system also identifies any **skipped or lost images** during transmission.
- The cross-check of the trigger counter against the frame counter in the camera can identify a **trigger overrun** in the camera.
- AOI can be inserted in the image if it was set as a variable e.g. in a sequence.
- Exposure/gain scenario parameters can be inserted in the image if set as a variable in e.g. sequence mode to identify the imaging conditions.
- Inserting input and output state on exposure start can be helpful when working with input and output signals.
- Index of sequence mode can be inserted if SIS is used together with sequence mode.
- Serial number inserted in the image helps to document/identify the camera in e.g. multi camera applications.

Note	• FirePackage offers additional and independent checks to be performed for the purpose of image integrity. Details can be found in the respective documentation.
Note	More information:
(i)	The handling of the SIS feature is fully described in the Chapter Secure image signature (SIS) on page 351.

Smear reduction (not Pike F-1100/1600)

Smear reduction: definition

- **Definition** Smear is an undesirable CCD sensor artefact creating a vertical bright line that extends above and below a bright spot in an image.
- **Definition** Smear reduction is a function implemented in hardware in the camera itself to compensate for smear.

Smear reduction: how it works

To reduce smear a reference line is used. This reference line is built from the mean value of the so-called **black lines** (two lines before image start). The reference line is subtracted from every line of the whole image.

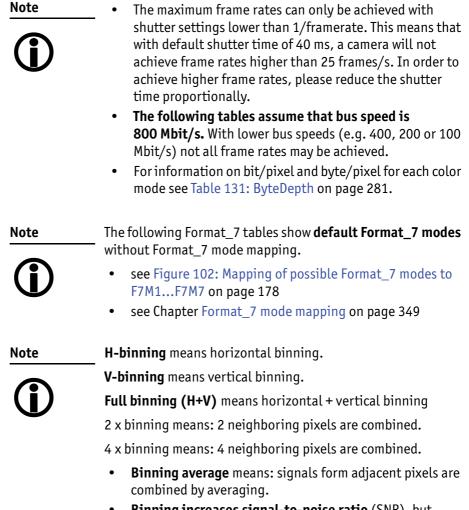
But how will this reduce smearing?

The point is: black lines have no image information but are also affected from smearing. Thus the smearing effect itself is isolated and can be reduced in the whole image.

The two additional black lines and the calculated anti-smear values do not lower the transfer rates significantly due to hardware implementation.

Smear reduction: switch on/off in register and SmartView

To switch on/off smear reduction in advanced registers, see Chapter Smear reduction (not Pike F-1100/1600) on page 356.


In SmartView: Edit settings → Adv3 tab (Smear reduction **Figure 2** Enable)

Video formats, modes and bandwidth

The different Pike models support different video formats, modes and frame rates.

These formats and modes are standardized in the IIDC (formerly DCAM) specification.

Resolutions smaller than the generic sensor resolution are generated from the center of the sensor and without binning.

• **Binning increases signal-to-noise ratio** (SNR), but decreases resolution.

Pike F-032B / Pike F-032C

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444								
	1	320 x 240	YUV422		X	X	Х	Х	X	X	Х
	2	640 x 480	YUV411		X	Х	Х	Х	X	X	X
0	3	640 x 480	YUV422			х	X	Х	X	X	X
	4	640 x 480	RGB8			X	Х	Х	X	X	Х
	5	640 x 480	Mono8		X X	X X	X X	X	x x	x	X
	6	640 x 480	Mono16			х	х	х	х	х	х

Table 83: Video fixed formats Pike F-032B / Pike F-032C

Frame rates with shading are only achievable with 1394b (S800).

The following Format_7 table shows **default Format_7 modes** without Format_7 mode mapping.

- see Figure 102: Mapping of possible Format_7 modes to F7M1...F7M7 on page 178
- see Chapter Format_7 mode mapping on page 349

Format	Mode	Resolution	Color mode	Maximal	S800 frame rates for Format_7 modes
	0	640 x 480	Mono8 Mono12 Mono16	208 fps 139 fps 105 fps	
		640 x 480	YUV411,Raw12 YUV422,Raw16 Mono8,Raw8 RGB8	139 fps 105 fps 208 fps 70 fps	
	1	320 x 480	Mono8 Mono12 Mono16	208 fps 208 fps 208 fps	2x H-binning 2x H-binning 2x H-binning
	2	640 x 240	Mono8 Mono12 Mono16	372 fps 271 fps 208 fps	2x V-binning 2x V-binning 2x V-binning
	3	320 x 240	Mono8 Mono12 Mono16	372 fps 372 fps 372 fps	2x H+V binning 2x H+V binning 2x H+V binning
7	4	320 x 480	Mono8 Mono12 Mono16	208 fps 208 fps 208 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
		320 x 480	YUV411,Raw12 YUV422,Raw16 Mono8,Raw8 RGB8	208 fps 208 fps 208 fps 139 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
	5	640 x 240	Mono8 Mono12 Mono16	372 fps 372 fps 372 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
		640 x 240	YUV411,Raw12 YUV422,Raw16 Mono8,Raw8 RGB8	271 fps 208 fps 372 fps 139 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
	6	320 x 240	Mono8 Mono12 Mono16	372 fps 372 fps 372 fps	2 out of 4 H+V sub-sampling 2 out of 4 H+V sub-sampling 2 out of 4 H+V sub-sampling
		320 x 240	YUV411,Raw12 YUV422,Raw16 Mono8,Raw8 RGB8	372 fps 372 fps 372 fps 271 fps	2 out of 4 H+V sub-sampling 2 out of 4 H+V sub-sampling 2 out of 4 H+V sub-sampling 2 out of 4 H+V sub-sampling

Table 84: Video Format_7 default modes Pike F-032B / Pike F-032C

Pike F-100B / Pike F-100C

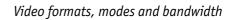

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444								
	1	320 x 240	YUV422		Х	Х	Х	Х	Х	Х	Х
	2	640 x 480	YUV411			Х	Х	Х	Х	Х	Х
0	3	640 x 480	YUV422			Х	Х	Х	Х	Х	Х
	4	640 x 480	RGB8			Х	Х	Х	Х	Х	Х
	5	640 x 480	Mono8			X X	X X	X X	X X	X X	X X
	6	640 x 480	Mono16			х	х	х	х	х	х
	0	800 x 600	YUV422			Х	Х	Х	Х	X	
	1	800 x 600	RGB8				Х	Х	X		
	2	800 x 600	Mono8			X X	X X	X X	X X		
1	3	1024 x 768	YUV422								
1	4	1024 x 768	RGB8								
	5	1024 x 768	Mono8								
	6	800 x 600	Mono16			х	х	x	х	х	
	7	1024 x 768	Mono16		1						1

Table 85: Video fixed formats Pike F-100B / F-100C

The following Format_7 tables show **default Format_7 modes** without Format_7 mode mapping.

- **(i)**
- see Figure 102: Mapping of possible Format_7 modes to F7M1...F7M7 on page 178
- see Chapter Format_7 mode mapping on page 349

Format	Mode	Resolution	Color mode	Maxima	l S800 frame rates for Format_7 modes
	0	1000 x 1000	Mono8 Mono12 Mono16	60 fps 43 fps 33 fps	
		1000 × 1000	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8	43 fps 33 fps 60 fps 22 fps	
	1	500 x 1000	Mono8 Mono12 Mono16	60 fps 60 fps 60 fps	2x H-binning 2x H-binning 2x H-binning
	2	1000 x 500	Mono8 Mono12 Mono16	99 fps 86 fps 65 fps	2x V-binning 2x V-binning 2x V-binning
	3	500 x 500	Mono8 Mono12 Mono16	99 fps 99 fps 99 fps	2x H+V binning 2x H+V binning 2x H+V binning
7	4	500 x 1000	Mono8 Mono12 Mono16	60 fps 60 fps 60 fps	2x H-sub-sampling 2x H-sub-sampling 2x H-sub-sampling
		500 x 1000	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8	60 fps 60 fps 60 fps 43 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
	5	1000 x 500	Mono8 Mono12 Mono16	99 fps 86 fps 65 fps	2x V-sub-sampling 2x V-sub-sampling 2x V-sub-sampling
		1000 x 500	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8	86 fps 65 fps 99 fps 43 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
	6	500 x 500	Mono8 Mono12 Mono16	99 fps 99 fps 99 fps	2x H+V-sub-sampling 2x H+V-sub-sampling 2x H+V-sub-sampling
		500 x 500	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8	99 fps 99 fps 99 fps 86 fps	2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling

Table 86: Video Format_7 default modes Pike F-100B / F-100C

Pike F-145B / Pike F-145C (-15 fps**)

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444								
	1	320 x 240	YUV422			Х	Х	Х	X	X	x
	2	640 x 480	YUV411				Х	Х	X	X	×
0	3	640 x 480	YUV422				Х	Х	Х	Х	×
	4	640 x 480	RGB8				Х	Х	X	X	x
	5	640 x 480	Mono8				X X	x x	x x	X X	x x
	6	640 x 480	Mono16				х	х	х	х	х
	0	800 x 600	YUV422				Х	Х	X	X	
	1	800 x 600	RGB8				Х	Х	X		
	2	800 x 600	Mono8				x	X X	x		
1	3	1024 x 768	YUV422				Х	Х	X	X	x
	4	1024 x 768	RGB8					X	Х	Х	×
	5	1024 x 768	Mono8				x	X X	x	x	x x
	6	800 x 600	Mono16				х	х	х	х	
	7	1024 x 768	Mono16				х	х	х	х	x
	0	1280 x 960	YUV422					Х	Х	Х	×
	1	1280 x 960	RGB8					Х	X	X	x
	2	1280 x 960	Mono 8				X X	X X	x	x	x x
2	3	1600 x 1200	YUV422								
<u> </u>	4	1600 x 1200	RGB8								
	5	1600 x 1200	Mono8								
	6	1280 x 960	Mono16					х	х	х	х
	7	1600 x 1200	Mono16								

**Pike F-145-15fps cameras have frame rates up to 15 fps only (except color cameras Format_0 Mode_1: up to 30 fps).

Table 87: Video fixed formats Pike F-145B / F-145C

Frame rates with shading are only achievable with 1394b (S800).

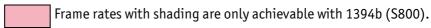
The following Format_7 tables show **default Format_7 modes** without Format_7 mode mapping.

- see Figure 102: Mapping of possible Format_7 modes to F7M1...F7M7 on page 178
- see Chapter Format_7 mode mapping on page 349

Format	Mode	Resolution	Color mode	Maximal S800 frame rates for Format_7 modes
	0	1388 x 1038 1388 x 1038	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 Raw12 RGB8	30 (16*) fps 30 (16*) fps 23 (16*) fps 30 (16*) fps 23 (16*) fps 30 (16*) fps 30 (16*) fps 15 (15*) fps
	1	692 x 1038	Mono8 Mono12 Mono16	30 (16*) fps 2x H-binning 30 (16*) fps 2x H-binning 30 (16*) fps 2x H-binning
	2	1388 x 518	Mono8 Mono12 Mono16	51 (27*) fps 2x V-binning 51 (27*) fps 2x V-binning 45 (27*) fps 2x V-binning
	3	692 x 518	Mono8 Mono12 Mono16	51 (27*) fps 2x H+V binning 51 (27*) fps 2x H+V binning 51 (27*) fps 2x H+V binning
7	4	692 x 1038 692 x 1038	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 Raw12 RGB8	30 (16*) fps2 out of 4 H-sub-sampling30 (16*) fps2 out of 4 H-sub-sampling
	5#	1388 x 518 1388 x 518	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 Raw12 RGB8	30 (16*) fps2 out of 4 V-sub-sampling30 (16*) fps2 out of 4 V-sub-sampling23 (16*) fps2 out of 4 V-sub-sampling30 (16*) fps2 out of 4 V-sub-sampling23 (16*) fps2 out of 4 V-sub-sampling23 (16*) fps2 out of 4 V-sub-sampling30 (16*) fps2 out of 4 V-sub-sampling30 (16*) fps2 out of 4 V-sub-sampling30 (16*) fps2 out of 4 V-sub-sampling37 (20*) fps2 out of 4 V-sub-sampling15 (15*) fps2 out of 4 V-sub-sampling
	6#	692 x 518 692 x 518	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 Raw12 RGB8	30 (16*) fps2 out of 4 H+V-sub-sampling30 (16*) fps2 out of 4 V-sub-sampling30 (16*) fps2 out of 4 H+V-sub-sampling30 (16*) fps2 out of 4 H+V-sub-sampling37 (20*) fps2 out of 4 H+V-sub-sampling30 (16*) fps2 out of 4 H+V-sub-sampling

Table 88: Video Format_7 default modes Pike F-145B / F-145C

#: Vertical sub-sampling is done via concealing
 certain lines, so the frame rate is not
 frame rate = f (AOI height)
 but
 frame rate = f (2 x AOI height)


** applying to -15fps variant only

Pike F-210B / Pike F-210C

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444								
	1	320 x 240	YUV422			Х	X	Х	Х	Х	Х
	2	640 x 480	YUV411				X	Х	X	Х	X
0	3	640 x 480	YUV422				X	Х	X	X	X
	4	640 x 480	RGB8				X	Х	X	Х	X
	5	640 x 480	Mono 8				X X	x x	x x	X X	X X
	6	640 x 480	Mono 16				х	х	х	х	Х
	0	800 x 600	YUV422				X	Х	X	X	
	1	800 x 600	RGB8				X	Х	Х		
	2	800 x 600	Mono8				X X	x x	x		
1	3	1024 x 768	YUV422				X	Х	X	X	X
T	4	1024 x 768	RGB8					Х	X	X	X
	5	1024 x 768	Mono 8				X X	x x	x	X X	x
	6	800 x 600	Mono16				х	х	х	х	
	7	1024 x 768	Mono16				х	х	х	х	х
	0	1280 x 960	YUV422					X	Х	X	X
	1	1280 x 960	RGB8					X	Х	X	X
	2	1280 x 960	Mono 8				X X	X X	x	X X	X
2	3	1600 x 1200	YUV422								
2	4	1600 x 1200	RGB8								
	5	1600 x 1200	Mono8								
	6	1280 x 960	Mono16					х	х	х	х
	7	1600 x 1200	Mono16								

Table 89: Video fixed formats Pike F-210B / F-210C

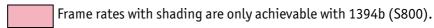
Note

- The following Format_7 tables show **default Format_7 modes** without Format_7 mode mapping.
- **(i)**
- see Figure 102: Mapping of possible Format_7 modes to F7M1...F7M7 on page 178
- see Chapter Format_7 mode mapping on page 349

Format	Mode	Resolution	Color mode	Maximal	S800 frame rates for Format_7 modes
	0	1920 x 1080 1920 x 1080	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8	31 fps 21 fps 16 fps 21 fps 16 fps 31 fps 11 fps	
	1	960 x 1080	Mono8 Mono12 Mono16	32 fps 32 fps 31 fps	2x H-binning 2x H-binning 2x H-binning
	2	1920 x 540	Mono8 Mono12 Mono16	52 fps 42 fps 31 fps	2x V-binning 2x V-binning 2x V-binning
	3	960 x 540	Mono8 Mono12 Mono16	52 fps 52 fps 52 fps	2x H+V binning 2x H+V binning 2x H+V binning
7	4	960 x 1080 960 x 1080	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8	32 fps 32 fps 31 fps 32 fps 31 fps 32 fps 21 fps	2x H-sub-sampling 2x H-sub-sampling 2x H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
	5#	1920 x 540 1920 x 540	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8	31 fps 21 fps 16 fps 21 fps 16 fps 31 fps 11 fps	2x V-sub-sampling 2x V-sub-sampling 2x V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
	6#	960 x 540 960 x 540	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8	32 fps 32 fps 31 fps 32 fps 31 fps 32 fps 21 fps	2x H+V sub-sampling 2x H+V sub-sampling 2x H+V sub-sampling 2 out of 4 H+V sub-sampling

Table 90: Video Format_7 default modes Pike F-210B / F-210C

#: Vertical sub-sampling is done via concealing certain lines, so the frame rate is not


frame rate = f (AOI height) but frame rate = f (2 x AOI height)

Pike F-421B / Pike F-421C

Format	Mode	Resolution	Color Mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444								
	1	320 x 240	YUV422				Х	Х	Х	Х	Х
	2	640 x 480	YUV411				Х	Х	Х	Х	X
0	3	640 x 480	YUV422				Х	Х	X	Х	X
	4	640 x 480	RGB8				Х	Х	X	Х	X
	5	640 x 480	Mono8				X X	x	X X	X X	X X
	6	640 x 480	Mono16				х	х	х	fps x x x x </td <td>х</td>	х
	0	800 x 600	YUV422				Х	Х	X	Х	
	1	800 x 600	RGB8				Х	Х	Х		
	2	800 x 600	Mono8				X X	x	x x		
1	3	1024 x 768	YUV422				Х	Х	X	Х	X
1	4	1024 x 768	RGB8					Х	Х	Х	X
	5	1024 x 768	Mono8				X X	x	x x	X X	X X
	6	800 x 600	Mono16				х	х	х	х	
	7	1024 x 768	Mono16				х	х	х	X X X X X X X X X X X X X X X X X X X	х
	0	1280 x 960	YUV422					Х	Х	Х	Х
	1	1280 x 960	RGB8					X	х	Х	X
	2	1280 x 960	Mono8					x	x	X X	X X
2	3	1600 x 1200	YUV422					Х	х	Х	X
2	4	1600 x 1200	RGB8						Х	Х	X
	5	1600 x 1200	Mono8					x x	x x	x x	x x
	6	1280 x 960	Mono16					х	х	х	х
	7	1600 x 1200	Mono16					х	х	х	х

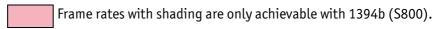
Table 91: Video fixed formats Pike F-421B / F-421C

Note

- The following Format_7 tables show **default Format_7 modes** without Format_7 mode mapping.
- (\mathbf{i})
- see Figure 102: Mapping of possible Format_7 modes to F7M1...F7M7 on page 178
- see Chapter Format_7 mode mapping on page 349

Format	Mode	Resolution	Color Mode	Maxima	l S800 frame rates for Format_7 modes
	0	2048 x 2048	Mono8 Mono12 Mono16	16 fps 10 fps 8 fps	
		2048 x 2048	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8	10 fps 8 fps 16 fps 5 fps	
	1	1024 x 2048	Mono8 Mono12 Mono16	16 fps 16 fps 16 fps	2x H-binning 2x H-binning 2x H-binning
	2	2048 x 1024	Mono8 Mono12 Mono16	29 fps 21 fps 16 fps	2x V-binning 2x V-binning 2x V-binning
	3	1024 x 1024	Mono8 Mono12 Mono16	29 fps 29 fps 29 fps	2x H+V binning 2x H+V binning 2x H+V binning
7	4	1024 x 2048	Mono8 Mono12 Mono16	16 fps 16 fps 16 fps	2x H-sub-sampling 2x H-sub-sampling 2x H-sub-sampling
		1024 x 2048	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8	16 fps 16 fps 16 fps 10 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
	5	2048 x 1024	Mono8 Mono12 Mono16	29 fps 21 fps 16 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
		2048 x 1024	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8	29 fps 21 fps 29 fps 10 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
	6	1024 x 1024	Mono8 Mono12 Mono16	29 fps 29 fps 29 fps	2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling
		1024 x 1024	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8	29 fps 29 fps 29 fps 21 fps	2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling

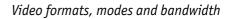
Table 92: Video Format_7 default modes Pike F-421B / F-421C


Video formats, modes and bandwidth

Pike F-505B / Pike F-505C

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444								
	1	320 x 240	YUV422				Х	Х	Х	Х	Х
	2	640 x 480	YUV411				Х	Х	Х	Х	X
0	3	640 x 480	YUV422				Х	Х	Х	Х	X
	4	640 x 480	RGB8				Х	Х	Х	Х	X
	5	640 x 480	Mono8				X X	X X	X X	X X	x
	6	640 x 480	Mono16				х	х	х	х	х
	0	800 x 600	YUV422					Х	Х	Х	
	1	800 x 600	RGB8					Х	Х		
	2	800 x 600	Mono8					X X	X X		
1	3	1024 x 768	YUV422					Х	Х	Х	х
L	4	1024 x 768	RGB8					Х	Х	Х	X
	5	1024 x 768	Mono8					X X	X X	x x	x
	6	800 x 600	Mono16					х	х	х	
	7	1024 x 768	Mono16					х	х	х	x
	0	1280 x 960	YUV422					X	Х	Х	Х
	1	1280 x 960	RGB8					Х	х	Х	X
	2	1280 x 960	Mono 8					X X	x x	X X	x
2	3	1600 x 1200	YUV422					Х	Х	Х	х
2	4	1600 x 1200	RGB8						X	X	X
	5	1600 x 1200	Mono8					x x	x x	x x	X X
	6	1280 x 960	Mono16					х	х	х	х
	7	1600 x 1200	Mono16					х	х	х	х

Table 93: Video fixed formats Pike F-505B / F-505C


Note

- The following Format_7 tables show **default Format_7 modes** without Format_7 mode mapping.
- **(i)**
- see Figure 102: Mapping of possible Format_7 modes to F7M1...F7M7 on page 178
- see Chapter Format_7 mode mapping on page 349

Format	Mode	Resolution	Color mode	Maximal S8	800 frame rates for Format_7 modes
	0	2452 x 2054	Mono8 Mono12 Mono16	13 fps 09 fps 07 fps	
		2452 x 2054	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	09 fps 07 fps 13 fps 04 fps 09 fps	
	1	1224 x 2054	Mono8 Mono12 Mono16	15 fps 15 fps 13 fps	2x H-binning 2x H-binning 2x H-binning
	2	2452 x 1026	Mono8 Mono12 Mono16	22 fps 17 fps 13 fps	2x V-binning 2x V-binning 2x V-binning
	3	1224 x 1026	Mono8 Mono12 Mono16	22 fps 22 fps 22 fps 22 fps	2x H+V binning 2x H+V binning 2x H+V binning
7	4	1224 x 2054	Mono8 Mono12 Mono16	15 fps 15 fps 13 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
		1224 x 2054	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	15 fps 13 fps 15 fps 09 fps 15 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
	5	2452 x 1026	Mono8 Mono12 Mono16	22 fps 17 fps 13 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
		2452 x 1026	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	17 fps 13 fps 22 fps 09 fps 17 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
	6	1224 x 1026	Mono8 Mono12 Mono16	22 fps 22 fps 22 fps	2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling
		1224 x 1026	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	22 fps 22 fps 22 fps 17 fps 22 fps	2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling

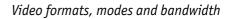
Table 94: Video Format_7 default modes Pike F-505B / F-505C

Pike F-1100B / Pike F-1100C

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444								
	1	320 x 240	YUV422					X*	Х	Х	X
	2	640 x 480	YUV411					X*	Х	Х	X
0	3	640 x 480	YUV422					X*	Х	Х	X
	4	640 x 480	RGB8					X*	Х	Х	X
	5	640 x 480	Mono8					x* x*	X X	x x	X X
	6	640 x 480	Mono16					X*	х	х	
	0	800 x 600	YUV422						Х	Х	
	1	800 x 600	RGB8						Х		
	2	800 x 600	Mono8						X X		
1	3	1024 x 768	YUV422						X*	Х	X
1	4	1024 x 768	RGB8						X*	Х	X
	5	1024 x 768	Mono8						x* x*	x x	X X
	6	800 x 600	Mono16						х	х	
	7	1024 x 768	Mono16						x*	х	х
	0	1280 x 960	YUV422						X*	Х	Х
	1	1280 x 960	RGB8						X*	Х	X
	2	1280 x 960	Mono 8						x* x*	x x	X X
2	3	1600 x 1200	YUV422						X*	X	X
2	4	1600 x 1200	RGB8						X*	Х	X
	5	1600 x 1200	Mono8						x*	x x	X X
	6	1280 x 960	Mono16						x*	х	х
	7	1600 x 1200	Mono16						x*	х	х

Table 95: Video fixed formats Pike F-1100B / F-1100C

 $x^* x^*$ Frame rates with asterisk * are only achievable in dual-tap mode.


Note

- The following Format_7 tables show **default Format_7 modes** without Format_7 mode mapping.
- **(i)**
- see Figure 102: Mapping of possible Format_7 modes to F7M1...F7M7 on page 178
- see Chapter Format_7 mode mapping on page 349

Format	Mode	Resolution	Color mode	Maximal S8	800 frame rates for Format_7 modes
	0	4008 x 2672 4008 x 2672	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	4.9 fps 4.9 fps 4.1 fps 4.9 fps 4.1 fps 4.9 fps 2.7 fps 4.9 fps 4.9 fps	
	1	2004 x 2672	Mono8 Mono12 Mono16	4.9 fps 4.9 fps 4.9 fps	2x H-binning 2x H-binning 2x H-binning
	2	4008 x 1336	Mono8 Mono12 Mono16	8.5 fps 8.5 fps 8.2 fps	2x V-binning 2x V-binning 2x V-binning
	3	2004 x 1336	Mono8 Mono12 Mono16	8.5 fps 8.5 fps 8.5 fps	2x H+V binning 2x H+V binning 2x H+V binning
7	4	2004 x 2672 2004 x 2672	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	3.5 fps 3.5 fps 3.5 fps 3.5 fps 3.5 fps 3.5 fps 3.5 fps 3.5 fps 3.5 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
	5	4008 x 1336 4008 x 1336	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	3.5 fps 3.5 fps 3.5 fps 3.5 fps 3.5 fps 3.5 fps 3.5 fps 2.7 fps 3.5 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
	6	2004 x 1336 2004 x 1336	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	 6.3 fps 	2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling

Table 96: Video Format_7 default modes Pike F-1100B / F-1100C [dual-tap, maxBPP=11000]

Pike F-1600B / Pike F-1600C

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444								
	1	320 x 240	YUV422								
	2	640 x 480	YUV411						x	Х	Х
0	3	640 x 480	YUV422						х	х	Х
	4	640 x 480	RGB8						х	х	Х
	5	640 x 480	Mono8						x	X X	X X
	6	640 x 480	Mono16						x	х	х
	0	800 x 600	YUV422						X*	Х	
	1	800 x 600	RGB8						x*		
	2	800 x 600	Mono8						x*		
1	3	1024 x 768	YUV422						×*	Х	X
1	4	1024 x 768	RGB8						x*	Х	Х
	5	1024 x 768	Mono8						x*	x x	X X
	6	800 x 600	Mono16						x*	х	
	7	1024 x 768	Mono16						x*	* X * X * X * X * X * X	х
	0	1280 x 960	YUV422						X*	Х	Х
	1	1280 x 960	RGB8						×*	Х	X
	2	1280 x 960	Mono 8						x* x*	x x	X X
2	3	1600 x 1200	YUV422							х	Х
2	4	1600 x 1200	RGB8							х	Х
	5	1600 x 1200	Mono8							x x	X X
	6	1280 x 960	Mono16						X*	х	х
	7	1600 x 1200	Mono16							х	х

Table 97: Video fixed formats Pike F-1600B / F-1600C

 $x^* x^*$ Frame rates with asterisk * are only achievable in dual-tap mode.

Note

The following Format_7 tables show **default Format_7 modes** without Format_7 mode mapping.

- see Figure 102: Mapping of possible Format_7 modes to F7M1...F7M7 on page 178
- see Chapter Format_7 mode mapping on page 349

Format	Mode	Resolution	Color mode	Maximal S800 frame rates for Format_7 modes				
	0	4872 x 3248 4872 x 3248	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	3.1 fps 3.1 fps 2.7 fps 3.1 fps 2.7 fps 3.1 fps 1.8 fps 3.1 fps 3.1 fps				
	1	2436 x 3248	Mono8 Mono12 Mono16	3.1 fps 3.1 fps 3.1 fps	2x H-binning 2x H-binning 2x H-binning			
	2	4872 x 1624	Mono8 Mono12 Mono16	5.5 fps 5.5 fps 5.5 fps	2x V-binning 2x V-binning 2x V-binning			
	3	2436 x 1624	Mono8 Mono12 Mono16	5.3 fps 5.3 fps 5.3 fps	2x H+V binning 2x H+V binning 2x H+V binning			
7	4	2436 x 3248 2436 x 3248	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	2.2 fps 2.2 fps 2.2 fps 2.2 fps 2.2 fps 2.2 fps 2.2 fps 2.2 fps 2.2 fps 2.2 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling			
	5	4872 x 1624 4872 x 1624	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	4.0 fps 4.0 fps 4.0 fps 4.0 fps 4.0 fps 4.0 fps 3.7 fps 4.0 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling			
	6	2436 x 1624 2436 x 1624	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	4.0 fps 4.0 fps 4.0 fps 4.0 fps 4.0 fps 4.0 fps 4.0 fps 4.0 fps 4.0 fps	2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling			

Table 98: Video Format_7 default modes Pike F-1600B / F-1600C [dual-tap, maxBPP=11000]

Video formats, modes and bandwidth

Area of interest (AOI)

The camera's image sensor has a defined resolution. This indicates the maximum number of lines and pixels per line that the recorded image may have.

However, often only a certain section of the entire image is of interest. The amount of data to be transferred can be decreased by limiting the image to a section when reading it out from the camera. At a lower vertical resolution the sensor can be read out faster and thus the frame rate is increased.

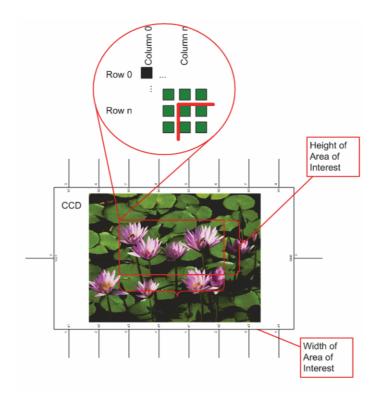
Note

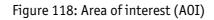
The setting of AOIs is supported only in video Format_7.

While the size of the image read out for most other video formats and modes is fixed by the IIDC specification, thereby determining the highest possible frame rate, in Format_7 mode the user can set the **upper left corner** and **width and height** of the section (area of interest = AOI) he is interested in to determine the size and thus the highest possible frame rate.

Setting the AOI is done in the IMAGE_POSITION and IMAGE_SIZE registers.

Pay attention to the increments entered in the UNIT_SIZE_INQ and UNIT_POSITION_INQ registers when configuring IMAGE_POSITION and IMAGE_SIZE.


AF_AREA_POSITION and AF_AREA_SIZE contain in the respective bits values for the column and line of the upper left corner and values for the width and height.



i)

For more information see Table 151: Format_7 control and status register on page 313.

- The left position + width and the upper position + height may not exceed the maximum resolution of the sensor.
 - The coordinates for width and height must be divisible by 4.

In addition to the AOI, some other parameters have an effect on the maximum frame rate:

- the time for reading the image from the sensor and transporting it into the FRAME_BUFFER
- the time for transferring the image over the FireWire[™] bus
- the length of the exposure time.

Video formats, modes and bandwidth

Autofunction AOI

Use this feature to select the image area (work area) on which the following autofunctions work:

- Auto shutter
- Auto gain
- Auto white balance

In the following screenshot you can see an example of the autofunction AOI:

Figure 119: Example of autofunction AOI (Show work area is on)

Autofunction AOI is independent from Format_7 AOI settings.

If you switch off autofunction AOI, work area position and work area size follow the current active image size.

To switch off autofunctions, carry out following actions in the order shown:

1. Uncheck **Show AOI** check box (SmartView **Ctrl2** tab).

2. Uncheck **Enable** check box (SmartView **Ctrl2** tab). Switch off Auto modi (e.g. **Shutter** and/or **Gain**) (SmartView **Ctrl2** tab).

As a reference it uses a grid of up to 65534 sample points equally spread over the AOI.

Configuration

To configure this feature in an advanced register see Chapter Autofunction AOI on page 337.

Frame rates

An IEEE 1394 camera requires bandwidth to transport images.

The IEEE 1394b bus has very large bandwidth of at least 62.5 MByte/s for transferring (isochronously) image data. Per cycle up to 8192 bytes (or around 2000 quadlets = 4 bytes@ 800 Mbit/s) can thus be transmitted.

Note

All bandwidth data is calculated with:

1 MByte = 1024 kByte

Depending on the video format settings and the configured frame rate, the camera requires a certain percentage of maximum available bandwidth. Clearly the bigger the image and the higher the frame rate, the more data is to be transmitted.

The following tables indicate the volume of data in various formats and modes to be sent within one cycle (125 μ s) at 800 Mbit/s of bandwidth.

The tables are divided into three formats:

Format	Resolution	max. Video Format
Format_0	up to VGA	640 x 480
Format_1	up to XGA	1024 x 768
Format_2	up to UXGA	1600 x 1200

Table 99: Overview fixed formats

They enable you to calculate the required bandwidth and to ascertain the number of cameras that can be operated independently on a bus and in which mode.

Format	Mode	Resolution	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps
0	0	160 x 120 YUV (4:4:4) 24 bit/pixel	4H 640p 480q	2H 320p 240q	1H 160p 120q	1/2H 80p 60q	1/4H 40p 30q	1/8H 20p 15q	
	1	320 x 240 YUV (4:2:2) 16 bit/pixel	8H 2560p 1280q	4H 1280p 640q	2H 640p 320q	1H 320p 160q	1/2H 160p 80q	1/4H 80p 40q	1/8H 40p 20q
	2	640 x 480 YUV (4:1:1) 12 bit/pixel		8H 5120p 1920q	4H 2560p 960q	2H 1280p 480q	1H 640p 240q	1/2H 320p 120q	1/4H 160p 60q
	3	640 x 480 YUV (4:2:2) 16 bit/pixel			4H 2560p 1280q	2H 1280p 640q	1H 640p 320q	1/2H 320p 160q	1/4H 160p 80q
	4	640 x 480 RGB 24 bit/pixel			4H 2560p 1280q	2H 1280p 960q	1H 640p 480q	1/2H 320p 240q	1/4H 160p 120q
	5	640 x 480 (Mono8) 8 bit/pixel		8H 5120p 1280q	4H 2560p 640q	2H 1280p 320q	1H 640p 160q	1/2H 320p 80q	1/4H 160 p40q
	6	640 x 480 Y (Mono16) 16 Bit/pixel			4H 2560p 1280q	2H 1280p 640q	1H 640p 320q	1/2H 320p 160q	1/4H 160p 80q
	7	Reserved							

Table 100: Format_0

As an example, VGA Mono8 @ 60 fps requires four lines (640 x 4 = 2560 pixels/ byte) to transmit every 125 μ s: this is a consequence of the sensor's line time of about 30 μ s, so that no data needs to be stored temporarily.

It takes 120 cycles ($120 \times 125 \mu s = 15 ms$) to transmit one frame, which arrives every 16.6 ms from the camera. Again no data need to be stored temporarily.

Thus around 64% of the available bandwidth (at S400) is used. Thus one camera can be connected to the bus at S400.

The same camera, run at S800 would require only 32% of the available bandwidth, due to the doubled speed. Thus up to three cameras can be connected to the bus at S800.

Format	Mode	Resolution	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	800 x 600 YUV (4:2:2)			5H	5/2H	5/4H	5/8H	6/16H	
		16 bit/pixel			4000p 2000q	2000p 1000q	1000p 500q	500p 250q	250p 125q	
	1	800 x 600 RGB				5/2H	5/4H	5/8H		
		24 bit/pixel				2000p 1500q	1000p 750q	500p 375q		
	2	800 x 600 Y (Mono8)		10H	5H	5/2H	5/4H	5/8H		
		8 bit/pixel		8000p 2000q	4000p 1000q	2000p 500q	1000p 250q	500p 125q		
	3	1024 x 768 YUV (4:2:2)				3H	3/2H	3/4H	3/8H	3/16H
1		16 bit/pixel				3072p 1536q	1536p 768q	768p 384q	384p 192q	192p 96q
1	4	1024 x 768 RGB					3/2H	3/4H	3/8H	3/16H
		24 bit/pixel					1536p 384q	768p 576q	384p 288q	192p 144q
	5	1024 x 768 Y (Mono)			6H	3H	3/2H	3/4H	3/8H	3/16H
		8 bit/pixel			6144p 1536q	3072p 768q	1536p 384q	768p 192q	384p 96q	192p 48q
	6	800 x 600 (Mono16)			5H	5/2H	5/4H	5/8H	5/16H	
		16 bit/pixel			4000p 2000q	2000p 1000q	1000p 500q	500p 250q	250p 125q	
	7	1024 x 768 Y (Mono16)				3H	3/2H	3/4H	3/8H	3/16H
		16 bit/pixel				3072p 1536q	1536p 768q	768p 384q	384p 192q	192p 96q

Table 101: Format_1

Format	Mode	Resolution	60	fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	1280 x 960 YUV (4:2:2)				2H 2560p	1H 1280p	1/2H 640p	1/4H 320p
		16 bit/pixel				1280q	640q	320q	160q
	1	1280 x 960 RGB				2H	1H 1280m	1/2H	1/4H
		24 bit/pixel				2560p 1920q	1280p 960q	640p 480q	320p 240q
	2	1280 x 960 Y (Mono8)			4H	2H	1H	1/2H	1/4H
		8 bit/pixel			5120p 1280q	2560p 640q	1280p 320q	640p 160q	320p 80q
	3	1600 x 1200 YUV(4:2:2)				5/2H	5/4H	5/8H	5/16H
2		16 bit/pixel				4000p 2000q	2000p 1000q	1000p 500q	500p 250q
L	4	1600 x 1200 RGB					5/4H	5/8H	5/16
		24 bit/pixel					2000p 1500q	1000p 750q	500p 375q
	5	1600 x 1200 Y (Mono) 8			5H	5/2H	5/4H	5/8H	5/16H
		bit/pixel			8000p 2000q	4000p 1000q	2000p 500q	1000p 250q	500p 125q
	6	1280 x 960 Y (Mono16)				2H	1H	1/2H	1/4H
		16 bit/pixel				2560p 1280q	1280p 640q	640p 320q	320p 160q
	7	1600 x 1200Y(Mono16)				5/2H	5/4H	5/8H	5/16H
		16 bit/pixel				4000p 2000q	2000p 1000q	1000p 500q	500p 250q

Table 102: Format_2

As already mentioned, the recommended limit for transferring isochronous image data is 2000q (quadlets) per cycle or 8192 bytes (with 800 Mbit/s of bandwidth).

Note

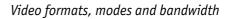
- If the cameras are operated with an external trigger the maximum trigger frequency may not exceed the highest continuous frame rate, so preventing frames from being dropped or corrupted.
- IEEE 1394 adapter cards with PCILynx™ chipsets (predecessor of OHCI) have a limit of 4000 bytes per cycle.

The frame rates in video modes 0 to 2 are specified and set fixed by IIDC V1.31.

Frame rates Format_7

In video Format_7 frame rates are no longer fixed.

- Different values apply for the different sensors.
- Frame rates may be further limited by longer shutter times and/or bandwidth limitation from the IEEE 1394 bus.


Details are described in the next chapters:

- Max. frame rate of CCD (theoretical formula) ٠
- Diagram of frame rates as function of AOI by const. width: the curves • describe RAW8, RAW12/YUV411, RAW16/YUV422, RGB8 and max. frame rate of CCD
- Table with max. frame rates as function of AOI by constant width ٠

Note

CCD = theoretical max. frame rate (in fps) of CCD according to given formula

maxBPP= 8192 according to IIDC V1.31

Pike F-032: AOI frame rates

max. frame rate of CCD = $\frac{1}{69.3\mu s + AOI \text{ height} \times 9.81\mu s + (490 - AOI \text{ height}) \times 0.81\mu s}$

Formula 6: Pike F-032: theoretical max. frame rate of CCD

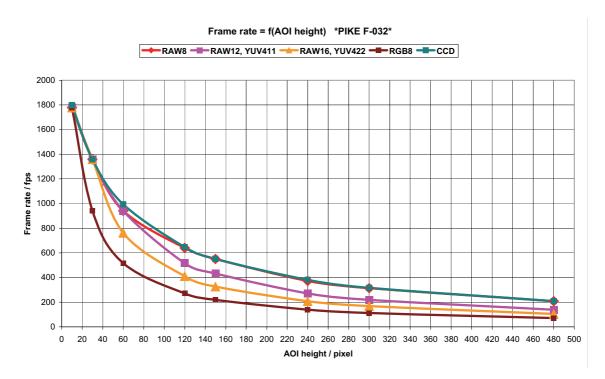
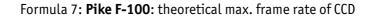
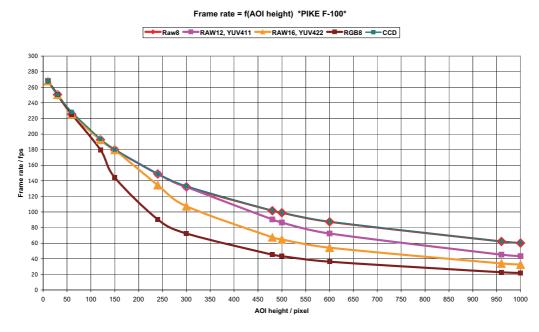


Figure 120: Frame rates Pike F-032 as function of AOI height [width=640]


AOI height	CCD	Raw8	Raw12	Raw16	YUV411	YUV422	RGB8
480	208.93	208	139	105	139	105	70
300	315.84	314	219	168	219	168	112
240	380.78	372	271	208	271	208	139
150	550.60	550	432	327	432	327	219
120	646.75	640	516	410	516	410	271
60	993.84	941	941	762	941	762	516
30	1358.33	1358	1358	1358	1358	1358	941
10	1797.91	1778	1778	1778	1778	1778	1778


Table 103: Frame rates (fps) of Pike F-032 as function of AOI height (pixel) [width=640]

Pike F-100: AOI frame rates

max. frame rate of CCD = $\frac{1}{174\mu s + AOI \text{ height} \times 16.40\mu s + (1008 - AOI \text{ height}) \times 3.4\mu s}$

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
1000	60.24	60	43	33	43	33	22
960	62.18	62	45	34	45	34	23
600	87.71	87	72	54	72	54	36
500	99.00	99	86	65	86	65	43
480	101.61	101	90	68	90	68	45
300	133.31	132	132	107	132	107	72
240	148.78	148	148	134	148	134	90
150	180.14	180	180	180	180	180	144
120	193.75	193	193	193	193	193	180
60	228.25	225	225	225	225	225	225
30	250.55	250	250	250	250	250	250
10	268.01	268	268	268	268	268	268

Table 104: Frame rates (fps) of Pike F-100 as function of AOI height (pixel) [width=1000]

Pike F-145: AOI frame rates (no sub-sampling)

max. frame rate of CCD = $\frac{1}{242\mu s + AOI \text{ height} \times 31.80\mu s + (1051 - AOI \text{ height}) \times 5.85\mu s}$

Formula 8: Pike F-145: theoretical max. frame rate of CCD (no sub-sampling)

Frame rate = f(AOI height) *PIKE F-145*

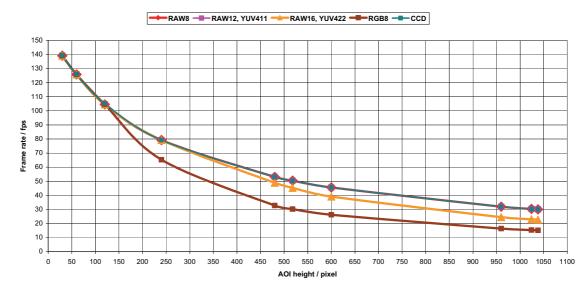


Figure 122: Frame rates **Pike F-145** as function of AOI height [width=1388]

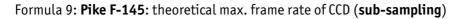

A0I height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
1038	30.01	30	30	23	30	23	15
1024	30.34	30	30	23	30	23	15
960	31.95	31	31	25	31	25	16
600	45.54	45	45	39	45	39	26
518	50.42	50	50	45	50	45	30
480	53.06	53	53	49	53	49	33
240	79.25	79	79	79	79	79	65
120	105.21	105	105	105	105	105	105
60	125.83	125	125	125	125	125	125
30	139.49	139	139	139	139	139	139

Table 105: Frame rates (fps) of Pike F-145 as function of AOI height (pixel) [width=1388]

Pike F-145: AOI frame rates (sub-sampling)

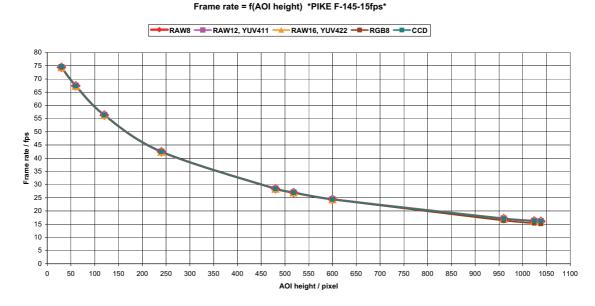
 $\frac{1}{242 \mu s + \text{AOI height} \times 1.5 \times 31.80 \mu s + (1051 - \text{AOI height} \times 1.5) \times 5.85 \mu s}$ max. frame rate of CCD =

Frame rate / fps 1000 1050 1100 AOI height / pixel

Frame rate = f(AOI height) *PIKE F-145 sub-sampling*

Figure 123: Frame rates Pike F-145 as function of AOI height [width=1388] (sub-sampling)

A0I height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
518	37.66	37	37	37	37	37	30
480	39.88	39	39	39	39	39	33
240	63.56	63	63	63	63	63	63
120	90.40	90	90	90	90	90	90
60	114.60	114	114	114	114	114	114
30	132.31	132	132	132	132	132	132
10	147.50	147	147	147	147	147	147


Table 106: Frame rates (fps) Pike F-145 as function of AOI height (pixel) [width=1388] (sub-sampl.)

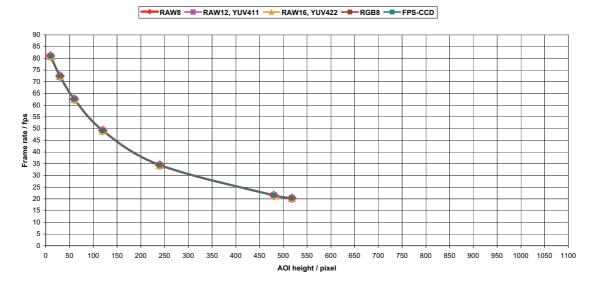
Pike F-145-15fps: AOI frame rates (no sub-sampl.)

max. frame rate of CCD = $\frac{1}{450\mu s + A0I \text{ height} \times 59.36\mu s + (1051 - A0I \text{ height}) \times 10.92\mu s}$

Formula 10: Pike F-145-15fps: theoretical max. frame rate of CCD (no sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
1038	16.08	16	16	16	16	16	15
1024	16.25	16	16	16	16	16	15
960	17.11	17	17	17	17	17	16
600	24.40	24	24	24	24	24	24
518	27.01	27	27	27	27	27	27
480	28.43	28	28	28	28	28	28
240	42.46	42	42	42	42	42	42
120	56.37	56	56	56	56	56	56
60	67.42	67	67	67	67	67	67
30	74.74	74	74	74	74	74	74

Table 107: Frame rates (fps) of Pike F-145-15fps as function of AOI height (pixel) [width=1388]



Pike F-145-15fps: AOI frame rates (sub-sampl.)

max. frame rate of CCD = $\frac{1}{450\mu s + A0I \text{ height} \times 1.5 \times 59.36\mu s + (1051 - A0I \text{ height} \times 1.5) \times 10.92\mu s}$

Formula 11: Pike F-145-15fps: theoretical max. frame rate of CCD (sub-sampling)

Frame rate = f(AOI height) *PIKE F-145-15fps sub-sampling*

Formula 12: Frame rates Pike F-145-15fps as function of AOI height [width=1388] (sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
518	20.18	20	20	20	20	20	20
480	21.37	21	21	21	21	21	21
240	34.05	34	34	34	34	34	34
120	48.44	48	48	48	48	48	48
60	61.40	61	61	61	61	61	61
30	70.89	70	70	70	70	70	70
10	79.03	79	79	79	79	79	79

Table 108: Frame rates of **Pike F-145-15fps** as function of AOI height [width=1388] (sub-sampl.)

Pike F-210: AOI frame rates (no sub-sampling)

max. frame rate of CCD = $\frac{1}{107\mu s + A0I \text{ height} \times 28.6\mu s + (1092 - A0I \text{ height}) \times 6.75\mu s}$

Formula 13: Pike F-210: theoretical max. frame rate of CCD (no sub-sampling)

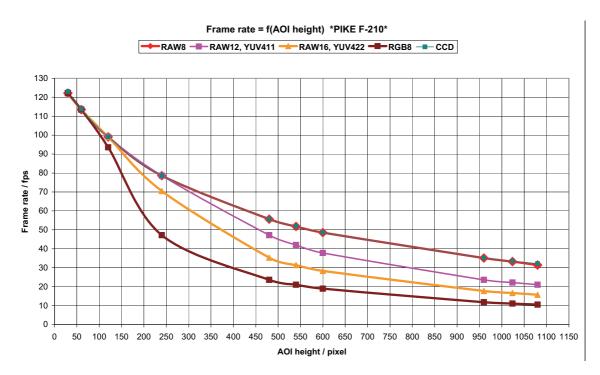


Table 109: Frame rates Pike F210 as function of AOI height [width=1000] (no sub-sampling)

A0I height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
1080	32.18	31	21	16	21	16	11
1024	33.50	33	22	17	22	17	11
960	35.14	35	24	18	24	18	12
600	48.57	48	38	28	38	28	19
540	51.88	51	42	31	42	31	21
480	55.66	55	47	35	47	35	24
240	78.60	78	78	70	78	70	47
120	99.01	99	99	99	99	99	94
60	113.78	113	113	113	113	113	113
30	122.95	122	122	122	122	122	122

Table 110: Frame rates of Pike F-210 as function of AOI height [width=1000] (no sub-sampl.)

Pike F-210: AOI frame rates (sub-sampling)

This camera does not support a speed increase with sub-sampling. To calculate the achievable frame rates:

Multiply the current image height by the sub-sampling factor, e.g.

- x 2 for 2 out of 4
- x 4 for 2 out of 8
- x 8 for 2 out of 16

No	Sub-sampling				
sub-sampling	2 out of 4	2 out of 8	2 out of 16		
A0I height x 1	A0I height x 2	AOI height x 4	AOI height x 8		
		At this mode, the camera is as fast as the camera with no sub-sampling and 4 x AOI height.	At this mode, the camera is as fast as the camera with no sub-sampling and 8 x AOI height		

Table 111: Frame rates for sub-sampling

Pike F-421: AOI frame rates

max. frame rate of CCD = $\frac{1}{125.2\mu s + AOI \text{ height} \times 30.10\mu s + (2072 - AOI \text{ height}) \times 3.37\mu s}$

Formula 14: Pike F-421: theoretical max. frame rate of CCD

Table 112: Frame rates **Pike F-421** as function of AOI height[width=2048]

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
2048	16.17	16	10	8	10	8	5
1200	25.52	25	18	13	18	13	9
1024	29.00	29	21	16	21	16	10
960	30.52	30	22	17	22	17	11
600	43.20	43	35	27	35	27	18
480	50.15	50	44	33	44	33	22
240	73.95	73	73	66	73	66	44
120	96.94	96	96	96	96	96	88
60	114.79	114	114	114	114	114	114
30	126.43	126	126	126	126	126	126

Table 113: Frame rates Pike F-421 as function of AOI height [width=2048]

Pike F-505: AOI frame rates

max. frame rate of CCD =
$$\frac{1}{636\mu s + A0I \text{ height} \times 33.10\mu s + (2069 - A0I \text{ height}) \times 10.34\mu s}$$

Formula 15: Pike F-505: theoretical max. frame rate of CCD

AOI frame rates with max. BPP = 8192

Frame rate = f(AOI height) *PIKE F-505* (max BPP = 8192)

PRWB PRW12, YUV411 RAW16, YUV422 RGBB CCD

Figure 125: Frame rates **Pike F-505** as function of AOI height [width=2452] (max BPP = 8192)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
2054	14.54	13	9	7	9	7	4
2048	14.57	13	9	7	9	7	4
1200	20.27	20	15	11	15	11	7
1024	22.06	22	17	13	17	13	9
960	22.79	22	18	14	18	14	9
600	28.02	28	28	22	28	22	15
480	30.35	30	30	28	30	28	18
240	36.37	36	36	36	36	36	36
120	40.39	40	40	40	40	40	40
60	42.74	42	42	42	42	42	42
30	44.03	44	44	44	44	44	44

Table 114: Frame rates Pike F-505 as function of AOI height (pixel) [width=2452] (maxBPP=8192)

Frame rate = f(AOI height) *PIKE F-505* (max BPP = 11000) RAW8 -RAW12, YUV411 -RAW16, YUV422 -RGB8 -CCD 50 45 40 35 **5** 30 25 rate Frame 20 15 -10 5 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 0 AOI height / pixel

AOI frame rates with max. BPP = 11000

Figure 126: Frame rates Pike F-505 as function of AOI height [width=2452] (ma	ax BPP = 11000)

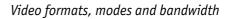
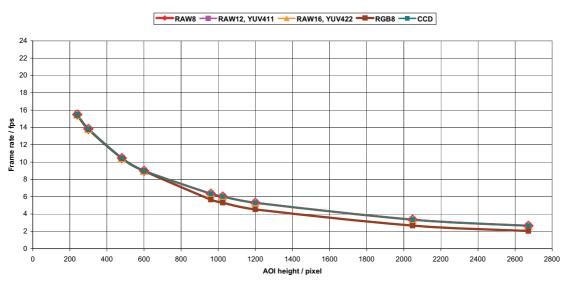

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
2054	14.54	14	12	9	12	9	6
2048	14.57	14	12	9	12	9	6
1200	20.27	20	20	15	20	15	10
1024	22.06	22	22	17	22	17	12
960	22.79	22	22	19	22	19	12
600	28.02	28	28	28	28	28	20
480	30.35	30	30	30	30	30	25
240	36.37	36	36	36	36	36	36
120	40.39	40	40	40	40	40	40
60	42.74	42	42	42	42	42	42
30	44.03	44	44	44	44	44	44

Table 115: Frame rates Pike F-505 as function of AOI height [width=2452] (maxBPP=11000)

CCD = theoretical max. frame rate (in fps) of CCD according to given formula

Pike F-1100: AOI frame rates


Pike F-1100: frame rate formula single-tap

All frame rates are valid for AOI top = 0. For AOIs with different positions the values may differ very slightly (first position after decimal point).

may frame rate of $(CD) =$	1
max. frame rate of CCD _{single-tap} =	833.11µs + (AOI height × 141.41µs) + (2721 – AOI height) × 12µs

Formula 16: Pike F-1100: theoretical max. frame rate CCD (maxBPP=8192, single-tap, no subsampl.)

AOI frame rates maxBPP=8192, single-tap, no sub-sampling

Frame rate = f(AOI height) *PIKE F-1100* (max BPP = 8192; single-tap; no sub-sampling)

Figure 127: Pike F-1100 [width=4008] (max BPP = 8192, single-tap, no sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
2672	2.636	2.6	2.6	2.6	2.6	2.6	2.0
2048	3.349	3.3	3.3	3.3	3.3	3.3	2.6
1200	5.297	5.2	5.2	5.2	5.2	5.2	4.5
1024	6.024	6.0	6.0	6.0	6.0	6.0	5.3
960	6.340	6.3	6.3	6.3	6.3	6.3	5.6
600	8.998	8.9	8.9	8.9	8.9	8.9	8.9
480	10.46	10.4	10.4	10.4	10.4	10.4	10.4
300	13.82	13.8	13.8	13.8	13.7	13.7	13.7
240	15.49	15.4	15.4	15.4	15.4	15.4	15.4

Table 116: Pike F-1100 [width=4008] (max BPP = 8192, single-tap, no sub-sampling)

← RAW8 - RAW12, YUV411 - RAW16, YUV422 - RGB8 - CCD Frame rate / fps AOI height / pixel

AOI frame rates maxBPP=8192, single-tap, sub-sampling

Frame rate = f(AOI height) *PIKE F-1100* (max BPP = 8192; single-tap; sub-sampling)

Figure 128: Pike F-1100 [width=4008] (maxBPP=8192, single-tap, sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
2672	1.811	1.8	1.8	1.8	1.8	1.8	1.8
2048	2.320	2.3	2.3	2.3	2.3	2.3	2.3
1200	3.753	3.7	3.7	3.7	3.7	3.7	3.7
1024	4.305	4.3	4.3	4.3	4.2	4.2	4.2
960	4.548	4.5	4.5	4.5	4.5	4.5	4.5
600	6.668	6.6	6.6	6.6	6.6	6.6	6.6
480	7.895	7.8	7.8	7.8	7.8	7.8	7.8
300	10.90	10.9	10.9	10.9	10.8	10.8	10.8
240	12.48	12.4	12.4	12.4	12.4	12.4	12.4

Table 117: Pike F-1100 [width=4008] (maxBPP=8192, single-tap, sub-sampling)

Note

CCD = theoretical max. frame rate (in fps) of CCD maxBPP=8192 according to IIDC V1.31

Pike F-1100: frame rate formula dual-tap

All frame rates are valid for AOI top = 0. For AOIs with different positions the values may differ very slightly (first position after decimal point).

max. frame rate of $CCD_{dual-tap} = \frac{1}{518.13\mu s + (AOI height \times 74.85\mu s) + (2721 - AOI height) \times 12\mu s}$

Formula 17: Pike F-1100: theoretical max. frame rate of CCD (maxBPP=8192, dual-tap, no subsampl.)

AOI frame rates maxBPP=8192, dual-tap, no sub-sampling

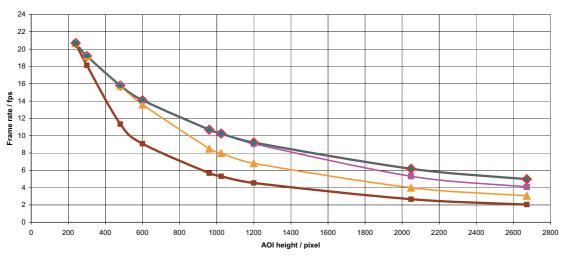


Figure 129: Pike F-1100 [width=4008] (maxBPP=8192, dual-tap, no sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
2672	4.972	4.9	4.0	3.0	4.0	3.0	2.0
2048	6.177	6.1	5.3	3.9	5.3	3.9	2.6
1200	9.208	9.2	9.0	6.8	9.0	6.8	4.5
1024	10.25	10.2	10.2	7.9	10.2	7.9	5.3
960	10.69	10.6	10.6	8.5	10.6	7.9	5.6
600	14.10	14.0	14.0	13.5	14.0	13.5	9.0
480	15.78	15.7	15.7	15.7	15.7	15.7	11.3
300	19.22	19.2	19.2	19.2	19.1	19.1	18.1
240	20.72	20.6	20.6	20.6	20.6	20.6	20.6

Table 118: Pike F-1100 [width=4008] (maxBPP=8192, dual-tap, no sub-sampling)

AOI frame rates maxBPP=8192, dual-tap, sub-sampling

Frame rate = f(AOI height) *PIKE F-1100* (max BPP = 8192; dual-tap; sub-sampling)

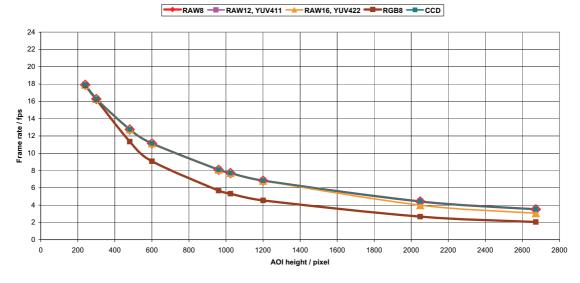
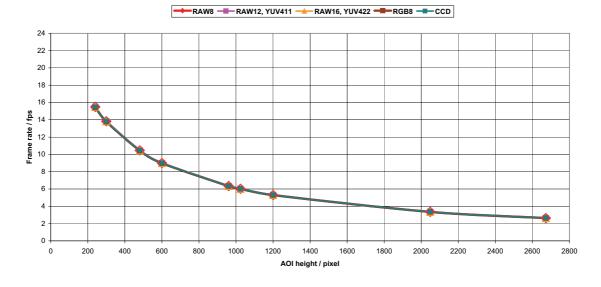


Figure 130: Pike F-1100 [width=4008] (maxBPP=8192, dual-tap, sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
2672	3.507	3.5	3.5	3.0	3.5	3.0	2.0
2048	4.419	4.4	4.4	3.9	4.4	3.9	2.6
1200	6.835	6.8	6.8	6.8	6.8	6.8	4.5
1024	7.709	7.7	7.7	7.7	7.6	7.6	5.3
960	8.085	8.0	8.0	8.0	8.0	8.0	5.6
600	11.14	11.1	11.1	11.1	11.1	11.1	9.0
480	12.75	12.7	12.7	12.7	12.7	12.7	11.3
300	16.27	16.2	16.2	16.2	16.2	16.2	16.2
240	17.92	17.9	17.9	17.9	17.8	17.8	17.8

Table 119: Pike F-1100 [width=4008] (maxBPP=8192, dual-tap, sub-sampling)

Note


CCD = theoretical max. frame rate (in fps) of CCD maxBPP=8192 according to IIDC V1.31

AOI frame rates maxBPP=11000, single-tap, no sub-sampl.

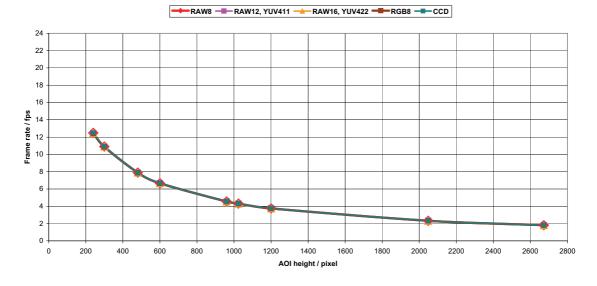
Frame rate = f(AOI height) *PIKE F-1100* (max BPP = 11000; single-tap; no sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
2672	2.636	2.6	2.6	2.6	2.6	2.6	2.6
2048	3.349	3.3	3.3	3.3	3.3	3.3	3.3
1200	5.297	5.2	5.2	5.2	5.2	5.2	5.2
1024	6.024	6.0	6.0	6.0	6.0	6.0	6.0
960	6.340	6.3	6.3	6.3	6.3	6.3	6.3
600	8.998	8.9	8.9	8.9	8.9	8.9	8.9
480	10.46	10.4	10.4	10.4	10.4	10.4	10.4
300	13.82	13.8	13.8	13.8	13.7	13.7	13.7
240	15.49	15.4	15.4	15.4	15.4	15.4	15.4

Figure 131: Pike F-1100 [width=4008] (maxBPP=11000, single-tap, no sub-sampling)

Figure 132: Pike F-1100 [width=4008] (maxBPP=11000, single-tap, no sub-sampling)

Note


CCD = theoretical max. frame rate (in fps) of CCD

AOI frame rates max**BPP=11000**, single-tap, sub-sampl.

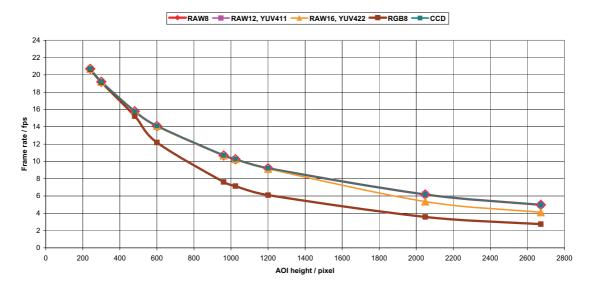
Frame rate = f(AOI height) *PIKE F-1100* (max BPP = 11000; single-tap; sub-sampling)

Figure 133: Pike F-1100 [width=4008] (maxBPP=11000, single-tap, sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
2672	1.811	1.8	1.8	1.8	1.8	1.8	1.8
2048	2.320	2.3	2.3	2.3	2.3	2.3	2.3
1200	3.753	3.7	3.7	3.7	3.7	3.7	3.7
1024	4.305	4.3	4.3	4.3	4.2	4.2	4.2
960	4.548	4.5	4.5	4.5	4.5	4.5	4.5
600	6.687	6.6	6.6	6.6	6.6	6.6	6.6
480	7.895	7.8	7.8	7.8	7.8	7.8	7.8
300	10.90	10.9	10.9	10.9	10.8	10.8	10.8
240	12.48	12.4	12.4	12.4	12.4	12.4	12.4

Table 120: Pike F-1100 [width=4008] (maxBPP=11000, single-tap, sub-sampling)

Note


CCD = theoretical max. frame rate (in fps) of CCD

AOI frame rates max**BPP**=11000, **dual**-tap, no sub-sampl.

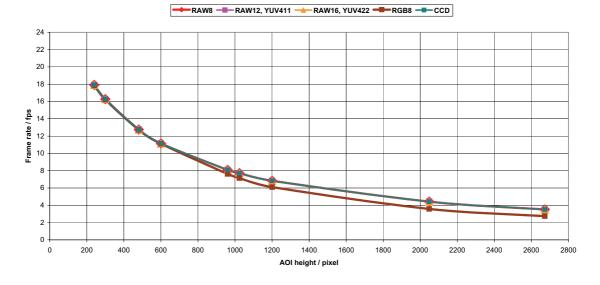
Frame rate = f(AOI height) *PIKE F-1100* (max BPP = 11000; dual-tap; no sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
2672	4.972	4.9	4.9	4.1	4.9	4.1	2.7
2048	6.177	6.1	6.1	5.3	6.1	5.3	3.5
1200	9.208	9.2	9.2	9.1	9.1	9.1	6.0
1024	10.25	10.2	10.2	10.2	10.2	10.2	7.1
960	10.69	10.6	10.6	10.6	10.6	10.6	7.6
600	14.10	14.0	14.0	14.0	14.0	14.0	12.1
480	15.78	15.7	15.7	15.7	15.7	15.7	15.2
300	19.22	19.2	19.2	19.2	19.1	19.1	19.1
240	20.72	20.6	20.6	20.6	20.6	20.6	20.6

Figure 134: Pike F-1100 [width=4008] (max BPP=11000, dual-tap, no sub-sampling)

Table 121: Pike F-1100 [width=4008] (maxBPP=11000, dual-tap, no sub-sampling)

Note


CCD = theoretical max. frame rate (in fps) of CCD

AOI frame rates max**BPP**=11000, **dual**-tap, sub-sampl.

Frame rate = f(AOI height) *PIKE F-1100* (max BPP = 11000; dual-tap; sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
2672	3.507	3.5	3.5	3.5	3.5	3.5	2.7
2048	4.419	4.4	4.4	4.4	4.4	4.4	3.5
1200	6.835	6.8	6.8	6.8	6.8	6.8	6.0
1024	7.709	7.7	7.7	7.7	7.6	7.6	7.1
960	8.085	8.0	8.0	8.0	8.0	8.0	7.6
600	11.14	11.1	11.1	11.1	11.1	11.1	11.1
480	12.75	12.7	12.7	12.7	12.7	12.7	12.7
300	16.27	16.2	16.2	16.2	16.2	16.2	16.2
240	17.92	17.9	17.9	17.9	17.8	17.8	17.8

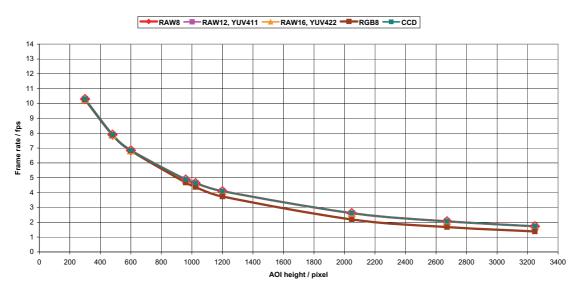
Figure 135: Pike F-1100 [width=4008] (maxBPP=11000, dual-tap, sub-sampling)

Table 122: Pike F-1100 [width=4008] (maxBPP=11000, dual-tap, sub-sampling)

Note

CCD = theoretical max. frame rate (in fps) of CCD

Pike F-1600: AOI frame rates


Pike F-1600: frame rate formula single-tap

All frame rates are valid for AOI top = 0. For AOIs with different positions the values may differ very slightly (first position after decimal point).

max. frame rate of $CCD_{single-tap} = \frac{1}{1778.12\mu s + AOI height \times 177.05\mu s + (3324 - AOI height) \times 13.64\mu s}$

Formula 18: **Pike F-1600**: theoretical max. frame rate CCD (maxBPP=8192, **single**-tap, no subsampl.)

AOI frame rates maxBPP=8192, single-tap, no sub-sampling

Frame rate = f(AOI height) *PIKE F-1600* (maxBPP=8192; single-tap; no sub-sampling)

Figure 136: Pike F-1600 [width=4872] (max BPP = 8192, single-tap, no sub-sampling)

A0I height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
3248	1.727	1.7	1.7	1.7	1.7	1.7	1.3
2672	2.063	2.0	2.0	2.0	2.0	2.0	1.6
2048	2.612	2.6	2.6	2.6	2.6	2.6	2.1
1200	4.095	4.0	4.0	4.0	4.0	4.0	3.7
1024	4.641	4.6	4.6	4.6	4.6	4.6	4.3
960	4.878	4.8	4.8	4.8	4.8	4.8	4.6
600	6.842	6.8	6.8	6.8	6.8	6.8	6.8
480	7.902	7.9	7.9	7.9	7.8	7.8	7.8
300	10.29	10.2	10.2	10.2	10.2	10.2	10.2

Table 123: Pike F-1600 [width=4872] (maxBPP=8192, single-tap, no sub-sampling)

AOI frame rates maxBPP=8192, single-tap, sub-sampling

Frame rate = f(AOI height) *PIKE F-1600* (maxBPP=8192; single-tap; sub-sampling)



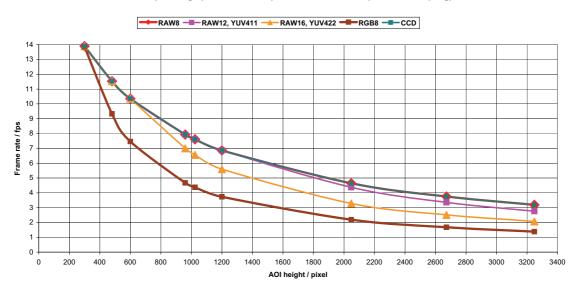
Figure 137: Pike F-1600 [width=4872] (max BPP = 8192, single-tap, sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
3248	1.184	1.1	1.1	1.1	1.1	1.1	1.1
2672	1.422	1.4	1.4	1.4	1.4	1.4	1.4
2048	1.817	1.8	1.8	1.8	1.8	1.8	1.8
1200	2.921	2.9	2.9	2.9	2.9	2.9	2.9
1024	3.343	3.3	3.3	3.3	3.3	3.3	3.3
960	3.528	3.5	3.5	3.5	3.5	3.5	3.5
600	5.123	5.1	5.1	5.1	5.1	5.1	5.1
480	6.033	6.03	6.03	6.03	6.01	6.01	6.01
300	8.221	8.22	8.22	8.22	8.18	8.18	8.18

Table 124: Pike F-1600 [width=4872] (maxBPP=8192, single-tap, sub-sampling)

Note

CCD = theoretical max. frame rate (in fps) of CCD maxBPP=8192 according to IIDC V1.31


Pike F-1600: frame rate formula dual-tap

All frame rates are valid for AOI top = 0. For AOIs with different positions the values may differ very slightly (first position after decimal point).

max. frame rate of $CCD_{dual-tap} = \frac{1}{1534\mu s + A0I \text{ height} \times 95.67\mu s + (3324 - A0I \text{ height}) \times 13.64\mu s}$

Formula 19: Pike F-1600: theoretical max. frame rate of CCD (maxBPP=8192, dual-tap, no subsampl.)

AOI frame rates maxBPP=8192, dual-tap, no sub-sampling

Frame rate = f(AOI height) *PIKE F-1600* (maxBPP=8192; dual-tap; no sub-sampling)

Figure 138: Pike F-1600 [width=4872] (max BPP = 8192, dual-tap, no sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
3248	3.186	3.18	2.76	2.07	2.76	2.07	1.38
2672	3.751	3.75	3.35	2.51	3.35	2.51	1.67
2048	4.643	4.64	4.37	3.28	4.37	3.28	2.18
1200	6.858	6.85	6.85	5.60	6.85	5.60	3.73
1024	7.612	7.61	7.61	6.56	7.60	6.56	4.37
960	7.929	7.92	7.92	7.00	7.91	7.00	4.66
600	10.35	10.3	10.3	10.3	10.3	10.3	7.46
480	11.52	11.5	11.5	11.5	11.5	11.5	9.32
300	13.89	13.8	13.8	13.8	13.8	13.8	13.8

Table 125: Pike F-1600 [width=4872] (maxBPP=8192, dual-tap, no sub-sampling)

AOI frame rates maxBPP=8192, dual-tap, sub-sampling

Frame rate = f(AOI height) *PIKE F-1600* (maxBPP=8192; dual-tap; sub-sampling)

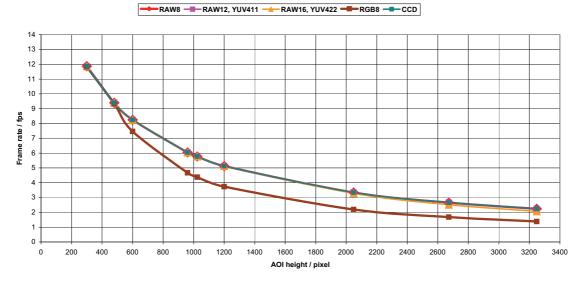


Figure 139: Pike F-1600 [width=4872] (max BPP = 8192, dual-tap, sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
3248	2.237	2.23	2.23	2.07	2.23	2.07	1.38
2672	2.658	2.65	2.65	2.51	2.65	2.51	1.67
2048	3.340	3.34	3.34	3.28	3.33	3.28	2.18
1200	5.127	5.12	5.12	5.12	5.12	5.12	3.73
1024	5.768	5.76	5.76	5.76	5.76	5.76	4.37
960	6.042	6.04	6.04	6.04	6.03	6.03	4.66
600	8.251	8.25	8.25	8.25	8.23	8.23	7.46
480	9.396	9.39	9.39	9.39	9.37	9.37	9.32
300	11.86	11.8	11.8	11.8	11.8	11.8	11.8

Table 126: Pike F-1600 [width=4872] (maxBPP=8192, dual-tap, sub-sampling)

Note

CCD = theoretical max. frame rate (in fps) of CCD maxBPP=8192 according to IIDC V1.31

AOI frame rates maxBPP=16000, single-tap, no sub-sampl.

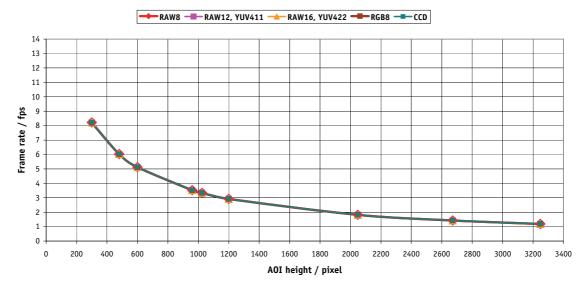
RAW8 -RAW12, YUV411 ---- RAW16, YUV422 -RGB8 -CCD Frame rate / fps AOI height / pixel

Frame rate = f(AOI height) *PIKE F-1600* (maxBPP=11000; single-tap; no sub-sampling)

Figure 140: Pike F-1600 [width=4872] (max BPP = 11000, single-tap, no sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
3248	1.727	1.72	1.72	1.72	1.72	1.72	1.72
2672	2.063	2.06	2.06	2.06	2.06	2.06	2.06
2048	2.612	2.61	2.61	2.61	2.61	2.61	2.61
1200	4.095	4.09	4.09	4.09	4.08	4.08	4.08
1024	4.641	4.64	4.64	4.64	4.63	4.63	4.63
960	4.878	4.87	4.87	4.87	4.87	4.87	4.87
600	6.842	6.84	6.84	6.84	6.82	6.82	6.82
480	7.902	7.90	7.90	7.90	7.88	7.88	7.88
300	10.29	10.2	10.2	10.2	10.2	10.2	10.2

Table 127: Pike F-1600 [width=4872] (maxBPP=11000, single-tap, no sub-sampling)


Note

CCD = theoretical max. frame rate (in fps) of CCD

AOI frame rates maxBPP=11000, single-tap, sub-sampling

Frame rate = f(AOI height) *PIKE F-1600* (maxBPP=11000; single-tap; sub-sampling)

Figure 141: Pike F-1600 [width=4872] (max BPP = 11000, single-tap, sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
3248	1.184	1.18	1.18	1.18	1.18	1.18	1.18
2672	1.422	1.42	1.42	1.42	1.42	1.42	1.42
2048	1.817	1.81	1.81	1.81	1.81	1.81	1.81
1200	2.921	2.92	2.92	2.92	2.91	2.91	2.91
1024	3.343	3.34	3.34	3.34	3.33	3.33	3.33
960	3.528	3.52	3.52	3.52	3.52	3.52	3.52
600	5.123	5.12	5.12	5.12	5.11	5.11	5.11
480	6.033	6.03	6.03	6.03	6.01	6.01	6.01
300	8.221	8.22	8.22	8.22	8.18	8.18	8.18

Table 128: Pike F-1600 [width=4872] (maxBPP=11000, single-tap, sub-sampling)

Note

CCD = theoretical max. frame rate (in fps) of CCD

RAW8 -RAW12, YUV411 ---- RAW16, YUV422 -RGB8 --- CCD Frame rate / fps AOI height / pixel

Frame rate = f(AOI height) *PIKE F-1600* (maxBPP=11000; dual-tap; no sub-sampling)

AOI frame rates maxBPP=11000, dual-tap, no sub-sampling

Figure 142: **Pike F-1600** [width=4872] (max BPP = 11000, dual-tap, no sub-sampling)

A0I height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
3248	3.186	3.18	3.18	2.77	3.18	2.77	1.85
2672	3.751	3.75	3.75	3.37	3.74	3.37	2.25
2048	4.643	4.64	4.64	4.40	4.63	4.40	2.93
1200	6.858	6.85	6.85	6.85	6.85	6.85	5.01
1024	7.612	7.61	7.61	7.61	7.60	7.60	5.87
960	7.929	7.92	7.92	7.92	7.91	7.91	6.26
600	10.35	10.3	10.3	10.3	10.3	10.3	10.0
480	11.52	11.5	11.5	11.5	11.5	11.5	11.5
300	13.89	13.8	13.8	13.8	13.8	13.8	13.8

Table 129: Pike F-1600 [width=4872] (maxBPP=11000, dual-tap, no sub-sampling)

Note

CCD = theoretical max. frame rate (in fps) of CCD

AOI frame rates maxBPP=11000, dual-tap, sub-sampling

Frame rate = f(AOI height) *PIKE F-1600* (maxBPP=11000; dual-tap; sub-sampling)

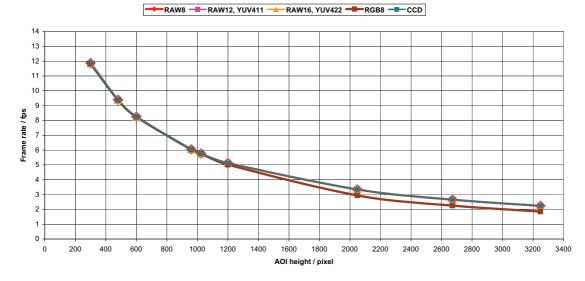


Figure 143: Pike F-1600 [width=4872] (max BPP = 11000, dual-tap, sub-sampling)

AOI height	CCD	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
3248	2.237	2.23	2.23	2.23	2.23	2.23	1.85
2672	2.658	2.65	2.65	2.65	2.65	2.65	2.25
2048	3.340	3.34	3.34	3.34	3.33	3.33	2.93
1200	5.127	5.12	5.12	5.12	5.12	5.12	5.01
1024	5.768	5.76	5.76	5.76	5.76	5.76	5.76
960	6.042	6.04	6.04	6.04	6.03	6.03	6.03
600	8.251	8.25	8.25	8.25	8.23	8.23	8.23
480	9.396	9.39	9.39	9.39	9.37	9.37	9.37
300	11.86	11.8	11.8	11.8	11.8	11.8	11.8

Table 130: Pike F-1600 [width=4872] (maxBPP=11000, dual-tap, sub-sampling)

Note

CCD = theoretical max. frame rate (in fps) of CCD

How does bandwidth affect the frame rate?

In some modes the IEEE 1394b bus limits the attainable frame rate. According to the 1394b specification on isochronous transfer, the largest data payload size of 8192 bytes per 125 μ s cycle is possible with bandwidth of 800 Mbit/s. In addition, there is a limitation, only a maximum number of 65535 (2¹⁶-1) packets per frame are allowed.

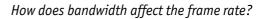
The following formula establishes the relationship between the required Byte_Per_Packet size and certain variables for the image. It is valid only for Format_7.

```
BYTE_PER_PACKET = frame rate [1/s] \times AOI_WIDTH \times AOI_HEIGHT \times ByteDepth [byte] \times 125 [\mu s]
```

Formula 20: Byte_per_Packet calculation (only Format_7)

If the value for **BYTE_PER_PACKET** is greater than 8192 (the maximum data payload), the sought-after frame rate cannot be attained. The attainable frame rate can be calculated using this formula:

(Provision: BYTE_PER_PACKET is divisible by 4):


 $frame \ rate \approx \frac{BYTE_PER_PACKET \ [byte]}{AOI_WIDTH \times AOI_HEIGHT \times ByteDepth \ [byte] \times 125 \ [\mu s]}$

Formula 21: Maximum frame rate calculation

ByteDepth based on the following values:

Mode	bit/pixel	byte per pixel
Mono8, Raw8	8	1
Mono16, Raw16	16	2
YUV4:2:2	16	2
YUV4:1:1	12	1.5
RGB8	24	3

Table 131: ByteDepth

Example formula for the b/w camera

Mono16, 1392 x 1040, 30 fps desired

BYTE_PER_PACKET = $30 1/s \times 1392 \times 1040 \times 2$ byte $\times 125\mu s$ = 10856 byte > 8192 byte

 $\Rightarrow \text{ frame rate}_{\text{reachable}} \approx \frac{8192 \text{ byte}}{1392 \times 1040 \times 2 \text{ byte} \times 125 \mu \text{s}} = 22.64 \text{ 1/s}$

Formula 22: Example maximum frame rate calculation

Test images

FirePackage	Direct FirePackage	Fire4Linux
1. Start SmartView.	1. Start SmartView for WDM.	1. Start cc1394 viewer.
2. Click the Edit settings button.	2. In Camera menu click Settings .	2. In Adjustments menu click on Picture Control .
3. Click Adv1 tab.	3. Click Adv1 tab.	3. Click Main tab.
4. In combo box Test images choose Image 1 or another	4. In combo box Test images choose Image 1 or another	4. Activate Test image check box on.
test image.	test image.	5. In combo box Test images choose Image 1 or another test image.

Loading test images

Table 132: Loading test images in different viewers

Test images for b/w cameras

The b/w cameras have two test images that look the same. Both images show a gray bar running diagonally (mirrored at the middle axis).

- Image 1 is static.
- Image 2 moves upwards by 1 pixel/frame.

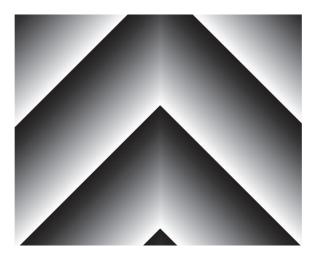


Figure 144: Gray bar test image

Test images for color cameras

The color cameras have 1 test image:

YUV4:2:2 mode

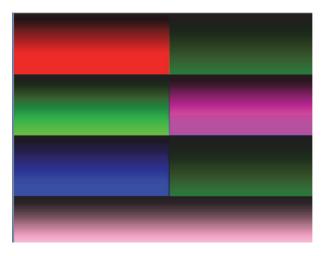


Figure 145: Color test image

Mono8 (raw data)

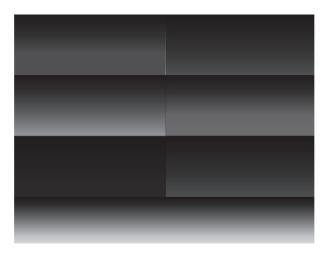


Figure 146: Bayer-coded test image

The color camera outputs Bayer-coded raw data in Mono8 instead of (as described in IIDC V1.31) a real Y signal.

The first pixel of the image is always the **red** pixel from the sensor. (Mirror must be switched off.)

Configuration of the camera

All camera settings are made by writing specific values into the corresponding registers.

This applies to:

- values for general operating states such as video formats and modes, exposure times, etc.
- extended features of the camera that are turned on and off and controlled via corresponding registers (so-called advanced registers).

Camera_Status_Register

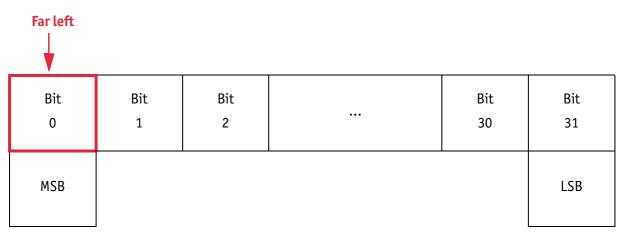
The interoperability of cameras from different manufacturers is ensured by IIDC, formerly DCAM (Digital Camera Specification), published by the IEEE 1394 Trade Association.

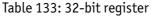
IIDC is primarily concerned with setting memory addresses (e.g. CSR: Camera_Status_Register) and their meaning.

In principle all addresses in IEEE 1394 networks are 64 bits long.

The first 10 bits describe the Bus_Id, the next 6 bits the Node_Id.

Of the subsequent 48 bits, the first 16 bits are always FFFFh, leaving the description for the Camera_Status_Register in the last 32 bits.


If in the following, mention is made of a CSR FOFO0600h, this means in full:


Bus_Id, Node_Id, FFFF F0F00600h

Writing and reading to and from the register can be done with programs such as **FireView** or by other programs developed using an API library (e.g. **FirePackage**).

Every register is 32 bit (big endian) and implemented as follows (MSB = Most Significant Bit; LSB = Least Significant Bit):

Example

This requires, for example, that to enable **ISO_Enabled mode** (see Chapter ISO_Enable / free-run on page 215), (bit 0 in register 614h), the value 80000000 h must be written in the corresponding register.

Configuration of the camera

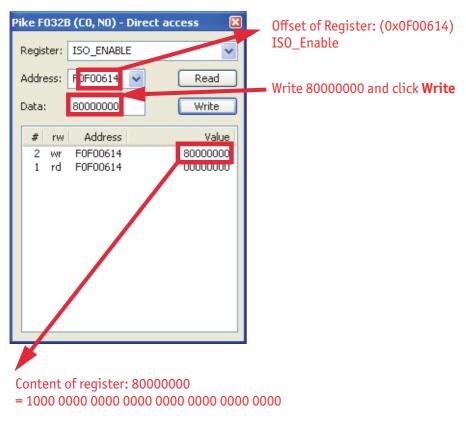
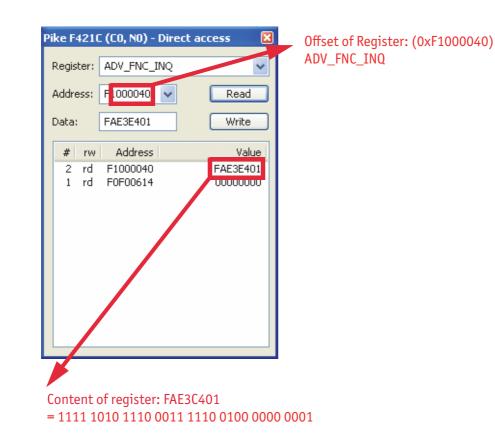



Figure 147: Enabling ISO_Enable

Table 134: Configuring the camera (Pike F-421C)

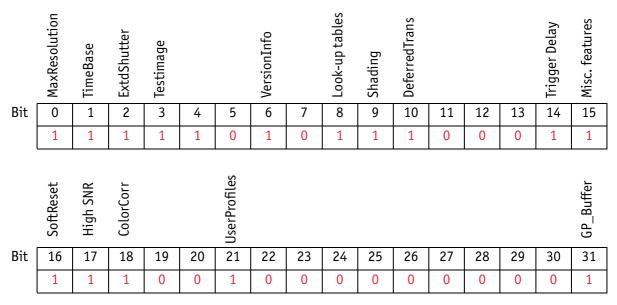


Table 135: Configuring the camera: registers

Configuration of the camera

Sample program

The following sample code in C/C++ shows how the register is set for video mode/format, trigger mode etc. using the **FireGrab** and **FireStack API**.

Example FireGrab

// Set Videoformat
if(Result==FCE_NOERROR)
Result= Camera.SetParameter(FGP_IMAGEFORMAT,MAKEIMAGEFORMAT(RES_640_480, CM_Y8, FR_15));

// Set external Trigger
if(Result==FCE_NOERROR)
Result= Camera.SetParameter(FGP_TRIGGER,MAKETRIGGER(1,0,0,0,0));

// Start DMA logic
if(Result==FCE_NOERROR)
Result=Camera.OpenCapture();

// Start image device
if(Result==FCE_NOERROR)
Result=Camera.StartDevice();

•••

Example FireStack API

// Set framerate

Result=WriteQuad(HIGHOFFSET,m_Props.CmdRegBase+CCR_FRAMERATE,(UINT32)m_Parms.FrameRate<<29);

// Set mode
if(Result)

Result=WriteQuad(HIGHOFFSET,m_Props.CmdRegBase+CCR_VMODE,(UINT32)m_Parms.VideoMode<<29);

// Set format
if(Result)

Result=WriteQuad(HIGHOFFSET,m_Props.CmdRegBase+CCR_VFORMAT,(UINT32)m_Parms.VideoFormat<<29);

```
// Set trigger
if(Result)
{
    Mode=0;
    if(m_Parms.TriggerMode==TM_EXTERN)
    Mode=0x82000000;
    if(m_Parms.TriggerMode==TM_MODE15)
    Mode=0x820F0000;
    WriteQuad(HIGHOFFSET,m_Props.CmdRegBase+CCR_TRGMODE,Mode);
}
// Start continous ISO if not oneshot triggermode
if(Result && m_Parms.TriggerMode!=TM_ONESHOT)
Result=WriteQuad(HIGHOFFSET,m_Props.CmdRegBase+CCR_ISOENABLE,0x80000000);
```

•••

Configuration ROM

The information in the Configuration ROM is needed to identify the node, its capabilities and which drivers are required.

The base address for the **configuration ROM** for all registers is FFFF F0000000h.

Note

If you want to use the **DirectControl** program to read or write to a register, enter the following value in the Address field:

F0F00000h + Offset

The ConfigRom is divided into

- Bus info block: providing critical information about the bus-related capabilities
- Root directory: specifying the rest of the content and organization, such as:
 - Node unique ID leaf
 - Unit directory and
 - Unit dependant info

The base address of the camera control register is calculated as follows based on the camera-specific base address:

	Offset	0-7	8-15	16-23	24-31
	400h	04	29	00	CO
Bus info block	404h	31	33	39	34
Bus mit block	408h	20	00	B2	03
	40Ch	00	0A	47	01
	410h		Serial	number	
	414h	00	04	B7	85
	418h	03	00	0A	47
Root directory	41Ch	00	00	83	CO
	420h	8D	00	00	02
	424h	D1	00	00	04

Table 136: Configuration ROM

The entry with key 8D in the root directory (420h in this case) provides the offset for the Node unique ID leaf.

To compute the effective start address of the node unique ID leaf:

To compute	To compute the effective start address of the node unique ID leaf					
currAddr	= node unique ID leaf address					
destAddr	= address of directory entry					
addr0ffset	= value of directory entry					
destAddr	= currAddr + (4 * addrOffset)					
	= 420h + (4 * 000002h)					
	= 428h					

Table 137: Computing effective start address

420h + 000002 * 4 = 428h

	Offset	0-7	8-15	16-23	24-31	
	428h	00	02	5E	9E	CRC
Node unique ID leaf	42Ch	00	0A	47	01	Node_Vendor_Id,Chip_id_hi
	430h	00	00	Serial nu	imber	

Table 138: Config ROM

The entry with key D1 in the root directory (424h in this case) provides the offset for the unit directory as follows:

424h + 000004 * 4 = 434h

	Offset	0-7	8-15	16-23	24-31
>	- 434h	00	03	93	7D
Unit directory	438h	12	00	A0	2D
	43Ch	13	00	01	02
	440h	D4	00	00	01

Table 139: Config ROM

The entry with key D4 in the unit directory (440h in this case) provides the offset for unit dependent info:

440h + 000001 * 4 = 444h

	Offset	0-7	8-15	16-23	24-31	
─ ►	444h	00	0B	A9	6E	unit_dep_info_length, CRC
Unit dependent info	448h	40	3C	00	00	command_regs_base
	44Ch	81	00	00	02	vender_name_leaf
	450h	82	00	00	06	model_name_leaf
	454h	38	00	00	10	unit_sub_sw_version
	458h	39	00	00	00	Reserved
	45Ch	3A	00	00	00	Reserved
	460h	3B	00	00	00	Reserved
	464h	3C	00	01	00	vendor_unique_info_0
	468h	3D	00	92	00	vendor_unique_info_1
	46Ch	3E	00	00	65	vendor_unique_info_2
	470h	3F	00	00	00	vendor_unique_info_3

Table 140: Config ROM

And finally, the entry with key 40 (448h in this case) provides the offset for the camera control register:

FFFF F0000000h + 3C0000h * 4 = FFFF F0F00000h

The base address of the camera control register is thus:

FFFF F0F00000h

The offset entered in the table always refers to the base address of F0F00000h.

Implemented registers

The following tables show how standard registers from IIDC V1.31 are implemented in the camera. Base address is FOFO0000h. Differences and explanations can be found in the third column.

Camera initialize register

Offset	Name	Description
000h	INITIALIZE	Assert MSB = 1 for Init.

Table 141: Camera initialize register

Inquiry register for video format

Offset	Name	Field	Bit	Description
100h	V_FORMAT_INQ	Format_0	[0]	Up to VGA (non compressed)
		Format_1	[1]	SVGA to XGA
		Format_2	[2]	SXGA to UXGA
		Format_3	[35]	Reserved
		Format_6	[6]	Still Image Format
		Format_7	[7]	Partial Image Format
			[831]	Reserved

Table 142: Format inquiry register

Inquiry register for video mode

Offset	Name	Field	Bit	Description	Color mode
180h	V_MODE_INQ	Mode_0	[0]	160 x 120	YUV 4:4:4
	(Format_0)	Mode_1	[1]	320 x 240	YUV 4:2:2
		Mode_2	[2]	640 x 480	YUV 4:1:1
		Mode_3	[3]	640 x 480	YUV 4:2:2
		Mode_4	[4]	640 x 480	RGB
		Mode_5	[5]	640 x 480	MON08
		Mode_6	[6]	640 x 480	M0N016
		Mode_X	[7]	Reserved	
		-	[831]	Reserved (zero)	
184h	V_MODE_INQ	Mode_0	[0]	800 x 600	YUV 4:2:2
	(Format_1)	Mode_1	[1]	800 x 600	RGB
		Mode_2	[2]	800 x 600	MON08
		Mode_3	[3]	1024 x 768	YUV 4:2:2
		Mode_4	[4]	1024 x 768	RGB
		Mode_5	[5]	1024 x 768	MON08
		Mode_6	[6]	800 x 600	M0N016
		Mode_7	[7]	1024 x 768	M0N016
		-	[831]	Reserved (zero)	

Table 143: Video mode inquiry register

Offset	Name	Field	Bit	Description	Color mode
188h	V_MODE_INQ	Mode_0	[0]	1280 x 960	YUV 4:2:2
	(Format_2)	Mode_1	[1]	1280 x 960	RGB
		Mode_2	[2]	1280 x 960	MON08
		Mode_3	[3]	1600 x 1200	YUV 4:2:2
		Mode_4	[4]	1600 x 1200	RGB
		Mode_5	[5]	1600 x 1200	MON08
		Mode_6	[6]	1280 x 960	M0N016
		Mode_7	[7]	1600 x 1200	M0N016
		-	[831]	Reserved (zero)	
18Ch 197h	Reserved for other \	/_MODE_INQ_x for Fo	rmat_x.	Always 0	
198h	V_MODE_INQ_6 (Format	_6)		Always 0	
19Ch	V_MODE_INQ	Mode_0	[0]	Format_7 Mode_0	
	(Format_7)	Mode_1	[1]	Format_7 Mode_1	
		Mode_2	[2]	Format_7 Mode_2	
		Mode_3	[3]	Format_7 Mode_3	
		Mode_4	[4]	Format_7 Mode_4	
		Mode_5	[5]	Format_7 Mode_5	
		Mode_6	[6]	Format_7 Mode_6	
		Mode_7	[7]	Format_7 Mode_7	
		-	[831]	Reserved (zero)	

Table 143: Video mode inquiry register

Inquiry register for video frame rate and base address

Offset	Name	Field	Bit	Description
200h	V_RATE_INQ	FrameRate_0	[0]	Reserved
	(Format_0, Mode_0)	FrameRate_1	[1]	Reserved
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
		-	[831]	Reserved (zero)
204h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_1)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
		-	[831]	Reserved (zero)
208h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_2)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
20Ch	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_3)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
210h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_4)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
214h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_5)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
218h	V_RATE_INQ	(Format_0, Mode_6)	[0]	1.875 fps
		FrameRate_0		
		FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
21Ch			•	
	Reserved V_RATE_INQ_0_	_x (for other Mode_x	of Format_0)	Always 0
21Fh				
220h	V_RATE_INQ	FrameRate_0	[0]	Reserved
	(Format_1, Mode_0)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
224h	V_RATE_INQ	FrameRate_0	[0]	Reserved
	(Format_1, Mode_1)	FrameRate_1	[1]	Reserved
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
228h	V_RATE_INQ	FrameRate_0	[0]	Reserved
	(Format_1, Mode_2)	FrameRate_1	[1]	Reserved
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
22Ch	V_RATE_INQ (Format_1,	FrameRate_0	[0]	1.875 fps
	Mode_3)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
230h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_1, Mode_4)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
234h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_1, Mode_5)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
238h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_1, Mode_6)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
23Ch	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_1, Mode_7)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
240h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_0)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)
244h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_1)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)
248h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_2)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
24Ch	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_3)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)
250h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_4)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	Reserved
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)
254h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_5)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
258h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_6)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)
25Ch	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_7)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved
260h				
	Reserved V_RATE_INQ_	y_x (for other Format	_y, Mode_x)	
2BFh				
2C0h	V_REV_INQ_6_0 (Format	t_6, Mode0)		Always 0
2C4h				
	Reserved V_REV_INQ_6_	_x (for other Mode_x	of Format_6)	Always 0
2DFh				
2E0h	V-CSR_IN	Q_7_0	[031]	CSR_quadlet offset for Format_7 Mode_0
2E4h	V-CSR_IN	Q_7_1	[031]	CSR_quadlet offset for Format_7 Mode_1
2E8h	V-CSR_INQ_7_2		[031]	CSR_quadlet offset for Format_7 Mode_2
2ECh	V-CSR_IN	Q_7_3	[031]	CSR_quadlet offset for Format_7 Mode_3
2F0h	V-CSR_IN	Q_7_4	[031]	CSR_quadlet offset for Format_7 Mode_4

Offset	Name	Field	Bit	Description
2F4h		V-CSR_INQ_7_5	[031]	CSR_quadlet offset for Format_7 Mode_5
2F8h		V-CSR_INQ_7_6	[031]	CSR_quadlet offset for Format_7 Mode_6
2FCh		V-CSR_INQ_7_7	[031]	CSR_quadlet offset for Format_7 Mode_7

Inquiry register for basic function

Offset	Name	Field	Bit	Description
400h	BASIC_FUNC_INQ	Advanced_Feature_Inq	[0]	Inquiry for advanced features (Vendor unique Features)
		Vmode_Error_Status_Inq	[1]	Inquiry for existence of Vmode_Error_Status register
		Feature_Control_Error_Status_Inq	[2]	Inquiry for existence of Fea- ture_Control_Error_Status
		Opt_Func_CSR_Inq	[3]	Inquiry for Opt_Func_CSR
			[47]	Reserved
		1394b_mode_Capability	[8]	Inquiry for 1394b_mode_Ca- pability
			[915]	Reserved
		Cam_Power_Cntl	[16]	Camera process power ON/OFF capability
			[1718]	Reserved
		One_Shot_Inq	[19]	One Shot transmission capa- bility
		Multi_Shot_Inq	[20]	Multi Shot transmission capa- bility
			[2127]	Reserved
		Memory_Channel	[2831]	Maximum memory channel number (N) If 0000, no user memory avail- able

Table 145: Basic function inquiry register

Offset	Name	Field	Bit	Description
404h	FEATURE_HI_INQ	Brightness	[0]	Brightness Control
		Auto_Exposure	[1]	Auto_Exposure Control
		Sharpness	[2]	Sharpness Control
		White_Balance	[3]	White_Balance Control
		Hue	[4]	Hue Control
		Saturation	[5]	Saturation Control
		Gamma	[6]	Gamma Control
		Shutter	[7]	Shutter Control
		Gain	[8]	Gain Control
		Iris	[9]	Iris Control
		Focus	[10]	Focus Control
		Temperature	[11]	Temperature Control
		Trigger	[12]	Trigger Control
		Trigger_Delay	[13]	Trigger_Delay Control
		White_Shading	[14]	White_Shading Control
		Frame_Rate	[15]	Frame_Rate Control
			[1631]	Reserved
408h	FEATURE_LO_INQ	Zoom	[0]	Zoom Control
		Pan	[1]	Pan Control
		Tilt	[2]	Tilt Control
		Optical_Filter	[3]	Optical_Filter Control
			[415]	Reserved
		Capture_Size	[16]	Capture_Size for Format_6
		Capture_Quality	[17]	Capture_Quality for Format_6
			[1631]	Reserved
40Ch	OPT_FUNCTION_INQ		[0]	Reserved
		PIO	[1]	Parallel Input/Output control
		SIO	[2]	Serial Input/Output control
		Strobe_out	[431]	Strobe signal output
410h		1		
		Reserved		Address error on access
47Fh				

Table 146: Feature presence inquiry register

Offset	Name	Field	Bit	Description
480h	Advanced_Feature_Inq	Advanced_Feature_Quadlet_Offset	[031]	Quadlet offset of the advanced feature CSR's from the base address of initial reg- ister space (vendor unique)
				This register is the offset for the Access_Control_Register and thus the base address for Advanced Features.
				Access_Control_Register does not prevent access to advanced features. In some programs it should still always be activated first. Advanced Feature Set Unique Value is 7ACh and CompanyID is A47h.
484h	PIO_Control_CSR_Inq	PIO_Control_Quadlet_Offset	[031]	Quadlet offset of the PIO Control CSR's from the base address of initial register space (Vendor unique)
488h	SIO_Control_CSR_Inq	SIO_Control_Quadlet_Offset	[031]	Quadlet offset of the SIO Control CSR's from the base address of initial register space (Vendor unique)
48Ch	Strobe_Output_CSR_Inq	Strobe_Output_Quadlet_Offset	[031]	Quadlet offset of the Strobe_Output signal CSR's from the base address of ini- tial register space (vendor unique)

Table 146: Feature presence inquiry register

Inquiry register for feature elements

Register	Name	Field	Bit	Description	
0xF0F00500	BRIGHTNESS_INQUIRY	Presence_Inq	[0]	Indicates presence of this feature (read only)	
		Abs_Control_Inq	[1]	Capability of control with absolute value	
		-	[2]	Reserved	
		One_Push_Inq	[3]	One Push auto mode (Con- trolled automatically by the camera once)	
		Readout_Inq	[4]	Capability of reading out the value of this feature	
		ON_OFF	[5]	Capability of switching this feature ON and OFF	
		Auto_Inq	[6]	Auto Mode (Controlled auto- matically by the camera)	
		Manual_Inq	[7]	Manual Mode (Controlled by user)	
		Min_Value	[819]	Minimum value for this fea- ture	
		Max_Value	[2031]	Maximum value for this fea- ture	
504h	AUTO_EXPOSURE_INQ	Same	s Brightness_inq.		
508h	SHARPNESS_INQ	Same	e definition a	s Brightness_inq.	
50Ch	WHITE_BAL_INQ	Same	e definition a	s Brightness_inq.	
510h	HUE_INQ	Same	e definition a	s Brightness_inq.	
514h	SATURATION_INQ	Same	e definition a	s Brightness_inq.	
518h	GAMMA_INQ	Same definition as Brightness_inq.			
51Ch	SHUTTER_INQ	Same definition as Brightness_inq.			
520h	GAIN_INQ	Same definition as Brightness_inq.			
524h	IRIS_INQ		Alwa	ys 0	
528h	FOCUS_INQ	Always 0			
52Ch	TEMPERATURE INQ	Same definition as Brightness_ing.			

Table 147: Feature elements inquiry register

Register	Name	Field	Bit	Description
530h	TRIGGER_INQ	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Abs_Control_Inq	[1]	Capability of control with absolute value
			[23	Reserved
		Readout_Inq	[4]	Capability of reading out the value of this feature
		ON_OFF	[5]	Capability of switching this feature ON and OFF
		Polarity_Inq	[6]	Capability of changing the polarity of the trigger input
			[715]	Reserved
		Trigger_Mode0_Inq	[16]	Presence of Trigger_Mode 0
		Trigger_Mode1_Inq	[17]	Presence of Trigger_Mode 1
		Trigger_Mode2_Inq	[18]	Presence of Trigger_Mode 2
		Trigger_Mode3_Inq	[19]	Presence of Trigger_Mode 3
			[2031	Reserved
534h	TRIGGER_DELAY_INQUIRY	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Abs_Control_Inq	[1]	Capability of control with absolute value
			[2]	Reserved
		One_Push_Inq	[3]	One Push auto mode Con- trolled automatically by the camera once)
		Readout_Inq	[4]	Capability of reading out the value of this feature
		ON_OFF	[5]	Capability of switching this feature ON and OFF
		Auto_Inq	[6]	Auto Mode (Controlled auto- matically by the camera)
		Manual_Inq	[7]	Manual Mode (Controlled by user)
		Min_Value	[819]	Minimum value for this fea- ture
		Max_Value	[2031]	Maximum value for this fea- ture
53857Ch	Reserved for other FEATURE_HI_INQ			

Register	Name	Field Bit Description	
580h	ZOOM_INQ	Always 0	
584h	PAN_INQ	Always 0	
588h	TILT_INQ	Always 0	
58Ch	OPTICAL_FILTER_INQ	Always 0	
590 5BCh	Reserved for other FEA- TURE_LO_INQ	Always 0	
5C0h	CAPTURE_SIZE_INQ	Always 0	
5C4h	CAPTURE_QUALITY_INQ	Always 0	
5C8h 5FCh	Reserved for other FEA- TURE_LO_INQ	Always 0	
600h	CUR-V-Frm_RATE/Revision	Bits [02] for the frame rate	
604h	CUR-V-MODE	Bits [02] for the current video mode	
608h	CUR-V-FORMAT	Bits [02] for the current video format	
60Ch	ISO-Channel	Bits [03] for channel, [67] for ISO speed	
610h	Camera_Power	Always 0	
614h	ISO_EN/Continuous_Shot	Bit 0: 1 for start continuous shot; 0 for stop continuos shot	
618h	Memory_Save	Always 0	
61Ch	One_Shot, Multi_Shot, Count Number	See Chapter One-shot on page 212 See Chapter Multi-shot on page 215	
620h	Mem_Save_Ch	Always 0	
624	Cur_Mem_Ch	Always 0	
628h	Vmode_Error_Status	Error in combination of Format/Mode/ISO Speed: Bit(0): No error; Bit(0)=1: error	

Table 147: Feature elements inquiry register

Inquiry register for absolute value CSR offset address

Offset	Name	Notes
700h	ABS_CSR_HI_INQ_0	Always 0
704h	ABS_CSR_HI_INQ_1	Always 0
708h	ABS_CSR_HI_INQ_2	Always 0

Table 148: Absolute value inquiry register

Offset	Name	Notes
70Ch	ABS_CSR_HI_INQ_3	Always 0
710h	ABS_CSR_HI_INQ_4	Always 0
714h	ABS_CSR_HI_INQ_5	Always 0
718h	ABS_CSR_HI_INQ_6	Always 0
71Ch	ABS_CSR_HI_INQ_7	Always 0
720h	ABS_CSR_HI_INQ_8	Always 0
724h	ABS_CSR_HI_INQ_9	Always 0
728h	ABS_CSR_HI_INQ_10	Always 0
72Ch	ABS_CSR_HI_INQ_11	Always 0
730h	ABS_CSR_HI_INQ_12	Always 0
734		
	Reserved	Always 0
77Fh		
780h	ABS_CSR_LO_INQ_0	Always 0
784h	ABS_CSR_LO_INQ_1	Always 0
788h	ABS_CSR_LO_INQ_2	Always 0
78Ch	ABS_CSR_LO_INQ_3	Always 0
790h		
	Reserved	Always 0
7BFh		
7C0h	ABS_CSR_LO_INQ_16	Always 0
7C4h	ABS_CSR_LO_INQ_17	Always 0
7C8h		
	Reserved	Always 0
7FFh		-

Table 148: Absolute value inquiry register

Status and control register for feature

The **OnePush** feature, WHITE_BALANCE, is currently implemented. If this flag is set, the feature becomes immediately active, even if no images are being input (see Chapter One-push white balance on page 135).

Offset	Name	Field	Bit	Description
800h	BRIGHTNESS	Presence_Inq	[0]	Presence of this feature
				0: N/A
				1: Available
		Abs_Control	[1]	Absolute value control
				0: Control with value in the Value field
				1: Control with value in the Absolute value CSR
				If this bit = 1, value in the Value field is ignored.
			[2-4]	Reserved
		One_Push	[5]	Write 1: begin to work (Self cleared after operation)
				Read: Value=1 in operation
				Value=0 not in operation
				If A_M_Mode =1, this bit is ignored.
		ON_OFF	[6]	Write: ON or OFF this feature
				Read: read a status
				0: OFF, 1: ON
				If this bit =0, other fields will be read only.
		A_M_Mode	[7]	Write: set the mode
				Read: read a current mode
				0: Manual
				1: Auto
			[8-19]	Reserved
		Value	[20-31]	Value.
				Write the value in Auto mode, this field is ignored.
				If ReadOut capability is not available, read value has no meaning.
804h	AUTO-EXPOSURE			See above
				Note: Target grey level parameter in SmartView corresponds to Auto_exposure register 0xF0F00804 (IIDC).
808h	SHARPNESS			See above
		· · · · · · · · · · · · · · · · · · ·		

Table 149: Feature control register

Offset	Name	Field	Bit	Description
80Ch	WHITE-BALANCE	Presence_Inq	[0]	Presence of this feature
				0: N/A
				1: Available
				Always 0 for Mono
		Abs_Control	[1]	Absolute value control
				0: Control with value in the Value field 1: Control with value in the Absolute value CSR
				If this bit = 1, value in the Value field is ignored.
			[2-4]	Reserved
		One_Push	[5]	Write 1: begin to work (Self cleared after operation)
				Read: Value=1 in operation
				Value=0 not in operation
				If A_M_Mode =1, this bit is ignored.
		ON_OFF	[6]	Write: ON or OFF this feature,
				Read: read a status
				0: 0FF
				1: ON
				If this bit =0, other fields will be read only.
		A_M_Mode	[7]	Write: set the mode
				Read: read a current mode
				0: Manual 1: Auto
		U_Value /	[8-19]	U value / B value
		B_Value		Write the value in AUTO mode, this field is ignored.
				If ReadOut capability is not available, read value has no meaning.
		V_Value /	[20-31]	V value / R value
		R_Value		Write the value in AUTO mode, this field is ignored.
				If ReadOut capability is not available, read value has no meaning.

Table 149: Feature control register

Offset	Name	Field	Bit	Description
810h	HUE			See above
				Always 0 for Mono
814h	SATURATION			See above
				Always 0 for Mono
818h	GAMMA			See above
81Ch	SHUTTER			see Advanced Feature time base
				see Table 43: CSR: Shutter on page 139
820h	GAIN			See above
824h	IRIS			Always 0
828h	FOCUS			Always 0
82Ch	TEMPERATURE			Always 0
830h	TRIGGER-MODE			Can be effected via advanced feature IO_INP_CTRLx.
834h 87C	Reserved for other FEATURE_HI			Always 0
880h	Zoom			Always 0
884h	PAN			Always 0
888h	TILT			Always 0
88Ch	OPTICAL_FILTER			Always 0
890	Reserved for other			Always 0
 8BCh	FEATURE_LO			Always 0
8C0h	CAPTURE-SIZE			Always 0
8C4h	CAPTURE-QUALITY			Always 0
8C8h 	Reserved for other FEATURE_LO			Always 0
8FCh				

Table 149: Feature control register

Feature control error status register

Offset	Name	Notes
640h	Feature_Control_Error_Status_HI	Always 0
644h	Feature_Control_Error_Status_L0	Always 0

Table 150: Feature control error register

Video mode control and status registers for Format_7

Quadlet offset Format_7 Mode_0

The quadlet offset to the base address for **Format_7 Mode_0**, which can be read out at F0F002E0h (according to Table 144: Frame rate inquiry register on page 295) gives 003C2000h.

4 x 3C2000h = F08000h so that the base address for the latter (Table 151: Format_7 control and status register on page 313) equals F0000000h + F08000h = F0F08000h.

Quadlet offset Format_7 Mode_1

The quadlet offset to the base address for **Format_7 Mode_1**, which can be read out at F0F002E4h (according to Table 144: Frame rate inquiry register on page 295) gives 003C2400h.

4 x 003C2400h = F09000h so that the base address for the latter (Table 151: Format_7 control and status register on page 313) equals F0000000h + F09000h = F0F09000h.

Format_7 control and status register (CSR)

Offset	Name	Notes
000h	MAX_IMAGE_SIZE_INQ	According to IIDC V1.31
004h	UNIT_SIZE_INQ	According to IIDC V1.31
008h	IMAGE_POSITION	According to IIDC V1.31
00Ch	IMAGE_SIZE	According to IIDC V1.31
010h	COLOR_CODING_ID	See note
014h	COLOR_CODING_INQ	According to IIDC V1.31

Table 151: Format_7 control and status register

Offset	Name	Notes
024h	COLOR_CODING_INQ	Vendor Unique Color_Coding 0-127 (ID=128-255)
• 033h		ID=132 ECCID_MON012 ID=136 ECCID_RAW12
		ID=133 Reserved ID=134 Reserved ID=135 Reserved
		See Chapter Packed 12-Bit Mode on page 184.
034h	PIXEL_NUMER_INQ	According to IIDC V1.31
038h	TOTAL_BYTES_HI_INQ	According to IIDC V1.31
03Ch	TOTAL_BYTES_LO_INQ	According to IIDC V1.31
040h	PACKET_PARA_INQ	See note
044h	BYTE_PER_PACKET	According to IIDC V1.31

Table 151: Format_7 control and status register

Note

- For all modes in Format_7, **ErrorFlag_1** and **ErrorFlag_2** are refreshed on each access to the Format_7 Register.
- Contrary to IIDC DCAM V1.31, registers relevant to Format_7 are refreshed on each access. The **Setting_1** bit is automatically cleared after each access.
- When **ErrorFlag_1** or **ErrorFlag_2** are set and Format_7 is configured, no image capture is started.
- Contrary to IIDC V1.31, COLOR_CODING_ID is set to a default value after an INITIALIZE or **reset**.
- Contrary to IIDC V1.31, the **UnitBytePerPacket** field is already filled in with a fixed value in the PACK-ET_PARA_INQ register.

Advanced features

The camera has a variety of extended features going beyond the possibilities described in IIDC V1.31. The following chapter summarizes all available advanced features in ascending register order.

Note

This chapter is a **reference guide for advanced registers** and does not explain the advanced features itself.

(i)

For detailed description of the theoretical background see

- Chapter Description of the data path on page 128
- Links given in the table below

The following table gives an overview of all available registers:

Register	Register name	Remarks
0xF1000010	VERSION_INF01	see Table 153: Advanced register: Extended version
0xF1000018	VERSION_INF03	information on page 319
0xF1000040	ADV_INQ_1	see Table 155: Advanced register: Advanced feature
0xF1000044	ADV_INQ_2	inquiry on page 321
0xF1000048	ADV_INQ_3	In ADV_INQ_3 there are two new fields:
0xF100004C	ADV_INQ_4	Paramupd_Timing [2]F7MODE_MAPPING [3]
0xF1000100	CAMERA_STATUS	see Table 156: Advanced register: Camera status on page 323
0xF1000200	MAX_RESOLUTION	see Table 157: Advanced register: Maximum resolu- tion inquiry on page 323
0xF1000208	TIMEBASE	see Table 158: Advanced register: Time base on page 324
0xF100020C	EXTD_SHUTTER	see Table 160: Advanced register: Extended shutter on page 325
0xF1000210	TEST_IMAGE	see Table 161: Advanced register: Test image on page 326
0xF1000220	SEQUENCE_CTRL	Table 80: Advanced register: Sequence mode on
0xF1000224	SEQUENCE_PARAM	page 219
0xF1000228	SEQUENCE_STEP	
0xF1000240	LUT_CTRL	see Table 162: Advanced register: LUT on page 327
0xF1000244	LUT_MEM_CTRL	
0xF1000248	LUT_INFO	

Table 152: Advanced registers summary

Register	Register name	Remarks
0xF1000250	SHDG_CTRL	see Table 163: Advanced register: Shading on page
0xF1000254	SHDG_MEM_CTRL	330
0xF1000258	SHDG_INFO	
0xF1000260	DEFERRED_TRANS	see Table 165: Advanced register: Deferred image transport on page 333
0xF1000270	FRAMEINFO	see Table 166: Advanced register: Frame informa-
0xF1000274	FRAMECOUNTER	tion on page 333
0xF1000300	IO_INP_CTRL1	see Table 24: Advanced register: Input control on
0xF1000304	IO_INP_CTRL2	page 112
0xF1000308	IO_INP_CTRL3	
0xF100030C	IO_INP_CTRL4	
0xF1000320	IO_OUTP_CTRL1	see Table 30: Advanced register: Output control on
0xF1000324	IO_OUTP_CTRL2	page 116
0xF1000328	IO_OUTP_CTRL3	
0xF100032C	IO_OUTP_CTRL4	
0xF1000340	IO_INTENA_DELAY	see Table 167: Advanced register: Delayed Integra- tion Enable on page 335
0xF1000360	AUTOSHUTTER_CTRL	see Table 168: Advanced register: Auto shutter con-
0xF1000364	AUTOSHUTTER_LO	trol on page 335
0xF1000368	AUTOSHUTTER_HI	
0xF1000370	AUTOGAIN_CTRL	see Table 169: Advanced register: Auto gain control on page 336
0xF1000390	AUTOFNC_AOI	see Table 170: Advanced register: Autofunction AOI
0xF1000394	AF_AREA_POSITION	on page 337
0xF1000398	AF_AREA_SIZE	
0xF10003A0	COLOR_CORR	Pike color cameras only
		see Table 171: Advanced register: Color correction on page 338

Table 152: Advanced registers summary

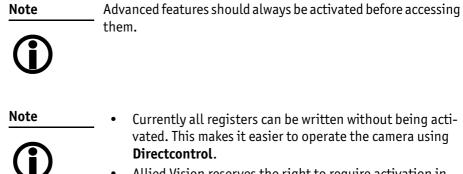

Register	Register name	Remarks
0xF10003A4	COLOR_CORR_COEFFIC11 = Crr	
0xF10003A8	COLOR_CORR_COEFFIC12 = Cgr	-
0xF10003AC	COLOR_CORR_COEFFIC13 = Cbr	
0xF10003B0	COLOR_CORR_COEFFIC21 = Crg	Pike color camera only
0xF10003B4	COLOR_CORR_COEFFIC22 = Cgg	see Table 171: Advanced register: Color correction
0xF10003B8	COLOR_CORR_COEFFIC23 = Cbg	on page 338
0xF10003BC	COLOR_CORR_COEFFIC31 = Crb	
0xF10003C0	COLOR_CORR_COEFFIC32 = Cgb	
0xF10003C4	COLOR_CORR_COEFFIC33 = Cbb]
0xF1000400	TRIGGER_DELAY	see Table 172: Advanced register: Trigger delay on page 339
0xF1000410	MIRROR_IMAGE	see Table 173: Advanced register: Mirror on page 339
0xF1000420	AFE_CHN_COMP	see Table 174: Advanced register: Channel balance
0xF1000424		on page 340
0xF1000428		
0xF1000430	DUAL TAP OFFSET ADJUSTMENT	see Table 175: Advanced register: Dual-tap offset
0xF1000434		adjustment on page 340
0xF1000440	LOW_SMEAR	see Chapter Smear reduction (not Pike F-1100/ 1600) on page 356
0xF1000460	DEFECT_PIXEL_CORRECTION_CTRL	see Table 193: Advanced register: Defect pixel correction on page 356
0xF1000510	SOFT_RESET	see Table 176: Advanced register: Soft reset on page 341
0xF1000520	HIGH_SNR	see Table 177: Advanced register: High Signal Noise Ratio (HSNR) on page 342
0xF1000550	USER PROFILES	see Table 194: Advanced register: User profiles on page 358
0xF1000560	F7MODE_MAPPING	see Table 185: Advanced register: Format_7 mode mapping on page 349
0xF1000570	PARAMUPD_TIMING	see Chapter Quick parameter change timing modes on page 345
0xF10005B0	LOW_NOISE_BINNING	see Chapter Low-noise binning mode (only 2 x H- binning) on page 346
0xF1000620	TRIGGER_COUNTER	see Table 190: Advanced register: Trigger counter
0xF1000630	SIS	on page 354

Table 152: Advanced registers summary

Register	Register name	Remarks
0xF1000640	SWFEATURE_CTRL	See Table 182: Advanced register: Software feature control (disable LEDs/switch single-tap and dual-tap) on page 347
0xF1000800 0xF1000804	IO_OUTP_PWM1	See Table 32: PWM configuration registers on page 119
0xF1000808 0xF100080C	IO_OUTP_PWM2	
0xF1000810 0xF1000814	IO_OUTP_PWM3	
0xF1000818 0xF100081C	IO_OUTP_PWM4	
0xF1000840	IO_INP_DEBOUNCE_1	
0xF1000850	IO_INP_DEBOUNCE_2	
0xF1000860	IO_INP_DEBOUNCE_3	
0xF1000870	IO_INP_DEBOUNCE_4	
0xF1000A00	FRAMETIME_CTRL	see Frame time control on page 361
0xF1000A04		
0xF1000A08		
0xF1000FFC	GPDATA_INFO	see Table 198: Advanced register: GPData buffer on
0xF1001000	GPDATA_BUFFER	page 362
•••		
0xF100nnnn		
0xF1100000	PARRAMLIST_INFO	see Chapter Parameter-List Update on page 348
0xF1101000	PARAMLIST_BUFFER	1
0xF1002000	AFEREFERENCES	see Chapter User adjustable gain references on page 363

Table 152: Advanced registers summary

• Allied Vision reserves the right to require activation in future versions of the software.

Extended version information register

The presence of each of the following features can be queried by the **0** bit of the corresponding register.

Register	Name	Field	Bit	Description
0xF1000010	VERSION_INF01	μC type ID	[015]	Always 0
		μC version	[1631]	Bcd-coded version number
0xF1000014	VERSION_INF01_EX	µC version	[031]	Bcd-coded version number
0xF1000018	VERSION_INF03	Camera type ID	[015]	See Table 154: Camera type ID list on page 320.
		FPGA version	[1631]	Bcd-coded version number
0xF100001C	VERSION_INF03_EX	FPGA version	[031]	Bcd-coded version number
0xF1000020			[031]	Reserved
0xF1000024			[031]	Reserved
0xF1000028			[031]	Reserved
0xF100002C			[031]	Reserved
0xF1000030		OrderIDHigh	[031]	8 Byte ASCII Order ID
0xF1000034		OrderIDLow	[031]	

Table 153: Advanced register: Extended version information

The μ C version and FPGA firmware version numbers are bcd-coded, which means that e.g. firmware version 0.85 is read as 0x0085 and version 1.10 is read as 0x0110.

The newly added **VERSION_INFOx_EX** registers contain extended bcd-coded version information formatted as *special.major.minor.patch*.

So reading the value **0x00223344** is decoded as:

- special: 0 (decimal)
- major: 22 (decimal)
- minor: 33 (decimal)
- patch: 44 (decimal)

This is decoded to the human readable version **22.33.44** (leading zeros are omitted).

Note

If a camera returns the register set to all zero, that particular camera does not support the extended version information.

The FPGA type ID (= camera type ID) identifies the camera type with the help of the following list:

ID	Camera type
101	Pike F-032B
102	Pike F-032C
103	Pike F-100B
104	Pike F-100C
105	Pike F-145B
106	Pike F-145C
107	Pike F-210B
108	Pike F-210C
109	
110	
111	Pike F-421B
112	Pike F-421C
113	
114	
115	Pike F-145B-15fps
116	Pike F-145C-15fps
117	Pike F-505B
118	Pike F-505C
119	
120	
121	
122	
123	Pike F-1100B
124	Pike F-1100C
125	Pike F-1600B
126	Pike F-1600C

Table 154: Camera type ID list

Advanced feature inquiry

This register indicates with a named bit if a feature is present or not. If a feature is marked as not present the associated register space might not be available and read/write errors may occur.

Note

Ignore unnamed bits in the following table: these bits might be set or not.

Register	Name	Field	Bit	Description
0xF1000040	ADV_INQ_1	MaxResolution	[0]	
		TimeBase	[1]	
		ExtdShutter	[2]	
		TestImage	[3]	
		FrameInfo	[4]	
		Sequences	[5]	
		VersionInfo	[6]	
			[7]	Reserved
		Look-up tables	[8]	
		Shading	[9]	
		DeferredTrans	[10]	
		HDR mode	[11]	
			[12]	Reserved
			[13]	Reserved
		TriggerDelay	[14]	
		Mirror image	[15]	
		Soft Reset	[16]	
		High SNR	[17]	
		Color Correction	[18]	
			[1920]	Reserved
		User Sets	[21]	
			[2229]	Reserved
		Paramlist_Info	[30]	
		GP_Buffer	[31]	

Table 155: Advanced register: Advanced feature inquiry

Register	Name	Field	Bit	Description
0xF1000044	ADV_INQ_2	Input_1	[0]	
		Input_2	[1]	
			[27]	Reserved
		Output_1	[8]	
		Output_2	[9]	
		Output_3	[10]	
		Output_4	[11]	
			[1215]	Reserved
		IntEnaDelay	[16]	
			[1723]	Reserved
		Output 1 PWM	[24]	
		Output 2 PWM	[25]	
		Output 3 PWM	[26]	
		Output 4 PWM	[27]	
			[2831]	Reserved
0xF1000048	ADV_INQ_3	Camera Status	[0]	
		Max IsoSize	[1]	
		Paramupd_Timing	[2]	
		F7 mode mapping	[3]	
		Auto Shutter	[4]	
		Auto Gain	[5]	
		Auto FNC AOI	[6]	
			[731]	Reserved
0xF100004C	ADV_INQ_4	HDR Pike	[0]	
		Channel Compen- sation	[1]	
		Smear reduction	[2]	Not Pike F-1100/ 1600
			[1831]	Reserved

Table 155: Advanced register: Advanced feature inquiry

Camera status

This register allows to determine the current status of the camera. The most important flag is the **Idle** flag.

If the **Idle** flag is set the camera does not capture and does not send any images (but images might be present in the image FIFO).

The **ExSyncArmed** flag indicates that the camera is set up for external triggering. Even if the camera is waiting for an external trigger event the **Idle** flag might get set.

Other bits in this register might be set or toggled: just ignore these bits.

- Excessive polling of this register may slow down the operation of the camera. Therefore the time between two polls of the status register should not be less than 5 milliseconds. If the time between two read accesses is lower than 5 milliseconds the response will be delayed.
 - Depending on shutter and isochronous settings the status flags might be set for a very short time and thus will not be recognized by your application.

Register	Name	Field	Bit	Description
0xF1000100	CAMERA_STATUS	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[123]	Reserved
		ID	[2431]	Implementation ID = 0x01
0xF1000104			[014]	Reserved
		ExSyncArmed	[15]	External trigger enabled
			[1627]	Reserved
		ISO	[28]	Isochronous transmission
			[2930]	Reserved
		Idle	[31]	Camera idle

Table 156: Advanced register: Camera status

Maximum resolution

This register indicates the highest resolution for the sensor and is read-only.

____ This register normally outputs the MAX_IMAGE_SIZE_INQ Format_7 Mode_0 value.

This is the value given in the specifications tables under **Picture size (max.)** in Chapter Specifications on page 45ff.

Register	Name	Field	Bit	Description
0xF1000200	MAX_RESOLUTION	MaxHeight	[015]	Sensor height (read only)
		MaxWidth	[1631]	Sensor width (read only)

Table 157: Advanced register: Maximum resolution inquiry

Time base

Corresponding to IIDC, exposure time is set via a 12-bit value in the corresponding register (SHUTTER_INQ [51Ch] and SHUTTER [81Ch]).

This means that you can enter a value in the range of 1 to 4095.

Pike cameras use a time base which is multiplied by the shutter register value. This multiplier is configured as the time base via the TIMEBASE register.

Register	Name	Field	Bit	Description
0xF1000208	TIMEBASE	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[17]	Reserved
		ExpOffset	[819]	Exposure offset in µs
			[2027]	Reserved
		Timebase_ID	[2831]	See Table 159: Time base ID on page 324.

Table 158: Advanced register: Time base

The time base IDs 0-9 are in bit [28] to [31]. See Table 159: Time base ID on page 324.

Default time base is 20 μs : This means that the integration time can be changed in 20 μs increments with the shutter control.

Time base can only be changed when the camera is in idle state and becomes active only after setting the shutter value.

Note

The **ExpOffset** field specifies the camera specific exposure time offset in microseconds (μ s). This time (which should be equivalent to Table 72: Camera-specific exposure time offset on page 209) has to be added to the exposure time (set by any shutter register) to compute the real exposure time.

The **ExpOffset** field might be zero for some cameras: this has to be assumed as an unknown exposure time offset (according to former software versions).

ID	Time base in µs
0	1
1	2
2	5
3	10

Table 159: Time base ID

Pike Technical Manual V5.2.0

ID	Time base in µs	
4	20	Default value
5	50	
6	100	
7	200	
8	500	
9	1000	

Table 159: Time base ID

 The ABSOLUTE VALUE CSR register, introduced in IIDC V1.3, is not implemented.

Extended shutter

The exposure time for long-term integration of up to 67 seconds can be entered with μ s precision via the EXTENDED_SHUTTER register.

Register	Name	Field	Bit	Description
0xF100020C	EXTD_SHUTTER	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[15]	Reserved
		ExpTime	[631]	Exposure time in µs

Table 160: Advanced register: Extended shutter

The minimum allowed exposure time depends on the camera model. To determine this value write **1** to the **ExpTime** field and read back the minimum allowed exposure time.

The longest exposure time, 3FFFFFh, corresponds to 67.11 seconds.

Note

• Exposure times entered via the 81Ch register are mirrored in the extended register, but not vice versa.

- Changes in this register have immediate effect, even when camera is transmitting.
- Extended shutter becomes inactive after writing to a format / mode / frame rate register.
- Extended shutter setting will thus be overwritten by the normal time base/shutter setting after Stop/Start of FireView or FireDemo.

Test images

Bit [8] to [14] indicate which test images are saved. Setting bit [28] to [31] activates or deactivates existing test images.

By activating any test image the following auto features are automatically disabled:

- auto gain
- auto shutter
- auto white balance

Register	Name	Field	Bit	Description
0xF1000210	TEST_IMAGE	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[17]	Reserved
		Image_Inq_1	[8]	Presence of test image 1 0: N/A 1: Available
		Image_Inq_2	[9]	Presence of test image 2 0: N/A 1: Available
		Image_Inq_3	[10]	Presence of test image 3 0: N/A 1: Available
		Image_Inq_4	[11]	Presence of test image 4 0: N/A 1: Available
		Image_Inq_5	[12]	Presence of test image 5 0: N/A 1: Available
		Image_Inq_6	[13]	Presence of test image 6 0: N/A 1: Available
		Image_Inq_7	[14]	Presence of test image 7 0: N/A 1: Available
			[1527]	Reserved
		TestImage_ID	[2831]	0: No test image active 1: Image 1 active 2: Image 2 active

Table 161: Advanced register: Test image

Look-up tables (LUT)

Load the look-up tables to be used into the camera and choose the look-up table number via the **LutNo** field. Now you can activate the chosen LUT via the LUT_C-TRL register.

The LUT_INFO register indicates how many LUTs the camera can store and shows the maximum size of the individual LUTs.

The possible values for **LutNo** are 0..n-1, whereas n can be determined by reading the field **NumOfLuts** of the LUT_INFO register.

Register	Name	Field	Bit	Description
0xF1000240	LUT_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[15]	Reserved
		ON_OFF	[6]	Enable/disable this feature
			[725]	Reserved
		LutNo	[2631]	Use look-up table with LutNo number
0xF1000244	LUT_MEM_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[14]	Reserved
		EnableMemWR	[5]	Enable write access
			[67]	Reserved
		AccessLutNo	[815]	Reserved
		AddrOffset	[1631]	byte
0xF1000248	LUT_INFO	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[12]	Reserved
		BitsPerValue	[37]	Bits used per table item
		NumOfLuts	[815]	Maximum number of look-up tables
		MaxLutSize	[1631]	Maximum look-up table size (bytes)

Table 162: Advanced register: LUT

Note

The **BitsPerValue** field indicates how many bits are read from the LUT for any gray-value read from the sensor. To determine the number of bytes occupied for each gray-value round-up the **BitsPerValue** field to the next byte boundary.

Examples:

- BitsPerValue = 8 → 1 byte per gray-value
- BitsPerValue = $14 \rightarrow 2$ byte per gray-value

Divide **MaxLutSize** by the number of bytes per gray-value in order to get the number of bits read from the sensor.

Pike cameras have the gamma feature implemented via a builtin look-up table. Therefore you can not use gamma and your own look-up table at the same time. Nevertheless you may combine a gamma look-up table into your own look-up table.

Note

When using the LUT feature and the gamma feature pay attention to the following:

- gamma ON \rightarrow look-up table is switched ON also
- gamma OFF \rightarrow look-up table is switched OFF also
- look-up table OFF → gamma is switched OFF also
- look-up table ON → gamma is switched OFF

Loading a look-up table into the camera

Loading a look-up table into the camera is done through the GPDATA_BUFFER. Because the size of the GPDATA_BUFFER is smaller than a complete look-up table the data must be written in multiple steps.

To load a lookup table into the camera:

- 1. Query the limits and ranges by reading LUT_INFO and GPDATA_INFO.
- 2. Set **EnableMemWR** to true (1).
- 3. Set AccessLutNo to the desired number.
- 4. Set **AddrOffset** to 0.
- 5. Write n lookup table data bytes to GPDATA_BUFFER (n might be lower than the size of the GPDATA_BUFFER; AddrOffset is automatically adjusted inside the camera).
- 6. Repeat step 5 until all data is written into the camera.
- 7. Set EnableMemWR to false (0).

Shading correction

Owing to technical circumstances, the interaction of recorded objects with one another, optical effects and lighting non-homogeneities may occur in the images.

Because these effects are normally not desired, they should be eliminated as far as possible in subsequent image editing. The camera has automatic shading correction to do this.

Provided that a shading image is present in the camera, the **on/off** bit can be used to enable shading correction.

The **on/off** and **ShowImage** bits must be set for saved shading images to be displayed.

Note

- Always make sure that the shading image is saved at the highest resolution of the camera. If a lower resolution is chosen and ShowImage is set to **true**, the image will not be displayed correctly.
- The shading image is computed using the current video settings. On fixed video modes the selected frame rate also affects the computation time.
- The build process will not work, if a MONO16/RGB16 format is active.

Register	Name	Field	Bit	Description
0xF1000250	SHDG_CTRL	Presence_Inq	[0]	Indicates presence of this fea-
				ture (read only)
		BuildError	[1]	Could not built shading image
			[23]	Reserved
		ShowImage	[4]	Show shading data as image
		BuildImage	[5]	Build a new shading image
		ON_OFF	[6]	Shading on/off
		Busy	[7]	Build in progress
		MemChannelSave	[8]	Save shading data in flash memory
		MemChannelLoad	[9]	Load shading data from flash memory
		MemChannelClear	[10]	Erase flash memory
			[1115]	Reserved
		MemChannelError	[1619]	Indicates memory channel error. See Table 164: Memory channel error description on page 332.
		MemoryChannel	[2023]	Set memory channel number for save and load operations
		GrabCount	[2431]	Number of images
0xF1000254	SHDG_MEM_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[14]	Reserved
		EnableMemWR	[5]	Enable write access
		EnableMemRD	[6]	Enable read access
			[7]	Reserved
		AddrOffset	[831]	In bytes
0xF1000258	SHDG_INFO	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[13]	Reserved
		MaxMemChannel	[47]	Maximum number of available memory channels to store shading images
		MaxImageSize	[831]	Maximum shading image size (in bytes)

Table 163: Advanced register: Shading

Reading or writing shading image from/into the camera

Accessing the shading image inside the camera is done through the GPDATA_BUFFER. Because the size of the GPDATA_BUFFER is smaller than a whole shading image the data must be written in multiple steps.

To read or write a shading image:

- 1. Query the limits and ranges by reading SHDG_INFO and GPDATA_INFO.
- 2. Set EnableMemWR or EnableMemRD to true (1).
- 3. Set AddrOffset to 0.
- 4. Write n shading data bytes to GPDATA_BUFFER (n might be lower than the size of the GPDATA_BUFFER; AddrOffset is automatically adjusted inside the camera).
- 5. Repeat step 4 until all data is written into the camera.
- 6. Set EnableMemWR and EnableMemRD to false.

Automatic generation of a shading image

Shading image data may also be generated by the camera. To use this feature make sure all settings affecting an image are set properly. The camera uses the current active resolution to generate the shading image.

To generate a shading image:

- 1. Set **GrabCount** to the number of the images to be averaged before the correction factors are calculated.
- 2. Set BuildImage to true.
- 3. Poll the SHDG_CTRL register until the **Busy** and **BuildImage** flags are reset automatically.

The maximum value of GrabCount depends on the camera type and the number of available image buffers. GrabCount is automatically adjusted to a power of two.

Do not poll the SHDG_CTRL register too often, while automatic generation is in progress. Each poll delays the process of generating the shading image. An optimal poll interval time is 500 ms.

Non-volatile memory operations

Pike cameras support storing shading image data into non-volatile memory. Once a shading image is stored it is automatically reloaded on each camera reset.

MaxMemChannel indicates the number of so-called memory channels/slots available for storing shading images.

To store a shading image into non-volatile memory:

- 1. Set **MemoryChannel** to the desired memory channel and **MemoryChannelSave** to true (1).
- 2. Read MemoryChannelError to check for errors.

Allied Vision

To reload a shading image from non-volatile memory:

- 1. Set **MemoryChannel** to the desired memory channel and **MemChannelLoad** to true (1).
- 2. Read MemChannelError to check for errors.

To clear already stored shading image data in non-volatile memory (shading image data won't be loaded on camera resets):

- 1. Set **MemoryChannel** to the desired memory channel and **MemChannelClear** to true (1).
- 2. Read **MemChannelError** to check for errors.

The flash memory (non-volatile memory) of Pike cameras has a **minimum of 100 000 write-erase cycles.**

Memory channel error codes

ID	Error description
0x00	No error
0x01	Memory detection error
0x02	Memory size error
0x03	Memory erase error
0x04	Memory write error
0x05	Memory header write error
0x0F	Memory channel out of range

Table 164: Memory channel error description

Deferred image transport

Using this register, the sequence of recording and the transfer of the images can be paused. Setting **HoldImg** prevents transfer of the image. The images are stored in **ImageFIFO**.

The images indicated by NumOfImages are sent by setting the SendImage bit.

When **FastCapture** is set (in Format_7 only), images are recorded at the highest possible frame rate.

Register	Name	Field	Bit	Description		
0xF1000260	DEFERRED_TRANS	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)		
			[14]	Reserved		
		SendImage	[5]	Send NumOfImages now (auto reset)		
				HoldImg	[6]	Enable/Disable deferred transport mode
				FastCapture	[7]	Enable/disable fast capture mode
			[815]	Reserved		
			FiFoSize	[1623]	Size of FiFo in number of images (read only)	
		NumOfImages	[2431]	Write: Number of images to send		
				Read: Number of images in buffer		

Table 165: Advanced register: Deferred image transport

Frame information

This register can be used to double-check the number of images received by the host computer against the number of images which were transmitted by the camera. The camera increments this counter with every FrameValid signal. This is a mirror of the frame counter information found at 0xF1000610.

Register	Name	Field	Bit	Description
0xF1000270	FRAMEINFO	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
		ResetFrameCnt	[1]	Reset frame counter
			[131]	Reserved
0xF1000274	FRAMECOUNTER	FrameCounter	[031]	Number of captured frames since last reset

Table 166: Advanced register: Frame information

The **FrameCounter** is incremented when an image is read out of the sensor.

The **FrameCounter** does not indicate whether an image was sent over the IEEE 1394 bus or not.

Input/output pin control

- See Chapter Input/output pin control on page 111
- See Chapter IO_INP_CTRL 1-2 on page 112
- See Chapter IO_OUTP_CTRL 1-4 on page 116
- See Chapter Output modes on page 117

Delayed Integration enable

A delay time between initiating exposure on the sensor and the activation edge of the **IntEna** signal can be set using this register. The **on/off** flag activates/ deactivates integration delay. The time can be set in μ s in **DelayTime**.

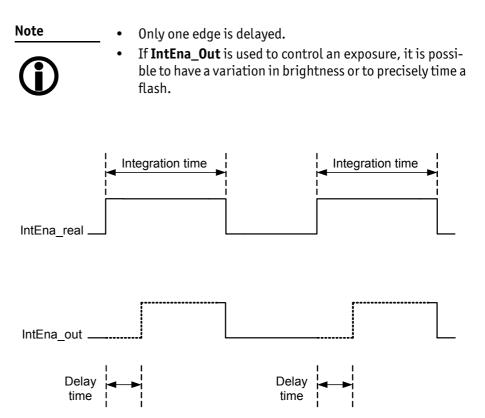


Figure 148: Delayed integration timing

Register	Name	Field	Bit	Description
0xF1000340	IO_INTENA_DELAY	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Enable/disable integration enable delay
			[711]	Reserved
		DELAY_TIME	[1231]	Delay time in µs

Table 167: Advanced register: Delayed Integration Enable

Auto shutter control

The table below illustrates the advanced register for **auto shutter control**. The purpose of this register is to limit the range within which auto shutter operates.

Register	Name	Field	Bit	Description
0xF1000360	AUTOSHUTTER_CTRL	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[131]	Reserved
0xF1000364	AUTOSHUTTER_LO		[05]	Reserved
		MinValue	[631]	Minimum auto shutter value
				lowest possible value: 10 µs
0xF1000368	AUTOSHUTTER_HI		[05]	Reserved
		MaxValue	[631]	Maximum auto shutter value

Table 168: Advanced register: Auto shutter control

• Values can only be changed within the limits of shutter CSR.

- Changes in auto exposure register only have an effect when auto shutter is enabled.
- Auto exposure limits are: 50..205 (SmartView→Ctrl1 tab: Target grey level)

When both **auto shutter** and **auto gain** are enabled, priority is given to increasing shutter when brightness decreases. This is done to achieve the best image quality with lowest noise.

For increasing brightness, priority is given to lowering gain first for the same purpose.

MinValue and **MaxValue** limits the range the auto shutter feature is allowed to use for the regulation process. Both values are initialized with the minimum and maximum value defined in the standard SHUTTER_INQ register (multiplied by the current active timebase).

If you change the **MinValue** and/or **MaxValue** and the new range exceeds the range defined by the SHUTTER_INQ register, the standard SHUTTER register will not show correct shutter values. In this case you should read the EXTEND-ED_SHUTTER register for the current active shutter time.

Changing the auto shutter range might not affect the regulation, if the regulation is in a stable condition and no other condition affecting the image brightness is changed.

If both **auto gain** and **auto shutter** are enabled and if the shutter is at its upper boundary and gain regulation is in progress, increasing the upper auto shutter boundary has no effect on auto gain/shutter regulation as long as auto gain regulation is active.

As with the Extended Shutter the value of **MinValue** and **MaxValue** must not be set to a lower value than the minimum shutter time.

Auto gain control

The table below illustrates the advanced register for **auto gain control**.

Register	Name	Field	Bit	Description
0xF1000370	O AUTOGAIN_CTRL	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[13]	Reserved
		MaxValue	[415]	Maximum auto gain value
			[1619]	Reserved
		MinValue	[2031]	Minimum auto gain value

Table 169: Advanced register: Auto gain control

MinValue and **MaxValue** limits the range the auto gain feature is allowed to use for the regulation process. Both values are initialized with the minimum and maximum value defined in the standard GAIN_INQ register.

Changing the **auto gain range** might not affect the regulation, if the regulation is in a stable condition and no other condition affecting the image brightness is changed.

If both **auto gain** and **auto shutter** are enabled and if the gain is at its lower boundary and shutter regulation is in progress, decreasing the lower auto gain boundary has no effect on auto gain/shutter regulation as long as auto shutter regulation is active.

Both values can only be changed within the range defined by the standard GAIN_INQ register.

Autofunction AOI

The table below illustrates the advanced register for **autofunction AOI**.

Register	Name	Field	Bit	Description
0xF1000390	AUTOFNC_AOI	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[13]	Reserved
		ShowWorkArea	[4]	Show work area
			[5]	Reserved
		ON_OFF	[6]	Enable/disable AOI (see note above)
			[7]	Reserved
		YUNITS	[819]	Y units of work area/pos. beginning with 0 (read only)
		XUNITS	[2031]	X units of work area/pos. beginning with 0 (read only)
0xF1000394	AF_AREA_POSITION	Left	[015]	Work area position (left coor- dinate)
		Тор	[1631]	Work area position (top coor- dinate)
0xF1000398	AF_AREA_SIZE	Width	[015]	Width of work area size
		Height	[1631]	Height of work area size

Table 170: Advanced register: Autofunction AOI

The possible increment of the work area position and size is defined by the YUNITS and XUNITS fields. The camera automatically adjusts your settings to permitted values.

Note

If the adjustment fails and the work area size and/or work area position becomes invalid, then this feature is automatically switched off.

Read back the ON_OFF flag, if this feature does not work as expected.

Color correction

To switch off color correction in YUV mode: see bit [6]

Register	Name	Field	Bit	Description
0xF10003A0	COLOR_CORR	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Color correction on/off
				default: on
				Write: 02000000h to switch color correction OFF
				Write: 00000000h to switch color correction ON
		Reset	[7]	Reset to defaults
			[831]	Reserved
0xF10003A4	COLOR_CORR_COEFFIC11 = Crr		[031]	A number of 1000 equals a
0xF10003A8	COLOR_CORR_COEFFIC12 = Cgr		[031]	color correction coefficient of 1.
0xF10003AC	COLOR_CORR_COEFFIC13 = Cbr		[031]	Color correction values
0xF10003B0	COLOR_CORR_COEFFIC21 = Crg		[031]	range -1000+2000 and are
0xF10003B4	COLOR_CORR_COEFFIC22 = Cgg		[031]	signed 32 bit.
0xF10003B8	COLOR_CORR_COEFFIC23 = Cbg		[031]	In order for white balance to
0xF10003BC	COLOR_CORR_COEFFIC31 = Crb		[031]	work properly ensure that
0xF10003C0	COLOR_CORR_COEFFIC32 = Cgb		[031]	the row sum equals to 1000.
0xF10003C4	COLOR_CORR_COEFFIC33 = Cbb		[031]	The maximum row sum is lim- ited to 2000.
0xF10003A4				Reserved for testing purposes
 0xF10003FC				Don't touch!

Table 171: Advanced register: Color correction

For an explanation of the color correction matrix and for further information read Chapter Color correction on page 192.

Trigger delay

Register	Name	Field	Bit	Description
0xF1000400	TRIGGER_DELAY	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Trigger delay on/off
			[710]	Reserved
		DelayTime	[1131]	Delay time in µs

Table 172: Advanced register: Trigger delay

The advanced register allows start of the integration to be delayed via **DelayTime** by max. 2^{21} µs, which is max. 2.1 s after a trigger edge was detected.

Note Trigger delay works with external trigger modes only.

Mirror image

The table below illustrates the advanced register for Mirror image.

Register	Name	Field	Bit	Description	
0xF1000410	MIRROR_IMAGE	Presence_Inq	[0]	Indicates presence of this feature (read only)	
			[15]	Reserved	
		ON_OFF	[6]	Mirror image on/off	
					1: on 0: off
				Default: off	
			[731]	Reserved	

Table 173: Advanced register: Mirror

AFE channel compensation (channel balance)

All KODAK Pike sensors are read out via two channels: the first channel for the left half of the image and the second channel for the right half of the image.

Channel gain adjustment (Pike color cameras: only RAW8 and RAW16) for both channels can be done via the following two advanced registers:

Register	Name	Field	Bit	Description
0xF1000420	ADV_CHN_ADJ_GAIN	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[131]	Reserved
0xF1000424	ADV_CHN_ADJ_GAIN		[015]	Reserved
		Gain_Value	[1631]	Signed 16-bit value -81920+8191
				SmartView shows only: -20480+2047

Table 174: Advanced register: Channel balance

You can save the current value in the user sets and set to default value.

Dual-tap offset adjustment

(only for the following Pike cameras having KODAK/SONY sensors with two channels: Pike F-032/Pike F-210/Pike F-421/Pike F-505/Pike F-1100/ Pike F-1600)

For fine tuning of both channels a so-called dual-tap offset adjustment is possible: in addition to channel gain adjustment also an offset adjustment can be done. This will lead to a (nearly) perfect channel compensation for all grey values.

Offset adjustment (Pike color cameras: only RAW8 and RAW16) for both channels can be done via the following two advanced registers.

Register	Name	Field	Bit	Description
0xF1000430	ADV_CHN_ADJ_OFFSET	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[131]	Reserved

Table 175: Advanced register: Dual-tap offset adjustment

Register	Name	Field	Bit	Description
0xF1000434	ADV_CHN_ADJ_OFFSET+1		[015]	Reserved
		Offset_Value	[1631]	Signed 16-bit value -2550+256 SmartView shows only: -2550+255
				Note: Direct register access. up to +256 whereas SmartView: up to +255)

Table 175: Advanced register: **Dual-tap offset adjustment**

You can save the current value in the user sets and set to default value.

Note

Doing the dual-tap offset adjustment in SmartView: Refer to the FirePackage/FirePackage64 SmartView Manual.

Soft reset

Register	Name	Field	Bit	Description
0xF1000510	SOFT_RESET	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		Reset	[6]	Initiate reset
			[719]	Reserved
		Delay	[2031]	Delay reset in 10 ms steps

Table 176: Advanced register: Soft reset

The **soft reset** feature is similar to the INITIALIZE register, with the following differences:

- 1 or more bus resets will occur
- the FPGA will be rebooted

The reset can be delayed by setting the **Delay** to a value unequal to 0.

The delay is defined in 10 ms steps.

Note

When SOFT_RESET has been defined, the camera will respond to further read or write requests but will not process them.

High SNR mode (High Signal Noise Ratio)

With **High SNR** mode enabled the camera internally grabs **GrabCount** images and outputs a single averaged image.

Register	Name	Field	Bit	Description
0xF1000520	HIGH_SNR	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	High SNR mode on/off
				The camera must be idle to toggle this feature on/off. Idle means: no image acquisition, no trigger.
				Set grab count and activation of HighSNR in one single write access.
			[722]	Reserved
		GrabCount	[2331]	Number of images (min. 2)
				2 ⁿ images with n=18 (automati- cally)

Table 177: Advanced register: High Signal Noise Ratio (HSNR)

- The camera must be idle to toggle this feature on/off. Idle means: no image acquisition, no trigger.
- Set grab count and activation of HighSNR in **one single** write access.

Maximum ISO packet size

Use this feature to increase the MaxBytePerPacket value of Format_7 modes. This overrides the maximum allowed isochronous packet size specified by IIDC V1.31.

Register	Name	Field	Bit	Description
0xF1000560	ISOSIZE_S400	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Enable/Disable S400 settings
		Set2Max	[7]	Set to maximum supported packet size
			[815]	Reserved
		MaxIsoSize	[1631]	Maximum ISO packet size for S400
0xF1000564	ISOSIZE_S800	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Enable/Disable S800 settings
		Set2Max	[7]	Set to maximum supported packet size
			[815]	Reserved
		MaxIsoSize	[1631]	Maximum ISO packet size for S800

Example For isochronous packets at a speed of S800 the maximum allowed packet size (IIDC V1.31) is 8192 byte. This feature allows you to extend the size of an isochronous packet up to 11.000 byte at S800. Thus the isochronous bandwidth is increased from 64 MByte/s to approximately 84 MByte/s. You need either PCI Express.

The Maximum ISO packet size feature ...

- ... reduces the asynchronous bandwidth available for controlling cameras by approximately 75%
- ... may lead to slower responses on commands
- ... is not covered by the IEEE1394 specification
- ... may not work with all available 1394 host adapters.

Note

We strongly recommend to use **PCI Express** adapter.

Restrictions	Note the restrictions in the following table. When using software with an
	Isochronous Resource Manager (IRM): deactivate it.

Software	Restrictions
FireGrab	Deactivate Isochronous Resource Manager: SetParameter (FGP_USEIRMFORBW, 0)
FireStack/FireClass	No restrictions
SDKs using Microsoft driver (Active FirePackage, Direct FirePackage,)	n/a
Linux: libdc1394_1.x	No restrictions
Linux: libdc1394_2.x	Deactivate Isochronous Resource Manager: Set DC1394_CAPTURE_FLAGS_BANDWIDTH_ALLOC flag to 0
Third Party Software	Deactivate Isochronous Resource Manager

Table 179: Restrictions for feature: Maximum ISO packet size

Operation The maximum allowed isochronous packet size can be set separately for the ISO speeds S400 and S800. Check the associated **Presence_Inq** flag to see for which ISO speed this feature is available.

Setting the **Set2Max** flag to 1 sets the **MaxIsoSize** field to the maximum supported isochronous packet size. Use this flag to query the maximum supported size (may depend on the camera model).

Enable this feature by setting the **ON_OFF** flag to 1 and the **MaxIsoSize** field to a value greater than the default packet size.

The camera ensures:

- that the value of the MaxIsoSize field is a multiple of 4.
- that the value isn't lower than the value specified by the IEEE1394 specification.

The settings are stored in the user sets.

Note

Enabling this feature will not change the **MaxBytePerPacket** value automatically. The camera may not use the new isochronous packet size for the **MaxBytePerPacket** value until a write access to the desired Format_7 mode has been issued.

Quick parameter change timing modes

You can choose between the following update timing modes:

- **Standard Parameter Update Timing** (slightly modified from previous Pike cameras)
- New: Quick Format Change Mode

Note

For a detailed description see Chapter Quick parameter change timing modes on page 179.

Register	Name	Field	Bit	Description
0xF1000570	PARAMUPD_TIMING	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		UpdActive	[6]	Update active
				see Chapter Encapsulated Update (begin/end) on page 181
				0: (default); reset to 0 means Encapsulated Update end
				1: set to 1 means Encapsulated Update begin
			[723]	Reserved
		UpdTiming	[2431]	Update timing mode
				If set to 0: Standard Parameter Update Timing is active
				If set to 2: Quick Format Change Mode is active

Table 180: Advanced register: Update timing modes

Standard Parameter Update Timing

The camera behaves like older firmware versions without this feature. The **UpdActive** flag has no meaning.

Quick Format Change Mode

This mode behaves like **Standard Parameter Update Timing** mode with the following exception:

An already started image transport to the host will not be interrupted, but an already started integration will be interrupted.

To switch on **Quick Format Change Mode** do the following:

- 1. Set UpdTiming to 2.
- 2. Set UpdActive to 1.
- 3. Be aware that all parameter values have to be set within 10 seconds.

Automatic reset of the UpdActive flag

With **Quick Format Change Mode** you normally have to clear the **UpdActive** flag after all desired parameters have been set. Every time the **PARAMUPD_TIMING** register is written to with the **UpdActive** flag set to 1 a 10 second time-out is started / restarted. If the time-out passes before you clear the **UpdActive** flag, the **UpdActive** flag is cleared automatically and all parameter changes since setting the **UpdActive** flag to 1 become active automatically.

Low-noise binning mode (only 2 x H-binning)

This register enables/disables low-noise binning mode.

This means: an average (and not a sum) of the luminance values is calculated within the FPGA.

The image is therefore darker than with the usual binning mode, but the signal-to-noise ratio is better (approximately a factor of $\sqrt{2}$) than without binning.

Offset	Name	Field	Bit	Description
0xF10005B0	LOW_NOISE_BINNING	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Low-noise binning mode on/off
			[731]	Reserved

Table 181: Advanced register: Low-noise binning mode

Software feature control (disable LEDs / switch single-tap and dual-tap)

The software feature control register allows to enable/disable some features of the camera (e.g. disable LEDs or switch single-tap and dual-tap for Pike F-1100/ 1600). The settings are stored permanently within the camera and do not depend on any user set.

Register	Name	Field	Bit	Description
0xF1000640	SWFEATURE_CTRL	Presence_Inq	[0]	Indicates presence of this feature (read only)
		BlankLED_Inq	[1]	Indicates presence of <i>Disable LEDs</i> feature.
		DigitizationTaps_Inq	[2]	Indicates presence of <i>Sensor</i> digitization taps feature.
			[35]	Reserved
		SensorTaps_Inq	[6]	Indicates presence of <i>Sensor taps</i> feature.
			[715]	Reserved
			[16]	Reserved
		BlankLED	[17]	0: Behavior as described in Chapter Status LEDs on page 109.
				1: Disable LEDs. (Only error codes are shown.)
		DigitizationTaps	[1821]	0: single-tap
				1: dual-tap
		SensorTaps	[2225]	Max number of taps -1
			[2631]	Reserved

Table 182: Advanced register: **Software feature control** (disable LEDs/switch single-tap and dual-tap)

Disable LEDs

- To disable LEDs set bit [17] to 1.
- To disable LEDs in SmartView:
 Adv3 tab, activate Disable LED functionality check box.

The camera does not show any more the status indicators during normal operation:

Examples:

- Power on is not shown
- Isochronous traffic is not shown
- Asynchronous traffic is not shown

Note

During the startup of the camera and if an error condition is present, the LEDs behave as described in Chapter Status LEDs on page 109.

Sensor digitization taps (Pike F-1100/1600 only)

The sensor digitization taps fields *DigitizationTaps* [18..21] and *SensorTaps* [22..25] allow to switch between single-tap and dual-tap mode of a multi-tap sensor (Pike F-1100/1600). The settings are stored permanently within the camera and do not depend on any user set.

- To switch single-tap set bit [18..21] to 0.
- To switch dual-tap set bit [18..21] to 1.

Note

After switching the number of tabs reboot the camera by releasing a SoftReset.

To get info how many taps are present read out bit [22..25].

- 0 indicates 1 tap.
- 1 indicates 2 taps.

Parameter-List Update

The parameter list is an array of address/data pairs which can be sent to the camera in a single bus cycle.

Register	Name	Field	Bit	Description
0xF1100000	PARAMLIST_INFO	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[115]	Reserved
		BufferSize	[1631]	Size of parameter list buffer in bytes
0xF1101000	PARAMLIST_BUFFER			
0xF1101nnn				

Table 183: Advanced register: **Parameter-List Update**: parameter list

Dependant on the parameter update mode the address/data pairs may become active one by one or after the processing of the complete parameter list. A parameter list may look like follows (the description is for your convenience):

Address offset	Data quadlet	Description
0xF0F00608	0xE000000	Set video format 7
0xF0F00604	0x0000000	Set video mode 0
0xF0F08008	0x0000000	Set image position
0xF0F0800C	0x028001E0	Set image size
0xF0F08044	0x04840484	Set BytePerPacket value
0xF0F0080C	0x80000100	Set shutter to 0x100
0xF0F00820	0x80000080	Set gain to 0x80

Table 184: Example: parameter list

- The PARAMLIST_BUFFER shares the memory with the GPDATA_BUFFER. Therefore it is not possible to use both features at the same time.
- Not all CSRs or features of a particular camera model can be used with the parameter list feature.

Format_7 mode mapping

With Format_7 mode mapping it is possible to map special binning and sub-sampling modes to F7M1..F7M7 (see Figure 102: Mapping of possible Format_7 modes to F7M1...F7M7 on page 178).

Register	Name	Field	Bit	Description
0xF1000580	F7MODE_MAPPING	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[131]	Reserved
0xF1000584	F7MODE_MAP_INQ	F7MODE_00_INQ	[0]	Format_7 Mode_0 presence
		F7MODE_01_INQ	[1]	Format_7 Mode_1 presence
		F7MODE_31_INQ	[31]	Format_7 Mode_31 presence
0xF1000588	Reserved			
0xF100058C	Reserved			
0xF1000590	F7MODE_0	Format_ID	[031]	Format ID (read only)
0xF1000594	F7MODE_1	Format_ID	[031]	Format ID for Format_7 Mode_1

Table 185: Advanced register: Format_7 mode mapping

Pike Technical Manual V5.2.0

Register	Name	Field	Bit	Description
0xF1000598	F7MODE_2	Format_ID	[031]	Format ID for Format_7 Mode_2
0xF100059C	F7MODE_3	Format_ID	[031]	Format ID for Format_7 Mode_3
0xF10005A0	F7MODE_4	Format_ID	[031]	Format ID for Format_7 Mode_4
0xF10005A4	F7MODE_5	Format_ID	[031]	Format ID for Format_7 Mode_5
0xF10005A8	F7MODE_6	Format_ID	[031]	Format ID for Format_7 Mode_6
0xF10005AC	F7MODE_7	Format_ID	[031]	Format ID for Format_7 Mode_7

Table 185: Advanced register: Format_7 mode mapping

Additional Format_7

modes Firmware 3.x adds additional Format_7 modes. Now you can add some special Format_7 modes which aren't covered by the IIDC standard. These special modes implement **binning** and **sub-sampling**.

To stay as close as possible to the IIDC standard the Format_7 modes can be mapped into the register space of the standard Format_7 modes.

There are visible Format_7 modes and internal Format_7 modes:

- At any time only 8 Format_7 modes can be accessed by a host computer.
- Visible Format_7 modes are numbered from 0 to 7.
- Internal Format_7 modes are numbered from 0 to 31.

Format_7 Mode_0 represents the mode with the maximum resolution of the camera: this visible mode cannot be mapped to any other internal mode.

The remaining visible Format_7 Mode_1 ... Mode_7 can be mapped to any internal Format_7 mode.

Example

To map the internal Format_7 Mode_19 to the visible Format_7 Mode_1, write the decimal number 19 to the above listed F7MODE_1 register.

Note

For available Format_7 modes see Figure 102: Mapping of possible Format_7 modes to F7M1...F7M7 on page 178.

Setting the F7MODE_x register to:

- -1 forces the camera to use the factory defined mode
- -2 disables the respective Format_7 mode (no mapping is applied)

After setup of personal Format_7 mode mappings you have to reset the camera. The mapping is performed during the camera startup only.

Secure image signature (SIS)

Secure image signature (SIS) is the synonym for data, which is inserted into an image to improve or check image integrity.

All Pike models can insert

- **Time stamp** (1394 bus cycle time at the beginning of integration)
- Frame counter (frames read out of the sensor)
- Trigger counter (external trigger seen only)
- Various camera settings

into a selectable line position within the image. **Frame counter** and **trigger counter** are available as advanced registers to be read out directly.

Advanced register: SIS

The **SIS** feature is controlled by the following advanced feature register:

Note

This register is **different** to the Marlin **time stamp** (600) register!

Register	Name	Field	Bit	Description
0xF1000630	SIS	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	SIS mode on/off
			[715]	Reserved
		LineNo	[1631]	SIS data position inside an image
0xF1000634		UserValue	[031]	User provided value for sequence mode to be placed into the SIS area of an image

Table 186: Advanced register: secure image signature (SIS)

Enabling this feature, SIS data will be inserted into any captured image. The size of SIS data depends on the selected SIS format.

The LineNo field indicates at which line the SIS data will be inserted.

Enter a

- **positive value** from 0..HeightOfImage to specify a position relative to the top of the image. LinePos=0 specifies the very first image line.
- **negative value** from -1..-HeightOfImage to specify a position relative to the bottom of the image. LinePos=-1 specifies the very last image line.

SIS **UserValue** can be written into the camera's image. In sequence mode for every sequence entry an own SIS **UserValue** can be written.

Note	SIS outside the visible image area:
(i)	For certain Format_7 modes the image frame transported may contain padding (filling) data at the end of the transported frame. Setting LinePos=HeightOfImage places the stamp in this padding data area, outside the visible area (invisible SIS).
	If the transported image frame does not contain any padding data the camera will not relocate the SIS to the visible area automatically (no SIS).
	Take in mind that the accuracy of the time stamp might be affected by asynchronous traffic – mainly if image settings are changed.
Note	The IEEE 1394 cycle counter (aka time stamp) will be inserted into the very first 4 bytes/pixels of a line .

Cycle offset	Cycles	Seconds
Cycle offset 12 bit	Cycle count 13 bit	Second count 7 bit
03071 cycle offsets (40.69 ns)	0 7999 cycles	0 127 seconds
24.576 MHz cycle timer counter	8000 Hz cycle timer counter	1 Hz cycle timer counter

Table 187: 32-bit cycle timer layout

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
					Сус	cle offs	set 12	bit					(Cycle co	ount	•

Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
			•	Cycle	e coun	t 13 bi	t					Secon	d cour	ıt 7 bit		

Table 188: Cycle timer layout

Advanced register: frame counter

Note Different to Marlin SIS:

Register 610 is only to be used to reset the frame counter.

The **frame counter** feature is controlled by the following advanced feature register:

Register	Name	Field	Bit	Description
0xF1000610	FRMCNT_STAMP	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Reset	[1]	Reset frame counter
			[231]	Reserved
0xF1000614	FRMCNT		[031]	Frame counter

Table 189: Advanced register: Frame counter

Having this feature enabled, the current **frame counter** value (images read out of the sensor, equivalent to # FrameValid) will be inserted as a 32-bit integer value into any captured image.

Setting the **Reset** flag to 1 resets the frame counter to 0: the **Reset** flag is self-cleared.

Note

The 4 bytes of the **frame counter** value will be inserted as the **5th to 8th byte of a line**.

Additionally there is a register for direct read out of the frame counter value.

Advanced register: trigger counter

The **trigger counter** feature is controlled by the following advanced feature register:

Register	Name	Field	Bit	Description
0xF1000620	TRIGGER_COUNTER	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Reset	[1]	Reset trigger counter
			[231]	Reserved
0xF1000624	TRGCNT	TriggerCounter	[031]	Trigger counter

Table 190: Advanced register: Trigger counter

Having this feature enabled, the current **trigger counter** value (external trigger seen by hardware) will be inserted as a 32-bit integer value into any captured image.

Setting the **Reset** flag to 1 resets the **trigger counter** to 0: the Reset flag is self-cleared.

The **ON_OFF** and **LinePos** fields are simply mirrors of the time stamp feature. Settings of these fields are applied to all image stamp features.

The 4 bytes of the **trigger counter** value will be inserted as the **9th to 12th byte of a line**.

Additionally there is a register for direct read out of the **trigger counter** value.

Where to find time stamp, frame counter and trigger counter in the image

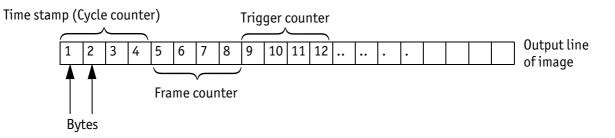


Figure 149: SIS in the image: time stamp, frame counter, trigger counter

Where to find all SIS values in the image

In the following table you find the position of all SIS values (byte for byte) including the endianness of SIS values.

CycleCounter [70]	CycleCounter [158]	CycleCounter [2316]	CycleCounter [3124]
Byte 1	Byte 2	Byte 3	Byte 4
FrameCounter [70]	FrameCounter [158]	FrameCounter [2316]	FrameCounter [3124]
Byte 5	Byte 6	Byte 7	Byte 8
TriggerCounter [70]	TriggerCounter [158]	TriggerCounter [2316]	TriggerCounter [3124]
Byte 9	Byte 10	Byte 11	Byte 12
AoiLeft [70]	AoiLeft [158]	AoiTop [70]	AoiTop [158]
Byte 13	Byte 14	Byte 15	Byte 16
AoiWidth [70]	AoiWidth [158]	AoiHeight [70]	AoiHeight [158]
Byte 17	Byte 18	Byte 19	Byte 20
Shutter [70]	Shutter [158]	Shutter [2316]	Shutter [3124]
Byte 21	Byte 22	Byte 23	Byte 24
Gain [70]	Gain [158]	Reserved [NULL]	Reserved [NULL]
Byte 25	Byte 26	Byte 27	Byte 28
OutputState_1 [70]	OutputState_2 [70]	OutputState_3 [70]	OutputState_4 [70]
Byte 29	Byte 30	Byte 31	Byte 32
InputState_1 [70]	InputState_2 [70]	Reserved [NULL]	Reserved [NULL]
Byte 33	Byte 34	Byte 35	Byte 36
SequenceIndex [70]	Reserved [NULL]	ColorCoding [NULL]	Reserved [NULL]
Byte 37	Byte 38	Byte 39	Byte 40
SerialNumber [70]	SerialNumber [158]	SerialNumber [2316]	SerialNumber [3124]
Byte 41	Byte 42	Byte 43	Byte 44
SIS_UserValue [70]	SIS_UserValue [158]	SIS_UserValue [2316]	SIS_UserValue [3124]
Byte45	Byte46	Byte47	Byte48

Table 191: SIS values (increasing order of transmitted pixels)

Smear reduction (not Pike F-1100/1600)

To enable/disable smear reduction use the following register(s):

Register	Name	Field	Bit	Description
0xF1000440	LOW_SMEAR	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Smear reduction on/off
			[731]	Reserved

Table 192: Advanced register: Smear reduction

Defect pixel correction

In the following the abbreviation **DPC** for **D**efect **P**ixel **C**orrection will be used. To enable/disable and configure defect pixel correction use the following register(s):

Register	Name	Field	Bit	Description
0xF1000460	DEFECT_PIXEL_CORRECTION_CTRL	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Defect pixel correction (DPC) on/off
			[731]	Reserved
0xF1000464	DEFECT_PIXEL_CORRECTION_MEM	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[1]	Reserved
		EnaMemWR	[2]	Enable WR access (from host to μC)
		EnaMemRD	[3]	Enable RD access (from µC to host)
			[49]	Reserved
		Number DefectColumn	[1017]	Number of current defect columns (6 byte / column)
		Number DefectPixel	[1831]	Number of current defect pixels (4 byte / pixel)

Table 193: Advanced register: **Defect pixel correction**

Register	Name	Field	Bit	Description
0xF1000468	LOOO468 DEFECT_PIXEL_CORRECTION_INFO			Indicates presence of this feature (read only)
		Version	[13]	Feature version
			[419]	reserved
		MaxDPCTable Size	[2031]	Maximum size of DPC table (in 128 Byte Blocks)

Table 193: Advanced register: Defect pixel correction

Reading or writing defect pixel correction data from/into the camera

Accessing the defect pixel correction data inside the camera is done through the GPDATA_BUFFER. Because the size of the GPDATA_BUFFER is smaller than the whole defect pixel correction data the data must be written in multiple steps.

Defect pixels and columns are saved in two adjacent memory chunks, first the defect pixel chunk followed by defect columns.

DPC-Memory alignment: {defect_pixel_1, defect_pixel_2 ... defect_pixel_n, defect_column_1, defect_column_2 ... defect_column_n}.

One defect pixel is saved as two 16-bit values (X, Y), so the size of defect pixel chunk equals NumberDefectPixel * 4 (**it is also the offset of defect column data**).

One defect column is saved as three 16-bit values (X, Y, Height), so the size of defect column chunk equals NumberDefectColumn * 6

Pixel coordinates and column coordinates must be sorted ascending, by X as primary and Y as secondary sorting-key.

$(\mathbf{\hat{I}})$

To write DPC coordinates:

 Query the limits and ranges by reading DEFECT_PIXEL_CORRECTION_INFO and GPDATA_INFO. (Note: If the list is empty, you don't have to write the DPC pixels. In this case do the following: in DEFECT_PIXEL_CORRECTION_MEM set the

NumberDefectColumn and NumberDefectPixel to 0.)

- 2. Set EnableMemWR to true (1).
- 3. Update NumberDefectColumn and NumberDefectPixel in DEFECT_PIX-EL_CORRECTION_MEM to the new values.
- 4. Write n DPC data bytes to GPDATA_BUFFER (n might be lower than the size of the GPDATA_BUFFER)
- 5. Repeat step 4 until all data is transferred.

6. Set EnableMemWR to false.

To read a DPC coordinates:

- 1. Query the limits and ranges by reading DEFECT_PIXEL_CORRECTION_INFO and GPDATA_INFO.
- 2. Query NumberDefectColumn and NumberDefectPixel from DEFECT_PIX-EL_CORRECTION_MEM
- 3. Set EnableMemRD to true (1).
- 4. Read n DPC data bytes from GPDATA_BUFFER (n might be lower than the size of the GPDATA_BUFFER).
- 5. Repeat step 4 until all data is transferred.
- 6. Set EnableMemRD to false.

User profiles

Definition Within the IIDC specification user profiles are called memory channels. Often they are called user sets. In fact these are different expressions for the following: storing camera settings into a non-volatile memory inside the camera.

User profiles can be	programmed with the fo	llowing advanced	feature register:

Offset	Name	Field	Bit	Description
0xF1000550	USER_PROFILE	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Error	[1]	An error occurred
			[26]	Reserved
		Busy	[7]	Save/Load in progress
		Save	[8]	Save settings to profile
		Load	[9]	Load settings from profile
		SetDefaultID	[10]	Set Profile ID as default
			[1119]	Reserved
		ErrorCode	[2023]	Error code
				See Table 195: User profiles: Error codes on page 359.
			[2427]	Reserved
		ProfileID	[2831]	ProfileID (memory channel)

Table 194: Advanced register: User profiles

In general this advanced register is a wrapper around the standard memory channel registers with some extensions. So to query the number of available user profiles you have to check the **Memory_Channel** field of the **BASIC_-FUNC_INQ** register at offset **0x400** (see IIDC V1.31 for details).

The **ProfileID** is equivalent to the memory channel number and specifies the profile number to store settings to or to restore settings from. In any case profile #0 is the hard-coded factory profile and cannot be overwritten.

After an initialization command, startup or reset of the camera, the **ProfileID** also indicates which profile was loaded on startup, reset or initialization.

• The default profile is the profile that is loaded on powerup or an INITIALIZE command.

A save or load operation delays the response of the camera until the operation is completed. At a time only one operation can be performed.

Store To store the current camera settings into a profile:

- 1. Write the desired **ProfileID** with the **SaveProfile** flag set.
- 2. Read back the register and check the **ErrorCode** field.
- **Restore** To restore the settings from a previous stored profile:
 - 1. Write the desired **ProfileID** with the **RestoreProfile** flag set.
 - 2. Read back the register and check the **ErrorCode** field.

Set default To set the default profile to be loaded on startup, reset or initialization

- 1. Write the desired **ProfileID** with the **SetDefaultID** flag set.
- 2. Read back the register and check the **ErrorCode** field.

Error codes

ErrorCode #	Description
0x00	No error
0x01	Profile data corrupted
0x02	Camera not idle during restore operation
0x03	Feature not available (feature not present)
0x04	Profile does not exist
0x05	ProfileID out of range
0x06	Restoring the default profile failed
0x07	Loading LUT data failed
0x08	Storing LUT data failed

Table 195: User profiles: Error codes

Reset of error codes

The **ErrorCode** field is set to zero on the next write access.

You may also reset the ErrorCode

- by writing to the USER_PROFILE register with the SaveProfile, Restore-Profile and SetDefaultID flag not set.
- by writing 0000000h to the **USER_PROFILE** register.

Stored settings

The following table shows the settings stored inside a profile:

Standard registers	Standard registers (Format_7)	Advanced registers
Cur_V_Frm_Rate	IMAGE_POSITION (AOI)	TIMEBASE
Cur_V_Mode	IMAGE_SIZE (AOI)	EXTD_SHUTTER
Cur_V_Format	COLOR_CODING_ID	IO_INP_CTRL
ISO_Channel	BYTES_PER_PACKET	IO_OUTP_CTRL
ISO_Speed		IO_INTENA_DELAY
BRIGHTNESS		AUTOSHUTTER_CTRL
AUTO_EXPOSURE (Target grey level)		AUTOSHUTTER_LO
SHARPNESS		AUTOSHUTTER_HI
WHITE_BALANCE (+ auto on/off)		AUTOGAIN_CTRL
HUE (+ hue on)		AUTOFNC_AOI (+ on/off)
SATURATION (+ saturation on)		COLOR_CORR (on/off + color correction
GAMMA (+ gamma on)		coefficients)
SHUTTER (+ auto on/off)		TRIGGER_DELAY
GAIN		MIRROR_IMAGE
TRIGGER_MODE		HIGH_SNR
TRIGGER_POLARITY		LUT_CTRL (LutNo; ON_OFF is not saved;
TRIGGER_DELAY		up to 16 LUTs can be saved in 4 user sets)
ABS_GAIN		SHDG_CTRL (on/off + ShowImage)
		DEFERRED_TRANS (HoldImg +
		NumOfImages)
		CHANNEL_ADJUST_CTRL
		CHANNEL_ADJUST_VALUE
		ADV_CHN_ADJ_OFFSET
		ADV_CHN_ADJ_OFFSET+1

Table 196: User profile: stored settings

The user can specify which user profile will be loaded upon startup of the camera.

This frees the user software from having to restore camera settings, that differ from default, after every cold start. This can be especially helpful if third party software is used which may not give easy access to certain advanced features or may not provide efficient commands for quick writing of data blocks into the camera.

Note

- A profile save operation automatically disables capturing of images.
- A profile save or restore operation is an uninterruptable (atomic) operation. The write response (of the asynchronous write cycle) will be sent after completion of the operation.
- Restoring a profile will not overwrite other settings than listed above.
- If a restore operation fails or the specified profile does not exist, all registers will be overwritten with the hard-coded factory defaults (profile #0).
- Data written to this register will not be reflected in the standard memory channel registers.

Frame time control

With this register you can set the frame time (in microseconds) and thus control the sensor frame rate more precisely than with the BytesPerPacket settings.

- The image transport speed depends on the BytesPerPacket setting only.
- The camera corrects invalid values automatically.

Offset	Name	Field	Bit	Description
0xF1000A00 F	FRAMETIME_CTRL	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		0n0ff	[6]	Enables or disables frame rate con- trol
			[7]	Reserved
		FrameTime	[831]	Frame time in microsecond steps
0xF1000A04		MinValue	[031]	Minimum frame time
0xF1000A08		MaxValue	[032]	Maximum frame time

Table 197: Advanced register: Frame time control

- The precision of the frame rate depends on the jitter at start of exposure: see Jitter at start of exposure on page 216.
- The frame rate is affected by both: current shutter time and BytesPerPacket setting.
- The FRAMETIME_CTRL register doesn't change the shutter or BytePerPacket settings.

GPDATA_BUFFER

GPDATA_BUFFER is a general purpose register that regulates the exchange of data between camera and host for:

- writing look-up tables (LUTs) into the camera
- uploading/downloading of the shading image

GPDATA_INFO Buffer size query

GPDATA_BUFFER indicates the actual storage range

Register	Name	Field	Bit	Description
0xF1000FFC	GPDATA_INFO		[015]	Reserved
		BufferSize	[1631]	Size of GPDATA_BUFFER (byte)
0xF1001000				
	GPDATA_BUFFER			
0xF10017FC				

Table 198: Advanced register: GPData buffer

- Read the BufferSize before using
 - GPDATA_BUFFER can be used by only one function at a time.

Little endian vs. big endian byte order

- Read/WriteBlock accesses to GPDATA_BUFFER are recommended, to read or write more than 4 byte data. This increases the transfer speed compared to accessing every single quadlet.
- The big endian byte order of the 1394 bus is unlike the little endian byte order of common operating systems (Intel PC). Each quadlet of the local buffer, containing the LUT data or shading image for instance, has to be swapped bytewise from little endian byte order to big endian byte order before writing on the bus.

Bit depth	little endian ⇒ big endian	Description
8 bit	L0 L1 L2 L3 ⇔ L3 L2 L1 L0	L: low byte
16 bit	L0 H0 L1 H1 ⇔ H1 L1 H0 L0	H: high byte

Table 199: Swapped first quadlet at address offset 0

User adjustable gain references

This register gives the user the possibility (via direct access) to modify the gain references. Modified values are stored automatically without further user action and are also stored on restart.

To reload default gain references (which are programmed at personalization) within the camera: set flag m_bDefGainRef=1

Offset	Name	Field	Bit	Description
0xF1002000	AFEREFERENCES	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[14]	Reserved
		m_bDefGainRef	[5]	Reload default gain references, if this flag is set.
			[631]	Reserved
0xF1002004	GAINREFERENCE	m_GainRef	[031]	Gain reference (0511)

Table 200: Advanced register: User adjustable gain references

In the following table you find the default gain references of all Pike models:

Pike model	Default gain reference (decimal)	Default gain reference (hex)
Pike F-032B/C	200	C8h
Pike F-100B/C	210	D2h
Pike F-145B/C (15fps)	30 (15*)	1Eh (0Fh*)
Pike F-145B/C (30fps)	85 (15*)	55h (0Fh*)
Pike F-210B/C	215	D7h
Pike F-421B/C	200	C8h
Pike F-505B/C	205 (130*)	CDh (82h*)
Pike F-1100B/C	228	E4h
Pike F-1600B/C	193	C1h

Table 201: Default gain references of Pike models

*: Firmware package version 00.03.00.01 or earlier

Firmware update

Firmware updates can be carried out via FireWire cable without opening the camera.

Note	For further information:
()	 Read the application note: How to update Guppy/Pike/Stingray firmware at Allied Vision website or Contact your local dealer.
www	For our Sales locations see: http://www.alliedvision.com
-	

Extended version number (FPGA/µC)

The new extended version number (Pike firmware 3.x and later) for microcontroller and FPGA firmware has the following format (4 parts separated by periods; each part consists of two digits):

Special.Major.Minor.Bugfix

or

xx.xx.xx.xx

`.**`}7**'S

Digit	Description
1st part: Special	Omitted if zero
	Indicates customer specific versions (OEM variants). Each customer has its own number.
2nd part: Major	Indicates big changes
	Old: represented the number before the dot

Table 202: New version number (microcontroller and FPGA)

Digit	Description
3rd part: Minor	Indicates small changes
	Old: represented the number after the dot
4th part: Bugfix	Indicates bugfixing only (no changes of a feature) or build number

Table 202: New version number (microcontroller and FPGA)

Pike Technical Manual V5.2.0

Appendix

Sensor position accuracy of Pike cameras

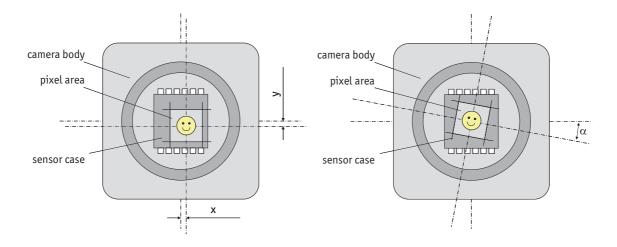


Figure 150: Sensor position accuracy

Criteria	Subject	Properties
Method of Positioning		Optical alignment of the photo sensitive sensor area into the camera front module (lens mount front flange)
Reference Points	Sensor	Center of the pixel area (photo sensitive cells)
	Camera	Center of the lens mount
Accuracy	x/y	+/- 0.1 mm (sensor shift)
	Z	+0/-50 μm (optical back focal length)
	α	+/-0.5° (center rotation as the deviation from the parallel to the camera bottom)

Table 203: Criteria of Allied Vision sensor position accuracy

x/y tolerances between C-Mount hole and pixel area may be higher.

Numbers

0xF1000010 (version info)	319
0xF1000040 (advanced feature inquiry)	
0xF1000100 (camera status)	323
0xF1000200 (max. resolution)	323
0xF1000208 (time base)	324
0xF100020C (extended shutter)	325
0xF1000210 (test image)	326
0xF1000220 (sequence mode)	219
0xF1000240 (LUT)	327
0xF1000250 (shading)	330
0xF1000260 (deferred image transport)	333
0xF1000270 (frame info)	333
0xF1000274 (frame counter)	333
0xF1000300 (input control)	112
0xF1000340 (Delayed IntEna)	
0xF1000360 (auto shutter control)	
0xF1000370 (auto gain control)	336
0xF1000390 (autofunction AOI)	
0xF10003A0 (color correction)	338
0xF1000400 (trigger delay)	339
0xF1000410 (mirror image)	339
0xF1000420 (channel adjust)	340
0xF1000440 (smear reduction)	356
0xF1000510 (soft reset)	
0xF1000520 (High SNR)	
0xF1000550 (user profiles/memory chan	
user sets)	358
0xF1000560 (Max. ISO size S400)	
0xF1000564 (Max. ISO size S800)	
0xF1000570 (update timing modes)	
0xF10005B0 (low-noise binning mode)	
0xF1000610 (frame counter)	
0xF1000620 (trigger counter)	
0xF1000630 (SIS)	351
0xF1000640 (software feature control)	2/7
disable LEDs	
0xF1000840 (debounce)	
0xF1000A00 (frame time control)	
0xF1002000 (user adjustable gain reference 363	es)
0xF1002004 (user adjustable gain reference	es)
363	
0xF1100000 (Parameter-List Update)	348
1394a data transmission	
1394b	
bandwidths	
1394b data transmission	37

2 out of 16 H+V sub-sampling (b/w)	
drawing	174
2 out of 16 H+V sub-sampling (color)	
drawing	175
2 out of 4 H+V sub-sampling (b/w)	
drawing	173
2 out of 4 H+V sub-sampling (color)	
drawing	1/4
2 out of 8 H+V sub-sampling (b/w)	470
drawing	1/3
2 out of 8 H+V sub-sampling (color)	475
drawing	1/5
2 x full binning	100
drawing	109
2 x horizontal binning	160
drawing 2 x vertical binning	100
drawing	166
32-bit cycle timer layout	
4 x full binning	
drawing	160
4 x horizontal binning	109
drawing	168
4 x vertical binning	100
drawing	166
8 x full binning	
drawing	169
8 x horizontal binning	
drawing	168
8 x vertical binning	
drawing	167
5	

A

Abs_Control (Field) 134, 139, 141	, 142, 145
Abs_Control_Inq (Field)	
access	
binning and sub-sampling	
AccessLutNo (Field)	
Access_Control_Register	
accuracy	
sensor position	
AddrOffset (Field)	. 327, 330
Adv 2 tab	. 162, 163
Advanced feature inquiry	
Advanced feature inquiry register	
Advanced features	
activate	
base address	

inquiry	303
advanced register	
Auto gain control	
Auto shutter control	
auto shutter control	
Autofunction AOI	337
Camera status	323
Channel balance	340
Color correction	338
defect pixel correction	356
Deferred image transport	333
Delayed Integration Enable (IntEna)	335
Extended shutter 210), 325
Extended version	319
Format_7 mode mapping	349
frame counter	
Frame information	333
GPData buffer	
High SNR	342
Input control	112
Low-noise binning mode	
LUT	327
Max. ISO packet	343
Max. resolution	323
Mirror	
Mirror image	339
Output control	
Parameter-List Update	
secure image signature (SIS)	351
Sequence mode	
Shading	
Smear reduction	356
Soft reset	
Test images	
Time base	
Trigger delay	
Update timing modes	
User adjustable gain references	
User profiles	
AFE channel compensation	
Algorithm	
correction data	150
AOI 152	
correction data	
area of interest (AOI)152	
Asynchronous broadcast	
auto exposure	
limits	335
target grey level	
turget grey tevet 14.	ردد ,

Auto Exposure (CSR register)142
auto gain 140, 335
Auto gain control (advanced register)336
auto shutter 137, 138, 335
Auto shutter control (advanced register)335
auto shutter control (advanced register) 335
auto white balance
external trigger137
AUTOFNC_AOI 137, 337
AUTOFNC_AOI positioning137
Autofunction AOI (advanced register)337
AUTOGAIN_CTRL
automatic generation
correction data150
automatic white balance136
AUTOSHUTTER_CTRL
AUTOSHUTTER_HI335
AUTOSHUTTER_L0335
AUTO_EXPOSURE142
Auto_Inq113
A_M_MODE (Field) 134, 139, 141, 142, 145

В

bandwidth	229
affect frame rate	
available	250
deferred image transport	
FastCapture	
frame rates	249
RGB8 format	194
save in RAW-mode	
BAYER demosaicing	190, 193
BAYER mosaic	
BAYER to RGB	
color interpretation	
binning	165
access	176
full	169
horizontal	168
only Pike b/w	165
vertical	166
BitsPerValue	327
black level	144
black lines	228
black value	. 143, 144
black/white camera	
block diagram	128
blink codes	109

block diagram	
b/w camera	128
color camera	129
block diagrams	
cameras	128
BRIGHTNESS 14	
Brightness	
inquiry register	
brightness	
auto shutter	
average	
decrease	
descending	
effects	
IIDC register	
increase	
level	•
LUT	
nonlinear	
reference	
setting	
sub-sampling	
variation	
Brightness Control	
brightness (table)	
BRIGHTNESS_INQUIRY	
Brightness_ing.	
buffer	
LUT	157
bulk trigger	
bulk trigger (Trigger_Mode_15)	
busy signal	
Bus_Id	
Duj_1u	

С

camera dimensions	67
camera interfaces	106
camera lenses	103
Camera status (advanced register)	323
Camera status (register)	322
cameras	
block diagram	128
CAMERA_STATUS	323
Camera_Status_Register	285
CE	34
channel	122
channel balance	129, 340
Channel balance (advanced register)	340

color
correction190
color camera
block diagram129
color coding184
color codings
color correction 192, 193, 194
Allied Vision cameras192
formula193
why?192
Color correction (advanced register)
Color Correction (Field)321
color information
Color_Coding184
COLOR_CODING_INQ184
Com (LED state)109
common GND
inputs108
common vcc
outputs108
continuous
using Trigger_Mode_15204
controlling
image capture200
correction
color190
correction data
algorithm150
AOI151
automatic generation150
requirements150
shading148
CSR285
shutter139
CSR register
Auto Exposure142
GAIN141
cycle counter352
Cycle timer layout352

D

data block packet format	121
description	122
data exchange buffer	
LUT	157
data packets	121
data path	128
data payload size	41, 281

Е

edge mode (Trigger_Mode_1)	200
effective min. exp. time	209
EnableMemWR (Field)	327
Encapsulated Update (begin/end) 1	81, 182
End of exposure	214
endianness	226
error codes	
LED	110
error states	109
example (parameter list)	349
Exposure time	
(Field)	210
exposure time	209
81 Ch register	211
example	210
extended shutter	325
FIFO	222
formula	209
longest	210
long-term integration	
minimum	210

ExpTime (Field)	210
EXTD_SHUTTER	
extended shutter	
FireDemo	
FireView	
inactive	. 211, 325
register	
Trigger mode	200
Extended shutter (advanced register)	. 210, 325
Extended version (advanced register)	
EXTENDED_SHUTTER	210
External GND	
external signal (SeqMode)	
external trigger	

F

Fast Parameter Update Timing 182, 183 FastCapture
bandwidth189
deferred image transport
false
only Format_7189
FastCapture (Field)
FCC Class B
FireDemo
extended shutter325
FirePackage
additional checks image integrity228
OHCI API software
Firetool program224
FireView
Extended shutter325
FireWire
connecting capabilities 37
definition 35
serial bus
FireWire 400
FireWire 800
firmware update
focal length103
Format_7 mode mapping (advanced register)349
Format_7 modes
mapping
FORMAT_7_ERROR_1110
FORMAT_7_ERROR_2110
formula
color correction193
FOV145

FPGA boot error	.110
frame counter 227, 351,	353
frame counter (advanced register)	.353
Frame information (advanced register)	.333
frame rates	
bandwidth	.249
bus speed	.229
Format_7	
maximum	
tables	.249
video mode 0	.252
video mode 2	
frame time control	
Frame valid	.115
free-run	
Full binning	
Fval	
Fval signal	
·····	

G

gain	
auto1	.40
auto exposure CSR1	.40
AUTOFNC_AOI1	.37
manual1	.43
manual gain range1	
ranges1	.43
Gain references (advanced register)3	63
GAIN (CSR register)1	.41
GAIN (Name)1	.41
gamma function1	
CCD models1	.51
gamma LUT1	.55
global pipelined shutter2	200
global shutter2	
GND for RS2321	
GPData buffer (advanced register)3	62
GPDATA_BUFFER 153, 154, 1	
GRAB_COUNT1	.50

Η

hardware trigger	114, 206
HDR mode	
HDR Pike	322
high level (SeqMode)	220
High Signal Noise Ratio (HSNR).	
High SNR mode	

High SNR (advanced register) HoldImg	342
field	
flag	
mode	
set	332
HoldImg (Field)	333
horizontal binning	168
horizontal mirror function	145
horizontal sub-sampling (b/w)	
drawing	170
horizontal sub-sampling (color)	
drawing	171
HSNR	185
hue	192
offset	

I

ID
color coding184
IEEE 1394 30
IEEE 1394 standards 35
IEEE 1394 Trade Association285
IEEE 1394b connector107
IIDC
data structure 125, 126
isochronous data block packet format 121
pixel data121
trigger delay113
video data format123
YUV 4:1:1 123, 124
YUV 4:2:2 123, 124
IIDC V1.31200
IIDC V1.31 camera control standards 39
image capture
controlling200
ImageRepeat223
IMAGE_POSITION246
IMAGE_SIZE246
incrementing list pointer217
input
block diagram111
signals111
Input control (advanced register)112
input mode112
InputMode (Field)112
inputs
common GND108

general	110
in detail	111
triggers	111
input/output pin control	334
Inquiry register	
basic function	
Integration Enable signal	
IntEna 1	
IntEna signal1	15, 334
IntEna_Delay	119
internal trigger	200
interpolation	
BAYER demosaicing	
BAYER to RGB	
color	
IO_INP_CTRL1	
IO_INP_CTRL2	
IO_INP_DEBOUNCE	
IO_OUTP_CTRL1	
IO_OUTP_CTRL2	
IO_OUTP_CTRL3	
IO_OUTP_CTRL4	
isochronous blocks	
isochronous channel number	
isochronous data block packet format	121
isochronous data packets	
Isochronous Resource Manager (IRM)	
IsoEnable	
white balance	
ISO_Enable	
ISO_Enable mode	
multi-shot	215
one-shot	
$\mathrm{I}/\mathrm{0}$ controlled sequence pointer reset	
I/O controlled sequence stepping mode	223

J

jitter 214	4, 216
at exposure start	217

L

latching connectors	107
LED	
Com	109
error codes	110
indication	109
on (green)	109

status109
Trg109
yellow109
LEDs
disable
Legal notice1, 2
level mode (Trigger_Mode_1)200
look-up table
user-defined155
look-up table (LUT) 155, 327
Low-noise binning mode (advanced register) 346
LOW_SMEAR
LUT
data exchange buffer157
example155
gamma155
general155
loading into camera157
volatile
LUT (advanced register)327
LutNo (Field)
LUT_CTRL
LUT_INF0327
LUT_MEM_CTRL

Μ

manual range of UB and VR	135
Manual_Inq	
Maximum resolution (register)	
MaxLutSize (Field)	
MaxResolution (Field)	
MAX_RESOLUTION	
Max_Value	
Max. ISO packet (advanced register)	
Max. resolution (advanced register)	
minimum exposure time	
Min_Value	
Min. exp. time + offset	
mirror function	
horizontal	145
Mirror image (advanced register)	
Mirror (advanced register)	
MSB aligned	
multi-shot	. 215, 224
external trigger	
using Trigger-Mode_15	
5 55 -	

Ν

No DCAM object	110
No FLASH object	110
Node_Id	285
non-uniform illumination	149
NumOfLuts (Field)	327

0

OFFSET	
automatic white balance13	5
offset20	9
800h14	4
CCD14	4
configuration ROM29	0
factors29	0
hue19	2
initialize register29	2
inquiry register video format29	3
inquiry register video mode29	3
saturation19	2
setting brightness14	4
setting gain14	3
OHCI API	
FirePackage 3	
one-push white balance 135, 13	6
one-shot21	
Trigger_Mode_1520	
using Trigger_Mode_1520	
values21	
one-shot bit21	
one-shot mode21	
One_Push (Field) 134, 139, 141, 142, 14	
One_Push_Inq11	
0N_0FF11	
ON_OFF (Field)13	
optocoupler11	1
output	
block diagram11	
signals11	
Output control (advanced register)11	
output mode11	
ID11	
Output mode (Field)11	
output pin control11	
outputs11	
common vcc10	
general11	0

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	 •	•	•	•	•••	 1	1	6)

registers	
set by software	
OutVCC	

Ρ

Packed 12-Bit Mode184
Packed 12-Bit MONO184
Packed 12-Bit RAW184
packet format121
parameter list
example182
parameter list (example)349
Parameter-List Update 181, 182, 183
Parameter-List Update (advanced register)348
PI controller140
picture size 33
Pike
camera types 33
Pike F-032B (Specification) 45
Pike F-100B (Specification) 47
Pike F-145B (Specification) 48
Pike F-210B/C (Specification) 50
Pike F-421B/C (Specification) 51
Pike F-505B/C (Specification)53, 55, 57
Pike types 32
Pike W270 S90 70
pin control
PinState flag
PinState (Field)112
pixel data121
plus integral controller140
pointer reset
Polarity 112, 116
Power 100
IEEE 1394b106
power
GND
LED
Presence_Inq
Presence_Inq (Field)113, 134
programmable mode (Trigger_Mode_15)200

Q

QFCM	
Quick Format Change Mode	179, 182
(QFCM)	
Quick parameter change timing mo	des179

R

113
110
217
150
194
194
220
34
108
108

S

saturation	192
offset	192
secure image signature (advanced register)	351
secure image signature (SIS)	
advanced registers	351
definition	
scenarios	226
sensor	
size	. 33
Sensor position accuracy	
SeqLength	
SegMode	
description	220
sequence	
deferred mode	188
important notes	224
loading a LUT	
modified registers	218
of images	
one-push white balance	136
OneShot	212
sequence mode	217
cancel	224
changes to registers	226
default	220
example of settings	225
features	223
flow diagram	222
frame rate	218
image size	218
implemented	
pointer reset	

repeat counter	217
Sequence mode (advanced register)	219
Sequence Reset	112
Sequence Step	112
sequence step mode	
SEQUENCE_CTRL	219, 315
SEQUENCE_PARAM	219, 315
SEQUENCE_STEP	219, 315
Seq_Length	224
shading	
correction data	148
shading correction	148, 329
shading image	148, 149
automatic generation	150
delay	
Format_7	151
generation	152
load into camera	
load out of camera	153
shading images	
shading reference image	150
Shading (advanced register)	
sharpness	
SHDG_CTRL	
SHDG_INFO	
SHDG_MEM_CTRL	
SHUTTER	
Shutter CSR	
shutter time	
formula	209
SHUTTER_MODES	
signal-to noise ratio (SNR)	
vertical binning	
signal-to-noise ratio (SNR)	
signal-to-noise separation	
SingleShot	
SIS	
advanced registers	351
definition	
scenarios	226, 227
SIS (advanced register)	
size	
sensor	33
SmartView	30
smear	
compensate	228
smear reduction	
definition	
how it works	

Т

Tag field	122
Target grey level	
corresponds to Auto_exposure	310
Target grey level (auto exposure)143	, 335
Target grey level (SmartView)	
corresponds to auto exposure	138
tCode	122
test image	282
Bayer-coded	284
b/w cameras	
color	284
color cameras	284
configuration register	326
gray bar	

save	•••••	.326
Test images (advanced register)	•••••	.326
TEST_IMAGE		.326
tg		.122
time base		210
exposure time		.209
setting		
trigger delay		
Time base (advanced register)		
time response		
Time stamp		
time stamp		
time stamp (advanced register)		
TIMEBASE		
TimeBase (Field)		
timebase (Register)		
TPA-		
IEEE 1394b		106
TPA(R)		. 100
IEEE 1394b		106
TPA+		
ТРВ-		. 100
IEEE-1394b		106
TPB(R)	••••••	. 100
IEEE 1394b		106
TPB+		
IEEE 1394b		
Transaction code		
Trg (LED state)	••••••	. 109
trigger	200	201
bulk		
control image capture		
delay		
edge		
external		
hardware		
impulse		
IntEna		
internal		
latency time		
microcontroller		
one-shot		
sequence mode		
signal		
software	•••••	.215
synchronize	•••••	.216
Trigger counter	••••••	.351
trigger counter	227,	354
trigger delay		

advanced CSR 1	14, 206
advanced register1	14, 206
off	114
on	114
Trigger Delay CSR 1	14, 206
trigger delay inquiry register	113
Trigger delay (advanced register)	339
trigger function	203
Trigger modi	200
trigger overrun	227
triggers	111
input	111
TRIGGER_DELAY 1	
TRIGGER_DELAY_INQUIRY1	13, 205
Trigger_Delay_Inquiry register	205
TRIGGER_MODE	203
Trigger_Mode	203
Trigger_Mode_0 1	15, 200
Trigger_Mode_1	
Trigger_Mode_1 (edge mode)	
Trigger_Mode_1 (level mode)	
Trigger_Mode_15 (bulk trigger) 2	200, 202
Trigger_Mode_15 (programmable mode)	
Trigger_Polarity	203
Trigger_Source	
Trigger_Value	203
tripod adapter	70
Tripod dimensions70, 86	5, 93, 99
types	
Pike cameras	32

U

UNIT_POSITION_INQ240	6
UNIT_SIZE_INQ240	6
Update timing modes (advanced register)34	5
User profiles (advanced register)	1
user value22	7
U/B_Value (Field)134	4
U/V slider range13	5
-	

V

VCC	
IEEE 1394b	106
Vendor Unique Color_Coding	184
Vendor unique Features	303
vertical binning	166
SNR	167

vertical sub-sampling (b/w)	
drawing1	72
vertical sub-sampling (color)	., _
drawing1	72
VG (GND)	. / 2
IEEE 1394b1	06
video data format	.00
IIDC V1.311	22
Video data payload1 video format	.22
available bandwidth2	
frame rate2	
MF-080232, 233, 234, 240, 242, 2	
video formats2	29
video Format_7	
A0I2	
video information1	.22
video mode	
CUR-V-MODE	808
Format_73	313
inquiry register2	293
sample C code2	289
video mode 02	252
video mode 22	252
VMode_ERROR_STATUS1	10
VP	
IEEE 1394b1	06
VP (Power, VCC)	
IEEE 1394b1	06
V/R_Value (Field)1	

W

white balance	
auto shutter	138
AUTOFNC_AOI	
automatic	136, 137
conditions	136, 137
general	133
Hue register	
one-push	135, 136
register 80Ch	133
six frames	
WHITE_BALANCE	134, 136