

Technical Manual

V4.5.0 03 March 2015

Allied Vision Technologies GmbH Taschenweg 2a D-07646 Stadtroda / Germany

Legal notice

For customers in the U.S.A.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However there is no guarantee that interferences will not occur in a particular installation. If the equipment does cause harmful interference to radio or television reception, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the distance between the equipment and the receiver.
- Use a different line outlet for the receiver.
- Consult a radio or TV technician for help.

You are cautioned that any changes or modifications not expressly approved in this manual could void your authority to operate this equipment. The shielded interface cable recommended in this manual must be used with this equipment in order to comply with the limits for a computing device pursuant to Subpart B of Part 15 of FCC Rules.

For customers in Canada

This apparatus complies with the Class B limits for radio noise emissions set out in the Radio Interference Regulations.

Pour utilisateurs au Canada

Cet appareil est conforme aux normes classe B pour bruits radioélectriques, spécifiées dans le Règlement sur le brouillage radioélectrique.

Life support applications

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Allied Vision Technologies customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Allied for any damages resulting from such improper use or sale.

Trademarks

Unless stated otherwise, all trademarks appearing in this document of Allied Vision Technologies are brands protected by law.

Warranty

The information provided by Allied Vision Technologies is supplied without any guarantees or warranty whatsoever, be it specific or implicit. Also excluded are all implicit warranties concerning the negotiability, the suitability for specific applications or the non-breaking of laws and patents. Even if we assume that the information supplied to us is accurate, errors and inaccuracy may still occur.

Copyright

All texts, pictures and graphics are protected by copyright and other laws protecting intellectual property. It is not permitted to copy or modify them for trade use or transfer, nor may they be used on web sites.

Allied Vision Technologies GmbH 03/2015

All rights reserved. Managing Director: Mr. Frank Grube Tax ID: DE 184383113

Headquarters:

Taschenweg 2A D-07646 Stadtroda, Germany Tel.: +49 (0)36428 6770 Fax: +49 (0)36428 677-28 e-mail: info@alliedvision.com

Contents

Contacting Allied Vision	11
Introduction	12
Document history	
Manual overview	
Conventions used in this manual	
Styles	
Symbols	
More information 2	26
Before operation 2	26
Stingray cameras	28
Conformity	29
CE	
FCC – Class B Device	
FireWire	30
Overview	
Definition	
IEEE 1394 standards 3	
Why use FireWire?	
FireWire in detail	
Serial bus	
FireWire connection capabilities	
Capabilities of 1394a (FireWire 400) IIDC V1.3 camera control standards	
Capabilities of 1394b (FireWire 800) IIDC V1.31 camera control standards	
Compatibility between 1394a and 1394b	
Compatibility example	
Image transfer via 1394a and 1394b	
1394b bandwidths	
Requirements for PC and 1394b	
Example 1: 1394b bandwidth of Stingray cameras	
Example 2: More than one Stingray camera at full speed	
FireWire Plug & play capabilities	
FireWire hot-plug and screw-lock precautions	
Operating system support	
Specifications4	í0
Stingray F-033B/C (fiber)	ί0
Stingray F-046B/C (fiber) 4	í2
Stingray F-080B/C (fiber) 4	í3

Stingray F-125B/C (fiber)	45
Stingray F-145B/C (fiber)	47
Stingray F-146B/C (fiber)	49
Stingray F-201B/C (fiber)	51
Stingray F-504B/C (fiber)	53
Spectral sensitivity	
Camera dimensions	63
Serial numbers for starting new front flange	
Stingray standard housing (2 x 1394b copper)	
Stingray (1394b: 1 x GOF, 1 x copper)	
Tripod adapter	
Stingray W90 (1394b: 1 x GOF, 1 x copper)	
Stingray W90 S90 (2 x 1394b copper)	
Stingray W90 S90 (1394b: 1 x GOF, 1 x copper)	
Stingray W270 (2 x 1394b copper)	
Stingray W270 (1394b: 1 x GOF, 1 x copper)	
Stingray W270 S90 (2 x 1394b copper)	
Stingray W270 S90 (1394b: 1 x GOF, 1 x copper)	
Stingray Compact	
Cross section: CS-Mount	76
Cross section: C-Mount	77
Adjustment of C-Mount and CS-Mount	77
Stingray board level: dimensions	78
Stingray board level: CS-Mount	79
Stingray board level: C-Mount	80
Filter and lenses	
IR cut filter: spectral transmission	
Camera lenses	
Camera interfaces	
IEEE 1394b port pin assignment	
Board level camera: IEEE 1394b port pin assignment	
Camera I/O connector pin assignment	
Board level camera: I/O pin assignment	
Status LEDs	
Normal conditions	
Error conditions	
Control data signals	
Inputs Triggers	
Ingut/output pin control	
IO_INP_CTRL 1-2	
Trigger delay	
Outputs	

IO_OUTP_CTRL 1-4	
Output control	
Output modes	
Pulse-width modulation (Stingray housing and Stingray board level models)	
PWM: minimal and maximal periods and frequencies	
PWM: Examples in practice	101
Pixel data	102
Description of the data path	108
Block diagrams of the cameras	108
Black and white cameras	
Color cameras	109
White balance	
One-push white balance	
Auto white balance (AWB)	
Auto shutter	
Auto gain	
Manual gain	
Brightness (black level or offset)	
Horizontal mirror function	
Shading correction	
Building shading image in Format_7 modes	
First example	
Second example	
How to store shading image	
Automatic generation of correction data	
Requirements	
Algorithm	
Loading a shading image out of the camera	
Loading a shading image into the camera	
Look-up table (LUT) and gamma function	
Loading an LUT into the camera	
Defect pixel correction	
Building defect pixel correction image in Format_7 modes	
First example	
Second example	
Flow diagram of defect pixel correction	
Building defect pixel data	
Grab an image with defect pixel data	
Calculate defect pixel coordinates	
Reset values (resolution, shutter, gain, brightness)	
Activate/deactivate defect pixel correction	
Store defect pixel data non-volatile	
Load non-volatile stored defect pixel data	
Send defect pixel data to the host	
Receive defect pixel data from the host	
DPC data: storing mechanism	

Stingray Technical Manual V.4.5.0

Binning (only Stingray b/w and F-201C/504C)	
2 x / 4 x / 8 x binning (F-201C only 2 x vertical binning)	
Vertical binning	137
Horizontal binning (F-201C only 2 x horizontal binning)	139
2 x full binning/4 x full binning/8 x full binning (F-201C only 2 x full binning)	140
Sub-sampling (Stingray b/w and color)	
What is sub-sampling?	
Which Stingray models have sub-sampling?	
Description of sub-sampling	141
Binning and sub-sampling access	147
Quick parameter change timing modes	149
Stingray timing modes	
Standard Parameter Update Timing	150
Quick Format Change Mode (QFCM)	150
How to transfer parameters to the camera	
Encapsulated Update (begin/end)	
Parameter-List Update	
Standard Update (IIDC)	
Packed 12-Bit Mode	
High SNR mode (High Signal Noise Ratio)	155
Frame memory and deferred image transport	
Deferred image transport	
HoldImg mode	
FastCapture mode	
Color interpolation (BAYER demosaicing)	
Sharpness	
Hue and saturation	
Color correction	
Why color correction?	
Color correction in Allied Vision cameras	
Color correction: formula	
GretagMacbeth ColorChecker	
Changing color correction coefficients	
Switch color correction on/off	
Color conversion (RGB \rightarrow YUV)	
Bulk Trigger	
Level Trigger	166
Serial interface	
Controlling image conture	170
Controlling image capture	
Trigger modes	
Bulk trigger (Trigger_Mode_15)	
Trigger delay	
Trigger delay advanced register	
Software trigger	
Debounce	
Debounce time	
Exposure time (shutter) and offset	180

	Exposure time offset, minimum exposure time	180
	Extended shutter	181
0	ne-shot	182
	One-shot command on the bus to start exposure	183
	End of exposure to first packet on the bus	184
Μ	Iulti-shot	185
IS	SO_Enable / free-run	185
Α	synchronous broadcast	185
	itter at start of exposure	
	equence mode	
	How is sequence mode implemented?	
	Setup mode	
	Sequence step mode	
	SeqMode description	191
	Sequence repeat counter	191
	Manual stepping & reset	191
	Which sequence mode features are available?	193
	Setup mode	
	I/O controlled sequence stepping mode	193
	I/O controlled sequence pointer reset	
	I/O controlled sequence stepping mode and I/O controlled sequence pointer reset via soft	
	command	
	Points to pay attention to when working with a sequence	
	Changing the parameters within a sequence	
	Points to pay attention to when changing the parameters	
S	ecure image signature (SIS): definition and scenarios	
	SIS: Definition	
	SIS: Scenarios	198
Vid	leo formats, modes and bandwidth	100
	tingray F-033B / Stingray F-033C	199
	nd board level F-033B BL / F-033C BL	200
		200
C-	tingray F_0/6B / Stingray F_0/6C	
	tingray F-046B / Stingray F-046C nd board level F-046B BL / F-046C BL	202
a	nd board level F-046B BL / F-046C BL	202
a S'	nd board level F-046B BL / F-046C BL tingray F-080B / Stingray F-080C	
a S ⁻ a	nd board level F-046B BL / F-046C BL tingray F-080B / Stingray F-080C nd board level F-080B BL / F-080C BL	
a S [.] a S	nd board level F-046B BL / F-046C BL tingray F-080B / Stingray F-080C nd board level F-080B BL / F-080C BL tingray F-125B / Stingray F-125C	204
a S ⁻ a S ⁻ a	nd board level F-046B BL / F-046C BL tingray F-080B / Stingray F-080C nd board level F-080B BL / F-080C BL tingray F-125B / Stingray F-125C nd board level F-125B BL / F-125C BL	204
a S [.] a S [.] S	nd board level F-046B BL / F-046C BL tingray F-080B / Stingray F-080C nd board level F-080B BL / F-080C BL tingray F-125B / Stingray F-125C nd board level F-125B BL / F-125C BL tingray F-145B / Stingray F-145C	204 206
ai Si ai Si Si ai	nd board level F-046B BL / F-046C BL tingray F-080B / Stingray F-080C nd board level F-080B BL / F-080C BL tingray F-125B / Stingray F-125C nd board level F-125B BL / F-125C BL tingray F-145B / Stingray F-145C nd board level F-145B BL / F-145C BL	204 206
ai Si Si ai Si Si Si	nd board level F-046B BL / F-046C BL tingray F-080B / Stingray F-080C nd board level F-080B BL / F-080C BL tingray F-125B / Stingray F-125C nd board level F-125B BL / F-125C BL tingray F-145B / Stingray F-145C nd board level F-145B BL / F-145C BL tingray F-146B / Stingray F-146C	204 206 208
ai S ai S ai S ai S	nd board level F-046B BL / F-046C BL tingray F-080B / Stingray F-080C nd board level F-080B BL / F-080C BL tingray F-125B / Stingray F-125C nd board level F-125B BL / F-125C BL tingray F-145B / Stingray F-145C nd board level F-145B BL / F-145C BL tingray F-146B / Stingray F-146C nd board level F-146B BL / F-146C BL	204 206 208
ai Si Si Si ai Si Si Si	nd board level F-046B BL / F-046C BL tingray F-080B / Stingray F-080C nd board level F-080B BL / F-080C BL tingray F-125B / Stingray F-125C nd board level F-125B BL / F-125C BL tingray F-145B / Stingray F-145C nd board level F-145B BL / F-145C BL tingray F-146B / Stingray F-146C nd board level F-146B BL / F-146C BL tingray F-201B / Stingray F-201C	204 206 208 210
ai Si ai Si ai Si ai Si ai	nd board level F-046B BL / F-046C BL. tingray F-080B / Stingray F-080C nd board level F-080B BL / F-080C BL. tingray F-125B / Stingray F-125C nd board level F-125B BL / F-125C BL. tingray F-145B / Stingray F-145C nd board level F-145B BL / F-145C BL. tingray F-146B / Stingray F-146C nd board level F-146B BL / F-146C BL. tingray F-201B / Stingray F-201C nd board level F-201B BL / F-201C BL.	204 206 208 210
ai Si Si Si Si Si Si Si Si Si Si	nd board level F-046B BL / F-046C BL. tingray F-080B / Stingray F-080C nd board level F-080B BL / F-080C BL. tingray F-125B / Stingray F-125C nd board level F-125B BL / F-125C BL. tingray F-145B / Stingray F-145C nd board level F-145B BL / F-145C BL. tingray F-146B / Stingray F-146C nd board level F-146B BL / F-146C BL. tingray F-201B / Stingray F-201C nd board level F-201B BL / F-201C BL. tingray F-504B / Stingray F-504C	204 206 208 210 212
ai Si Si Si Ai Si Ai Si Ai Si Ai	nd board level F-046B BL / F-046C BL. tingray F-080B / Stingray F-080C nd board level F-080B BL / F-080C BL. tingray F-125B / Stingray F-125C nd board level F-125B BL / F-125C BL. tingray F-145B / Stingray F-145C nd board level F-145B BL / F-145C BL. tingray F-146B / Stingray F-146C nd board level F-146B BL / F-146C BL. tingray F-201B / Stingray F-201C nd board level F-201B BL / F-201C BL. tingray F-504B / Stingray F-504C nd board level F-504B BL / F-504C BL.	204 206 208 210 212 215
ai Si Si Si Ai Si Ai Si Ai Si Ai	nd board level F-046B BL / F-046C BL. tingray F-080B / Stingray F-080C nd board level F-080B BL / F-080C BL. tingray F-125B / Stingray F-125C nd board level F-125B BL / F-125C BL. tingray F-145B / Stingray F-145C nd board level F-145B BL / F-145C BL. tingray F-146B / Stingray F-146C nd board level F-146B BL / F-146C BL. tingray F-201B / Stingray F-201C nd board level F-201B BL / F-201C BL. tingray F-504B / Stingray F-504C	204 206 208 210 212 212 215 217

Stingray Technical Manual V.4.5.0 7

	Frame rates	220
	Frame rates Format_7	224
	Stingray F-033/F-033 BL: A0I frame rates	225
	Stingray F-046/F-046 BL: A0I frame rates	226
	Stingray F-080/F-080 BL: A0I frame rates	227
	Stingray F-125/F-125 BL: AOI frame rates	228
	Stingray F-145/F-145 BL: AOI frame rates	229
	Stingray F-146/F-146 BL: AOI frame rates	230
	Stingray F-201/F-201 BL: AOI frame rates	231
	Stingray F-504/F-504 BL: AOI frame rates	232
	ow does bandwidth affect the frame rate?	
	Example formula for the b/w camera	
	Test images	
	Loading test images	
	Test images for b/w cameras	
	Test images for color cameras	
	YUV4:2:2 mode	
	Mono8 (raw data)	230
С	onfiguration of the camera	237
-	Camera_Status_Register	
	Example	
	Sample program	
	Example FireGrab	
	Example FireStack API	
	Configuration ROM	
	Implemented registers (IIDC V1.31)	
	Camera initialize register	
	Inquiry register for video format	
	Inquiry register for video mode	
	Inquiry register for video frame rate and base address	
	Inquiry register for basic function	
	Inquiry register for feature presence	
	Inquiry register for feature elements	
	Status and control registers for camera	
	Inquiry register for absolute value CSR offset address	
	Status and control register for one-push	
	Feature control error status register	
	Video mode control and status registers for Format_7	
	Quadlet offset Format_7 Mode_0	
	Quadlet offset Format_7 Mode_1	
	Format_7 control and status register (CSR)	
	Temperature register	
	Advanced features (Allied Vision-specific)	
	Advanced registers summary	
	Extended version information register	
	Advanced feature inquiry	
	1 2	-

Camera status	276
Maximum resolution	277
Time base	277
Extended shutter	279
Test images	280
Look-up tables (LUT)	281
Loading a LUTinto the camera	282
Shading correction	283
Reading or writing shading image from/into the camera	284
Automatic generation of a shading image	284
Memory channel error codes	285
Deferred image transport	286
Frame information	286
Defect pixel correction	
Input/output pin control	288
Delayed Integration Enable (IntEna)	289
Auto shutter control	
Auto gain control	
Autofunction AOI	
Color correction	
Trigger delay	
Mirror image	
Soft reset	
High SNR mode (High Signal Noise Ratio)	
Maximum ISO packet size	
Quick parameter change timing modes	
Standard Parameter Update Timing	
Quick Format Change Mode	
Automatic reset of the UpdActive flag	
Parameter-List Update	
Format_7 mode mapping	
Example	
Low noise binning mode (2 x and 4 x binning)	
Secure image signature (SIS)	
Advanced register: SIS	
Examples: cycle time	
Advanced register: frame counter	
Advanced register: trigger counter	
Where to find cycle time, frame counter and trigger counter in the image	
Where to find all SIS values in the image	
Software feature control (disable LEDs)	
Disable LEDs	
User profiles	
Error codes	
Reset of error codes	
Stored settings	
Pulse-width modulation (PWM): Stingray housing and board level cameras	
GPDATA_BUFFER	
Little endian vs. big endian byte order	

Stingray Technical Manual V.4.5.0

Firmware update	
Extended version number (FPGA/μC)	
Appendix	
Sensor position accuracy of Stingray cameras	
Index	

Contacting Allied Vision

Contacting Allied Vision

Connect with Allied Vision colleagues by function: www.alliedvision.com/en/contact

Find an Allied Vision office or distributor:

www.alliedvision.com/en/about-us/where-we-are.html

E-mail:

info@alliedvision.com (for commercial and general inquiries)
support@alliedvision.com (for technical assistance with Allied Vision products)

Telephone:

EMEA: +49 36428-677-0 The Americas: +1 978-225-2030 Asia-Pacific: +65 6634-9027 China: +86 (21) 64861133

Headquarters:

Allied Vision Technologies GmbH Taschenweg 2a, 07646 Stadtroda, Germany Tel: +49 (36428) 677-0 Fax +49 (36428) 677-24 President/CEO: Frank Grube | Registration Office: AG Jena HRB 208962

Introduction

This Stingray Technical Manual describes in depth the technical specifications, dimensions, all camera features (IIDC standard and Allied Vision smart features) and their registers, trigger features, all video and color formats, bandwidth, and frame rate calculation.

For information on hardware installation, safety warnings, and pin assignments on I/O connectors and 1394b connectors read the 1394 Installation Manual.

Note

Please read through this manual carefully.

We assume that you have read already the 1394 Installation Manual (see: http://www.alliedvision.com/en/support/technical-documentation) and that you have installed the hardware and software on your PC or laptop (FireWire card, cables).

Document history

Version	Date	Remarks
V2.0.0	31.03.2008	New Manual - RELEASE status
V2.1.0	23.05.2008	New CAD drawings due to new flange in Chapter Camera dimen- sions on page 63
		Added Appendix: Chapter Appendix on page 315
		Added direct fiber technology in Chapter Stingray cameras on page 28
		Added fiber cameras (1 x copper, 1 x GOF) and fiber power con- sumption in all tables in Chapter Specifications on page 40
		Added Chapter Pulse-width modulation (Stingray housing and Stingray board level models) on page 99
		Added Chapter Horizontal mirror function on page 120
		Added Chapter Shading correction on page 121
		to be continued on next page

Version	Date	Remarks
		continued from previous page
V2.1.0 [continued]	23.05.2008 [continued]	Added 4 x and 8 x binning in Chapter Binning (only Stingray b/w and F-201C/504C) on page 136
		Added 2 out of 8 sub-sampling in Chapter Sub-sampling (Sting- ray b/w and color) on page 141
		Changed Figure 82: on page 148
		Added fiber models in Table 56: on page 156
		Added Chapter Temperature register on page 268
		Added Shading control registers (0xF1000250, 0xF1000254, 0xF1000258) in Table 128: on page 269
		Added Mirror image register (0xF1000410) in Table 128: on page 269
		Added board level variants in Table 130: on page 273
		Added Shading and Mirror image in Table 131: on page 274
		Added Chapter Shading correction on page 283
		Added Chapter Mirror image on page 294
		Added Appendix Chapter Appendix on page 315
		Added 0x09 PWM in Table 29: on page 97
		Added Chapter Board level camera: IEEE 1394b port pin assign- ment on page 85
		Added Chapter Board level camera: I/O pin assignment on page 87
		Added PWM feature in Chapter IO_OUTP_CTRL 1-4 on page 95
		Added on page 99
		Added PWM feature in Table 29: on page 97
		to be continued on next page

Version	Date	Remarks
		continued from previous page
V2.1.0	23.05.2008	[continued]
[continued]	[continued]	Added board level in on page 199
		Added board level (BL) in Table 130: on page 273
		Added PWM in Table 131: on page 274
		Changed resolutions of Format_7 modes in Chapter Video for- mats, modes and bandwidth on page 199
		Corrected RGB8 frame rates in Format_7 Mode_0 in Chapter Video formats, modes and bandwidth on page 199
		Added frame rates for binning and sub-sampling modes in Chap- ter Video formats, modes and bandwidth on page 199
		Added Chapter Appendix on page 315
		Changed provisions directive to 2004/108/EG in Chapter Confor- mity on page 29
V2.2.0	15.08.2008	Corrected HIROSE connector in CAD drawings in Chapter Camera dimensions on page 63
		Added cross-reference from upload LUT to GPDATA_BUFFER in Chapter Loading a shading image into the camera on page 127
		Added cross-reference from upload/download shading image to GPDATA_BUFFER in:
		 Chapter Loading a shading image out of the camera on page 126
		 Chapter Loading a shading image into the camera on page 127
		Added little endian vs. big endian byte order in Chapter GPDATA_BUFFER on page 313
		Added detailed cross-reference in Chapter Camera I/O connector pin assignment on page 86
		Added detailed level values of I/Os in Chapter Camera I/O con- nector pin assignment on page 86
		Rounded shutter speeds in Chapter Specifications on page 40
	I	to be continued on next page

Version	Date	Remarks
		continued from previous page
V2.2.0	15.08.2008	[continued]
[continued]	[continued]	Rounded offsets in Chapter Exposure time (shutter) and offset on page 180 and in Figure 94: on page 184
		Added new image of Stingray camera with two screws on either side of the cameras for fixing the front flange:
		 See title page
		New Stingray photo on title page (with new screws on either side of camera)
		New photo of LED positions in Figure 43: on page 88
V2.3.0	12.09.2008	New Stingray board level CAD drawing with new Molex 1.25 mm Pitch PicoBlade Wire-to-Board Header (53047-1310) and new cable lengths in Figure 40: on page 85 and in Figure 42: on page 87
V2.4.0	30.09.2008	New Stingray board level CAD drawing with new Molex 1.25 mm Pitch PicoBlade Wire-to-Board Header (53047-1310) in:
		– Figure 35: on page 78
		– Figure 36: on page 79
		 Figure 37: on page 80
V3.0.0	08.10.2008	New Stingray board level CAD drawing with name of screws M2x14 IS07045-A2 (2x):
		– Figure 36: on page 79
		– Figure 37: on page 80
		New Stingray F-125B/C: Read information in the following sec- tions:
		• Table 10: on page 45
		• Table 56: on page 156
		• Table 67: on page 180
		on page 180
		• Figure 94: on page 184
		• Table 72: on page 187
		• Table 83: on page 206
		Table 84: on page 207 Table 422 - on page 272
		• Table 130: on page 273
		For Stingray F-125B/C output switching times (tp and min. shut- ter) see FireWire Hardware Installation Guide, subsection Sting- ray delay
	I	to be continued on next page

Version	Date	Remarks
		continued from previous page
V4.0.0	21.10.2008	 New Stingray F-504B/C: Read information in the following sections: Table 14: on page 53 Table 56: on page 156 Table 67: on page 180 Table 67: on page 180 Figure 94: on page 184 Table 72: on page 187 Table 91: on page 215 Table 92: on page 216 Table 130: on page 273 For Stingray F-504B/C output switching times (tp and min. shut-
		ter) see FireWire Hardware Installation Guide, subsection Stingray delay
V4.1.0	28.01.2009	All advanced registers in 8-digit format beginning with 0xF1 in Chapter Advanced features (Allied Vision-specific) on page 269 and in Chapter Parameter-List Update on page 300 New CAD drawings (hexagon socket head cap screw ISO 4762): • Figure 35: on page 78 • Figure 36: on page 79 • Figure 37: on page 80 • Figure 40: on page 85 • Figure 42: on page 87 SEQUENCE_RESET register moved to SEQUENCE_STEP register (0xF1000228) in on page 190 and in on page 269 Corrected CAD drawing in Figure 26: on page 69 Revised Chapter White balance on page 109ff Memory size (Internal FIFO memory) of Stingray F-125 is 12 frames in Table 10: on page 45 and in Table 56: on page 156 Revised Table 100: on page 228 Corrected black level increments in Chapter Brightness (black level or offset) on page 118 New AOI frame rates of Stingray F-504 in Chapter Frame rates of Stingray F-504 as function of AOI height [width=2452] on page 232 New Stingray F-125C RGB8 modes in Table 83: on page 206 New Stingray F-504C RGB8 modes in Table 91: on page 215 to be continued on next page

Version	Date	Remarks
	·	continued from previous page
V4.2.0	28.05.2009	Calculated effective chip size for all sensors (with resolution of Format_7 Mode_0) in Chapter Specifications on page 40
		SIS feature: standardized terminology, added examples in Chap- ter Secure image signature (SIS): definition and scenarios on page 197
		Stingray cameras do not support storing shading image data into non-volatile memory, see Table 139: on page 283 (0XF1000250 bit 8 to 10)
		Corrected drawing in Figure 111: on page 289
		In SIS chapter: added cycle time examples: Chapter Examples: cycle time on page 304
		Stingray update round (SUR):
		• Only GOF models: new LED signals (asynchronous traffic and signal detect) in Table 20: on page 89
		 Stingray F-504 cameras are also available with 64 MByte internal FIFO memory (instead of 32 MByte): Table 14: on page 53 and
		- Table 56: on page 156
		All Stingray models: added defect pixel correction:
		 Chapter Defect pixel correction on page 130 Table 1(2), on page 207
		Table 143: on page 287All Stingray models: added low noise binning mode:
		 Table 159: on page 302
		 All Stingray models: added software trigger:
		 In inquiry register 530h on page 259 added: Value_Read_Inq [7], Trigger_Source0_Inq [8] and
		Software_Trigger_Ing [15]
		 In inquiry register 62Ch on page 261 added: Software_Trigger
		• All Stingray models: added disable LEDs function:
		 Chapter Software feature control (disable LEDs) on page 308
		• All Stingray GOF models: added two new LED signals
		 Only GOF: asynchronous traffic on page 89
		 Only GOF: GOF signal detect on page 89
		to be continued on next page

CO	ntinued from previous page
.2009	Stingray update round (SUR):
nued]	 All Stingray models: added debounce feature: Advanced register summary 0xF1000840 on page 271 Advanced register summary 0xF1000850 on page 271 Advanced register summary 0xF1000860 on page 271 Advanced register summary 0xF1000870 on page 271 Advanced register summary 0xF1000870 on page 271 Chapter Debounce on page 178 Table 66: on page 179 WaitingForTrigger signal for outputs Table 27: on page 94 Output mode: trigger ID 0x0A on page 97 Figure 46: on page 98
.2009	 Minor corrections: Notice about connection between temperature at sensor and temperature at camera housing on page 268 Corrected registers for IO_OUTP_PWM2/3/4 in Table 30: on page 99 and in Table 128: on page 269 Revised Chapter Conformity on page 29 New drawings to show maximum protrusion: Figure 33: on page 76 and Figure 34: on page 77 New values for maximum protrusion: tables in Chapter Camera dimensions on page 63 Corrected addresses of debounce registers: Advanced register summary 0xF1000840 on page 271 Advanced register summary 0xF1000850 on page 271 Advanced register summary 0xF1000860 on page 271 Advanced register summary 0xF1000870 on page 271 Table 66: on page 179 Stingray cameras with serial numbers S/N greater 09/17-285831532 have a heat sink and thus the mass of the camera increases from 92 g up to 108 g: see Chapter Specifications on page 40 2x/4x/8x binning: Stingray F-504C has now also the usual 2x/4x/8x binning (no color binning): see Chapter Binning (only Stingray b/w and F-201C/504C) on page 136 and Chapter Binning and sub-sampling access on page 147 and Table 14: on page 53
_	to

Version	Date	Remarks
		continued from previous page
V4.3.0	15.09.2009	 New front flange: Title page: new Stingray photo New CAD drawings: All CAD drawings in Chapter Camera dimensions on page 63 Cross section drawings in Figure 33: on page 76 and Figure 34: on page 77. Note: Adjustments by means of the adjustment spacer(s) have to be done in the Allied Vision factory. Contact Customer Care. Figure 40: on page 85 Figure 42: on page 87
V4.4.0	12.07.2010	Improvements:
		 HSNR description, see Chapter High SNR mode (High Signal Noise Ratio) on page 296
		New Stingray front flange:
		• Serial numbers for Stingray camera models starting new front flange: Chapter Serial numbers for starting new front flange on page 63
		Corrections:
		Corrected Note on BitsPerValue, see on page 282
		New Stingray Compact:
		Chapter Stingray Compact on page 75
		New storage temperature:
		• 70 °C, see Chapter Specifications on page 40
		New links to new Allied Vision website:
		Chapter Contacting Allied Vision on page 11 and many oth- ers
		New measured sensitivity curves:
		Chapter Spectral sensitivity on page 54
		Added RGB8 in fixed formats:
		 Table 77: on page 200 Table 79: on page 202 Table 85: on page 208
	1	to be continued on next page

Version	Date	Remarks
		continued from previous page
V4.4.0	12.07.2010	Added Full support Windows 7 for 1394a/1394b:
[continued]	[continued]	• Table 6: on page 39
		Corrected trigger diagram:
		Figure 46: on page 98
V4.4.1	07.01.2011	 Minor corrections Converted FrameMaker files from FM7 to FM9 Added required minimum number of GrabCount value (2) for HIGH_SNR ON in Table 152: on page 296 Added info that for 8-bit video modes, the internal HSNR calculations are done with 14 bit: Chapter High SNR mode (High Signal Noise Ratio) on page 155 Changed tripod drawing: added dimensions of three big holes (M6 and UNC 1/4-20) in Figure 23: on page 66 Added Windows 7 support and revised Windows XP/Windows Vista in in Chapter FireWire and operating systems on page 39
V4.4.2	15.04.2011	 Added sensitivity curves for Stingray F-125B/F-125C: see Figure 11: on page 58 and see Figure 12: on page 58 C-/CS-Mount no more adjustable, for modifications contact Customer Care and send camera to Allied Vision: See Chapter Specifications on page 40 See Chapter Adjustment of C-Mount and CS-Mount on page 77
		Stingray firmware update round:
		 Defect pixel correction: you don't need to set value for brightness to max. any more: see Figure 65: on page 132 and Chapter Grab an image with defect pixel data on page 133
		• Besides in Mono8 mode defect pixel correction is also possi- ble in Raw8 mode: see note in Chapter Building defect pixel data on page 133
		Revised Chapter Defect pixel correction on page 130
		• Image is shot internally during calculating a mean value: see note in Chapter Calculate defect pixel coordinates on page 133
		• Activate HSNR mode to improve defect pixel correction: see note in Chapter Building defect pixel data on page 133
		to be continued on next page

Version	Date	Remarks
		continued from previous page
V4.4.2	15.04.2011	Stingray firmware update round [continued]:
[continued]	[continued]	 Added descriptions for defect pixel correction in F7 modes: see Chapter Building defect pixel correction image in Format_7 modes on page 131 She diag asymptotic pixel a grant of the page of the pa
		• Shading correction in Format_7 mode 0 (Mono8) is only available up to S400: see note in Chapter Building shading image in Format_7 modes on page 121
		Some smaller corrections:
		 At register 0xF1000200 changed width and height: see Table 133: on page 277
		• YUV8: deleted description of data type <i>straight binary</i> : Figure 49: on page 106
		• Y (Mono8/Raw8) are Allied Vision own formats: see Table 35: on page 104
V4.4.3	15.03.2012	Some smaller corrections:
		 User sets changed: LUT and on/off bit can be stored in user settings: see Chapter Stored settings on page 311 Stingray F-504C provides 2 out of 8 horizontal subsampling: see Figure 75: on page 142
		 Corrected: max. gain for Stingray F-504B/C is 670 and not 680, see Chapter Manual gain on page 118
		 Corrected: Stingray F-504B/C: range in dB is 0 24.053 (not 24.4), see see Chapter Manual gain on page 118 and Chapter Stingray F-504B/C (fiber) on page 53
		• Changed: number of steps from +/-40 to +/-128 in steps of 1/12.8° in Chapter Hue and saturation on page 163
		Changed fixed format modes and Format 7 modes:
		• Table 81: on page 204
		• Table 97: on page 225
		• Table 98: on page 226
		• Table 99: on page 227
		• Table 100: on page 228
		• Table 101: on page 229
		• Table 102: on page 230
		• Table 103: on page 231
		• Table 104: on page 232
		to be continued on next page

Version	Date	Remarks
		continued from previous page
V4.4.3	15.03.2012	More smaller corrections:
[continued]	[continued]	 Removed Active FirePackage in the last line fo spefication tables in Chapter Specifications on page 40 Added explanations to H, p and q abbreviations in Chapter Frame rates on page 220 Added hyperlinks to Stingray compact in Chapter Camera dimensions on page 63 Added Table 38: on page 105 Added Raw12 format in sharpness Note on page 163 Added arrow for Raw8/12/16 in Figure 52: on page 109 High SNR mode: Added note to set grab count and activation of HighSNR in one single write access: see Chapter High SNR mode (High Signal Noise Ratio) on page 155 Chapter High SNR mode (High Signal Noise Ratio) on page 206
		page 296
V4.4.4	31.05.2012	 New frame rates for Stingray F-033/F-033 BL: See Chapter Stingray F-033/F-033 BL: A0I frame rates on page 225
V.4.4.5	31.07.2014	Updated data:
		 Replaced spectral curves according to Allied Vision EMVA 1288 measurements in Chapter Spectral sensitivity on page 54
		Some smaller corrections:
		 Corrected hyperlinks to targets on the Allied Vision website Removed outdated information in Chapter Requirements for PC and 1394b on page 36 Added hyperlink to FireWire accessories on the Allied Vision website in Chapter Requirements for PC and 1394b on page 36
		 Removed information on the Universal Package in Chapter Operating system support on page 39 Reduced to the current information on the system require- ments in Chapter Operating system support on page 39
		Added information that all color modes in Chapter Specifications on page 40 comply with the IIDC specifications
		to be continued on next page

Version	Date	Remarks
		continued from previous page
V.4.5.0	09.03.2015	Updated data:
		 Corrected hyperlinks to targets on the Allied Vision website Updated sensor curves in Chapter Spectral sensitivity on page 54.
		Corrected information in Chapter Appendix on page 315
		 Adapted addresses in Chapter Contacting Allied Vision on page 11
		 Corrected information for binning in Chapter Definition on page 136.
		• Corrected information in Chapter Sensor position accuracy of Stingray cameras on page 315
		Layout changes due to a changed Corporate identity:
		 Replaced the previous Allied Vision logo by the current one Reworded all appropriate contents from AVT and Allied Vision Technologies to Allied Vision

Manual overview

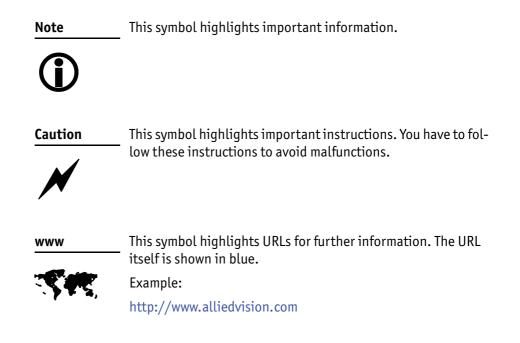
This manual overview describes each chapter of this manual shortly.

- Chapter Contacting Allied Vision on page 11 lists Allied Vision contact data for both:
 - technical information / ordering
 - commercial information
- Chapter Introduction on page 12 (this chapter) gives you the document history, a manual overview and conventions used in this manual (styles and symbols). Furthermore, you learn how to get more information on how to install hardware (1394 Installation Manual), available Allied Vision software (incl. documentation) and where to get it.
- Chapter Stingray cameras on page 28 gives you a short introduction to the Stingray cameras with their FireWire technology. Links are provided to data sheets and brochures on Allied Vision website.
- Chapter Conformity on page 29 gives you information about conformity of Allied Vision cameras.
- Chapter FireWire on page 30 describes the FireWire standard in detail, explains the compatibility between 1394a and 1394b and explains bandwidth details (incl. Stingray examples).
 - Read and follow the FireWire hot-plug and screw-lock precautions in Chapter FireWire hot-plug and screw-lock precautions on page 38.

Introduction

- Read Chapter Operating system support on page 39.
- Chapter Filter and lenses on page 81 describes the IR cut filter and suitable camera lenses.
- Chapter Specifications on page 40 lists camera details and spectral sensitivity diagrams for each camera type.
- Chapter Camera dimensions on page 63 provides CAD drawings of standard housing (copper and GOF) models, tripod adapter, available angled head models, cross sections of CS-Mount and C-Mount.
- Chapter Camera interfaces on page 84 describes in detail the inputs/outputs of the cameras (incl. Trigger features). For a general description of the interfaces (FireWire and I/O connector) see 1394 Installation Manual.
- Chapter Description of the data path on page 108 describes in detail IIDC conform as well as Allied Vision-specific camera features.
- Chapter Controlling image capture on page 172 describes trigger modi, exposure time, one-shot/multi-shot/ISO_Enable features. Additionally, special Allied Vision features are described: sequence mode and secure image signature (SIS).
- Chapter Video formats, modes and bandwidth on page 199 lists all available fixed and Format_7 modes (incl. color modes, frame rates, binning/ sub-sampling, AOI=area of interest).
- Chapter How does bandwidth affect the frame rate? on page 233 gives some considerations on bandwidth details.
- Chapter Configuration of the camera on page 237 lists standard and advanced register descriptions of all camera features.
- Chapter Firmware update on page 314 explains where to get information on firmware updates and explains the extended version number scheme of FPGA/µC.
- Chapter Appendix on page 315 lists the sensor position accuracy of Allied Vision cameras.
- Chapter Index on page 316 gives you quick access to all relevant data in this manual.

Conventions used in this manual


To give this manual an easily understood layout and to emphasize important information, the following typographical styles and symbols are used:

Styles

Style	Function	Example
Bold	Programs, inputs or highlighting important things	bold
Courier	Code listings etc.	Input
Upper case	Register	REGISTER
Italics	Modes, fields	Mode
Parentheses and/or blue	Links	(Link)

Table 2: Styles

Symbols

More information

For more information on hardware and software read the following:

• 1394 Installation Manual describes the hardware installation procedures for all 1394 cameras (Marlin, Guppy, Pike, Stingray). Additionally, you get safety instructions and information about camera interfaces (IEEE1394a/b copper and GOF, I/O connectors, input and output).

www	

You find the 1394 Installation Manual here:

http://www.alliedvision.com/en/support/technical-documentation

www

All software packages (including documentation and release notes) provided by Allied Vision can be downloaded at:

http://www.alliedvision.com/en/support/software-down-loads

Before operation

We place the highest demands for quality on our cameras.

- **Target group** This Technical Manual is the guide to detailed technical information of the camera and is written for experts.
- **Getting started** For a quick guide how to get started read 1394 Installation Manual first.

Note	Please read through this manual carefully before operating the
	camera.
()	For information on Allied Vision accessories and software read 1394 Installation Manual.
Caution	Before operating any Allied Vision camera read safety instruc-

Before operating any Allied Vision camera read safety instructions and ESD warnings in 1394 Installation Manual.

NoteTo demonstrate the properties of the camera, all examples in
this manual are based on the FirePackage OHCI API software
and the SmartView application.

Note

The camera also works with all IIDC (formerly DCAM) compatible IEEE 1394 programs and image processing libraries.

All naming in this document relates to FirePackage, not to GenICam.

www

For downloads see:

Software (Vimba and all other software): http://www.alliedvision.com/en/support/software-down-loads

Firmware: http://www.alliedvision.com/en/support/firmware

Technical documentation (overview page): http://www.alliedvision.com/en/support/technical-documentation

Technical papers (appnotes, white papers) and knowledge base:

http://www.alliedvision.com/en/support/technical-papers-knowledge-base

Image

Stingray cameras

IEEE 1394b	1394b interfac	ay, Allied Vision presents a wide range of cameras with IEEE res. Moreover, with daisy chain as well as direct fiber technology ighest level of acceptance for demanding areas of use in manu- try.
applications		n provide users with a range of products that meet almost all the f a very wide range of image applications.
FireWire	The industry standard IEEE 1394 (FireWire or i.Link) facilitates the simplest com puter compatibility and bidirectional data transfer using the plug-and-play pro cess. Further development of the IEEE 1394 standard has already made 800 Mbit/second possible.	
	Note	For further information on FireWire read Chapter FireWire on page 30.
	Note	All naming in this document relates to FirePackage, not to GenICam.
	www	For further information on the highlights of Stingray types and the Stingray family read the data sheets and brochures on the website of Allied Vision:
	· • • • •,	http://www.alliedvision.com/en/support/technical-docu- mentation/stingray-documentation

Conformity

Conformity

Allied Vision Technologies declares under its sole responsibility that all standard cameras of the **Stingray** family to which this declaration relates are in conformity with the following standard(s) or other normative document(s):

- CE, following the provisions of 2004/108/EG directive (Stingray board level cameras do not have CE)
- FCC Part 15 Class B (**Stingray** board level cameras do not have FCC)
- RoHS (2011/65/EU)
- CEAllied Vision
- WEEE 🔀
- CE

We declare, under our sole responsibility, that the previously described **Stingray** cameras conform to the directives of the CE.

FCC – Class B Device

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. You are cautioned that any changes or modifications not expressly approved in this manual could void your authority to operate this equipment.

FireWire

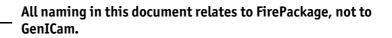
Overview

FireWire provides one of the most comprehensive, high-performance, and costeffective solutions platforms. **FireWire** offers very impressive throughput at very affordable prices.

Definition

FireWire (also known as **i.Link** or **IEEE 1394**) is a personal computer and digital video serial bus interface standard, offering high-speed communications and isochronous real-time data services. **FireWire** has low implementation costs and a simplified and adaptable cabling system.

Figure 1: FireWire Logo


IEEE 1394 standards

FireWire was developed by Apple Computer in the late 1990s, after work defining a slower version of the interface by the IEEE 1394 working committee in the 1980s. Apple's development was completed in 1995. It is defined in IEEE standard 1394, which is currently a composite of three documents:

- Original IEEE Std. 1394-1995
- IEEE Std. 1394a-2000 amendment
- IEEE Std. 1394b-2002 amendment

FireWire is used to connect digital cameras, especially in industrial systems for machine vision.

Note

FireWire

Why use FireWire?

Digital cameras with on-board **FireWire** (IEEE 1394a or 1394b) communications conforming to the IIDC standard (V1.3 or V1.31) have created cost-effective and powerful solutions options being used for thousands of different applications around the world. **FireWire** is currently the premier robust digital interface for industrial applications for many reasons, including:

- Guaranteed bandwidth features to ensure fail-safe communications
- Interoperability with multiple different camera types and vendors
- Diverse camera powering options, including single-cable solutions up to 45 W
- Effective multiple-camera solutions
- Large variety of FireWire accessories for industrial applications
- Availability of repeaters and optical fibre cabling
- Forward and backward compatibility blending 1394a and 1394b
- Both real-time (isochronous) and demand-driven asynchronous data transmission capabilities

FireWire in detail

Serial bus

FireWire is a very effective way to utilize a low-cost serial bus, through a standardized communications protocol, that establishes packetized data transfer between two or more devices. FireWire offers real time isochronous bandwidth for image transfer with guaranteed low latency. It also offers asynchronous data transfer for controlling camera parameters on the fly, such as gain and shutter. As illustrated in the diagram below, these two modes can co-exist by using priority time slots for video data transfer and the remaining time slots for control data transfer.

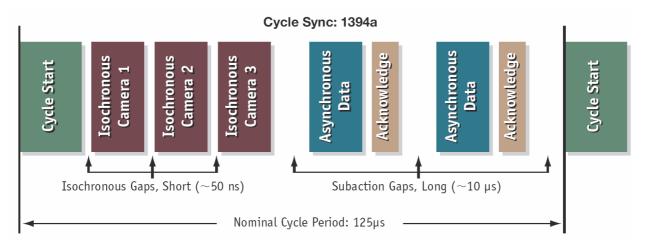


Figure 2: 1394a data transmission

Whereas 1394a works in half duplex transmission, 1394b does full duplex transmission. 1394b optimizes the usage of the bandwidth, as it does not need gaps between the signals like 1394a. This is due to parallel arbitration, handled by the bus owner supervisor selector (BOSS). For details see the following diagram:

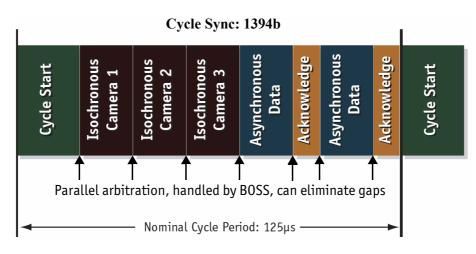


Figure 3: 1394b data transmission

Additional devices may be added up to the overall capacity of the bus, but throughput at guaranteed minimum service levels is maintained for all devices with an acknowledged claim on the bus. This deterministic feature is a huge advantage for many industrial applications where robust performance is required. This applies with applications that do not allow dropping images within a specific time interval.

FireWire connection capabilities

FireWire can connect together up to 63 peripherals in an acyclic network structure (hubs). It allows peer-to-peer device communication between digital cameras, without using system memory or the CPU.

A **FireWire camera** can directly, via direct memory access (DMA), write into or read from the memory of the computer with almost no CPU load.

FireWire also supports multiple hosts per bus. **FireWire** requires only a cable with the correct number of pins on either end (normally 6 or 9).

Caution

While supplying such an amount of bus power is clearly a beneficial feature, it is **very** important **not** to exceed the inrush current of 18 mJoule in 3 ms.

Higher inrush current may damage the Phy chip of the camera and/or the Phy chip in your PC.

FireWire

Capabilities of 1394a (FireWire 400)

FireWire 400 (S400) is able to transfer data between devices at 100, 200, or 400 MBit/s data rates.

The 1394a capabilities in detail:

- 400 Mbit/s
- Hot-pluggable devices
- Peer-to-peer communications
- Direct Memory Access (DMA) to host memory
- Guaranteed bandwidth
- Multiple devices (up to 45 W) powered via FireWire bus

IIDC V1.3 camera control standards

IIDC V1.3 released a set of camera control standards via 1394a, which established a common communications protocol on which most current FireWire cameras are based.

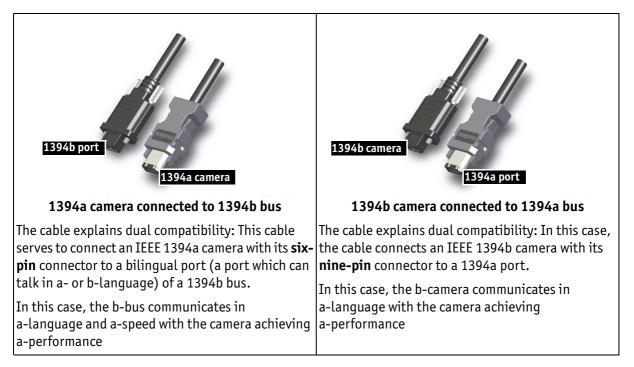
In addition to common standards shared across manufacturers, Allied Vision offers Format_7 mode that provides special features (smart features), such as:

- Higher resolutions
- Higher frame rates
- Diverse color modes

as extensions (advanced registers) to the prescribed common set.

Capabilities of 1394b (FireWire 800)

FireWire 800 (S800) was introduced commercially by Apple in 2003 and has a 9pin FireWire 800 connector (see 1**394 Installation Manual** and in Chapter IEEE 1394b port pin assignment on page 84 for details). This newer 1394b specification allows a transfer rate of 800 MBit/s with backward compatibility to the slower rates and 6-pin connectors of FireWire 400.


The 1394b capabilities in detail:

- 800 Mbit/s
- All previously described benefits of 1394a
- Interoperability with 1394a devices
- Longer communications distances (up to 500 m using GOF cables)

IIDC V1.31 camera control standards

Along with 1394b-, the IIDC V1.31 standard arrived in January 2004, evolving the industry standards for digital imaging communications to include I/O and RS232 handling, and adding further formats. The increased bandwidths enable transmitting high-resolution images to the PC's memory at high frame rates.

Compatibility between 1394a and 1394b

Figure 4: 1394a and 1394b cameras and compatibility

Compatibility example

It is possible to run a 1394a and a 1394b camera on the 1394b bus.

For example, you can run a Stingray F-033B and a Marlin F-033B on the same bus:

- Stingray F-033B @ S800 and 60 fps (2560 bytes per cycle, 32% of the cycle slot)
- Marlin F-033B @ S400 and 30 fps (1280 bytes, 32% of the cycle slot)

Bus runs at 800 Mbit/s for all devices. Data from Marlin's port is up-converted from 400 Mbit/s to 800 Mbit/s by data doubling (padding), still needing 32% of the cycle slot time. This doubles the bandwidth requirement for this port, as if the camera were running at 60 fps. Total consumption is thus 2560+ 2560 = 5120 bytes per cycle.

Image transfer via 1394a and 1394b

Technical detail	1394a	1394b
Transmission mode	Half duplex (both pairs needed)	Full duplex (one pair needed)
	400 Mbit/s data rate	1 Gbit/s signaling rate, 800 Mbit/ s data rate
	aka: a-mode, data/strobe (D/S) mode, legacy mode	10b/8b coding (Ethernet), aka: b-mode (beta mode)
Devices	Up to 63 devices per network	
Number of cameras	Up to 16 cameras per network	
Number of DMAs	4 to 8 DMAs (parallel) cameras / bus	
Real time capability	Image has real time priority	
Available bandwidth acc. IIDC (per cycle 125 μs)	4096 bytes per cycle	8192 bytes per cycle
	~ 1000 quadlets @ 400 Mbit/s	~ 2000 quadlets @ 800 Mbit/s (@1 GHz clock rate)
	For further detail read Chapter Frame rates on page 220.	
Max. image bandwidth	31.25 MByte/s	62.5 MByte/s
Max. total bandwidth	~45 MByte/s	~85 MByte/s
Number of busses	Multiple busses per PC	Multiple busses per PC
	limit: PCI bus	limit: PCI (Express) bus
CPU load	Almost none for DMA image transfer	
Gaps	Gaps negatively affect asynchro- nous performance of widespread network (round trip delay), reducing efficiency	No gaps needed, BOSS mode for parallel arbitration

Table 3: Technical detail comparison: 1394a and 1394b

Note

The bandwidth values refer to the fact:

1 MByte = 1024 kByte

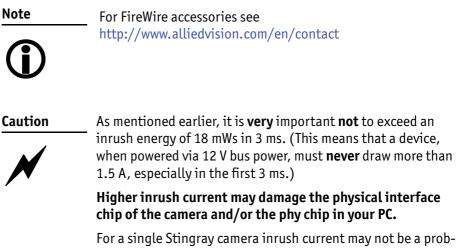
1394b bandwidths

According to the 1394b specification on isochronous transfer, the largest recommended data payload size is 8192 bytes per 125 μs cycle at a bandwidth of 800 Mbit/s.

Note Certain cameras may offer, depending on their settings in combination with the use of FirePackage higher packet sizes.

Note

Consult your local dealer's support team, if you require additional information on this feature.


How to extend the size of an isochronous packet up to 11.000 byte at S800:

- See register 0xF1000048, ADV_INQ_3, Max IsoSize [1] in Table 131: on page 274
- See Chapter Maximum ISO packet size on page 297

For further details read Chapter How does bandwidth affect the frame rate? on page 233.

Requirements for PC and 1394b

For a single Stingray camera inrush current may not be a problem. But daisy chaining multiple cameras or supplying bus power via (optional) HIROSE power out to circuitry with unknown inrush currents needs careful design considerations.

FireWire

Stingray model	Resolution	Frame rate	Bandwidth
Stingray F-033 B/C	0.3 megapixel	84 fps	27.11 MByte/s
Stingray F-046 B/C	0.45 megapixel	61 fps	27.60 MByte/s
Stingray F-080 B/C	0.8 megapixel	31 fps	24.83 MByte/s
Stingray F-125 B/C	1.25 megapixel	30 fps	36.49 MByte/s
Stingray F-145 B/C	1.44 megapixel	16 fps	23.05 MByte/s
Stingray F-146 B/C	1.44 megapixel	15 fps	21.61 MByte/s
Stingray F-201 B/C	2 megapixel	14 fps	17.20 MByte/s
Stingray F-504 B/C	5 megapixel	9 fps	45.35 MByte/s

Example 1: 1394b bandwidth of Stingray cameras

Table 4: Bandwidth of Stingray cameras

Note

(i)

All data are calculated using Raw8 / Mono8 color mode. Higher bit depths or color modes will double or triple bandwidth requirements.

Example 2: More than one Stingray camera at full speed

Depending on its settings, a single Stingray camera can saturate a 32-bit PCI bus. Either use a PCI Express card and/or multiple 64-bit PCI bus cards, if you want to use 2 or more Stingray cameras simultaneously (see the following table):

# cameras	PC hardware required
1 Stingray camera at full speed	1 x 32-bit PCI bus card (85 MByte/s)
2 or more Stingray cameras at full	PCI Express card and/or
speed	Multiple 64-bit PCI bus cards

Table 5: Required hardware for multiple camera applications

FireWire

FireWire Plug & play capabilities

FireWire devices implement the ISO/IEC 13213 **configuration ROM** model for device configuration and identification to provide plug & play capability. All FireWire devices are identified by an IEEE EUI-64 unique identifier (an extension of the 48-bit Ethernet MAC address format) in addition to well-known codes indicating the type of device and protocols it supports. For further details read Chapter Configuration of the camera on page 237.

FireWire hot-plug and screw-lock precautions

Caution

Hot-plug precautions

- N
- Although FireWire devices can theoretically be hotplugged without powering down equipment, we strongly recommend turning off the computer power, before connecting a digital camera to it.
- Static electricity or slight plug misalignment during insertion may short-circuit and damage components.
- The physical ports may be damaged by excessive ESD (electrostatic discharge), when connected under powered conditions. It is good practice to ensure proper grounding of computer case and camera case to the same ground potential, before plugging the camera cable into the port of the computer. This ensures that no excessive difference of electrical potential exists between computer and camera.
- As mentioned earlier, **it is very important not to exceed the inrush energy of 18 mWs in 3 ms**. (This means that a device, when powered via 12 V bus power, must never draw more than 1.5 A, especially in the first 3 ms.)
- Higher inrush current may damage the physical interface chip of the camera and/or the phy chip in your PC. For a single Stingray camera inrush current may not be a problem. But daisy chaining multiple cameras or supplying bus power via (optional) HIROSE power out to circuitry with unknown inrush currents needs careful design considerations.

Screw-lock precautions

- All Allied Vision 1394b camera and cables have industrial screw-lock fasteners to insure a tight electrical connection that is resistant to vibration and gravity.
- We strongly recommend using only 1394b adapter cards with screw-locks.

Operating system support

Operating system	1394a	1394b
Linux	Full support	Full support
Apple Mac OS X	Full support	Full support
Windows XP	Full support	With SP3 the default speed for 1394b is S100 (100 Mbit/s). A download and registry modifi- cation is available from Microsoft to restore performance to either S400 or S800.
		Note: The Windows IEEE1394 driver only supports IEEE 1394a.
		For IEEE 1394b use either the FirePackage or install the driver provided with the 1394 Bus Driver Package. (Both drivers replace the Mic- rosoft OHCI IEEE 1394 driver, but the second is 100% compliant to the driver of Microsoft. This way, applications using the MS1394 driver will continue to work.)
Windows Vista	Full support	Windows Vista incl. SP1/SP2 supports 1394b only with S400.
		Note: The Windows IEEE1394 driver only supports IEEE 1394a.
		For IEEE 1394b use either the FirePackage or install the driver provided with the 1394 Bus Driver Package . (Both drivers replace the Mic- rosoft OHCI IEEE 1394 driver, but the second is 100% compliant to the driver of Microsoft. This way, applications using the MS1394 driver will continue to work.)
Windows 7	Full support	Full support
Windows 8	Full support	Full support

Table 6: FireWire and operating systems

www

For more information see Allied Vision Software:

http://www.alliedvision.com

Specifications

Note

- **(i)**
- For information on bit/pixel and byte/pixel for each color mode see Table 105: on page 234.
- Maximum protrusion means the distance from lens flange to the glass filter in the camera.

Stingray F-033B/C (fiber)

Feature	Specification
Image device	Type 1/2 (diag. 8 mm) progressive scan SONY IT CCD ICX414AL/AQ with HAD micro- lens
Effective chip size	6.5 mm x 4.9 mm
Cell size	9.9 μm x 9.9 μm
Picture size (max.)	656 x 492 pixels (Format_7 Mode_0)
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) maximum protrusion: 10.1 mm (see Figure 34: on page 77)
	CS-Mount: 12.526 mm (in air), Ø 25.4 mm (32 tpi) maximum protrusion: 5.1 mm (see Figure 33: on page 76)
ADC	14 bit
Color modes (IIDC)	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8
Frame rates	Up to 60 fps, up to 84 fps in Format_7
Gain control	Manual: 0–24.4 dB (0.0359 dB/step); auto gain (select. AOI)
Shutter speed	31 μs 67 s; auto shutter (select. AOI)
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay
Internal FIFO memory	32 MByte, up to 50 frames
Look-up tables	User programmable (12 bit \rightarrow 10 bit); default gamma (0.45)
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 32 MByte image memory, mirror, binning (only b/w), sub-sampling, High SNR, deferred image transport, SIS (secure image signa- ture), sequence mode, 4 storable user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness

Table 7: Specification Stingray F-033B/C (fiber)

Feature	Specification
I/0	Two configurable inputs, four configurable outputs
	RS232 port (serial port, IIDC V1.31)
Transfer rate	Up to 800 Mbit/s
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber: IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)
Power requirements	DC 8 V–36 V via IEEE 1394 cable or 12-pin HIROSE
Power consumption	Typical < 3.5 Watt (@ 12 V DC); fiber: typical < 4 Watt (@ 12 V DC)
	(full resolution and maximal frame rates)
Dimensions (L x W x H)	72.9 mm x 44 mm x 29 mm, incl. connectors, without tripod and lens
Mass	92 g (without lens) for cameras with S/N \leq 09/17-285831532
	108 g (without lens) for cameras with S/N > 09/17-285831532
Operating temperature	+ 5 °C + 45 °C ambient temperature (without condensation)
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)
Regulations	CE, FCC Class B, RoHS (2011/65/EU)
Standard accessories	b/w: protection glass
	color: IR cut filter
Optional accessories	b/w: IR cut filter, IR pass filter
	color: protection glass
On request	Host adapter card, angled head, power out: 6 W (HIROSE)
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)

Table 7: Specification Stingray F-033B/C (fiber) (Forts.)

Stingray F-046B/C (fiber)

Feature	Specification
Image device	Type 1/2 (diag. 8 mm) progressive scan SONY IT CCD ICX415AL/AQ with HAD micro- lens
Effective chip size	6.5 mm x 4.8 mm
Cell size	8.3 μm x 8.3 μm
Picture size (max.)	780 x 580 pixels (Format_7 Mode_0)
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) maximum protrusion: 10.1 mm (see Figure 34: on page 77)
	CS-Mount: 12.526 mm (in air), Ø 25.4 mm (32 tpi) maximum protrusion: 5.1 mm (see Figure 33: on page 76)
	Note: Maximum protrusion means the distance from lens flange to the glass filter in the camera.
ADC	14 bit
Color modes (IIDC)	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8
Frame rates	Up to 60 fps, up to 61 fps in Format_7
Gain control	Manual: 0–24.4 dB (0.0359 dB/step); auto gain (select. AOI)
Shutter speed	31 μs 67 s; auto shutter (select. AOI)
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay
Internal FIFO memory	32 MByte, up to 35 frames
Look-up tables	User programmable (12 bit \rightarrow 10 bit); default gamma (0.45)
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 32 MByte image memory, mirror, binning (only b/w), sub-sampling, High SNR, deferred image transport, SIS (secure image signa- ture), sequence mode, 4 storable user sets
	Only color: AWB (auto white balance), color correction, hue, saturation
I/0	Two configurable inputs, four configurable outputs
	RS232 port (serial port, IIDC V1.31)
Transfer rate	Up to 800 Mbit/s
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber: IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)
Power requirements	DC 8 V–6 V via IEEE 1394 cable or 12-pin HIROSE
Power consumption	Typical < 3.5 Watt (@ 12 V DC); fiber: typical < 4 Watt (@ 12 V DC)
	(full resolution and maximal frame rates)

Table 8: Specification Stingray F-046B/C (fiber)

Stingray Technical Manual V.4.5.0

Feature	Specification	
Dimensions (L x W x H)	72.9 mm x 44 mm x 29 mm, incl. connectors, w/o tripod and lens	
Mass	92 g (without lens) for cameras with S/N \leq 09/17-285831532	
	108 g (without lens) for cameras with S/N > 09/17-285831532	
Operating temperature	+ 5 °C + 45 °C ambient temperature (without condensation)	
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)	
Regulations	CE, FCC Class B, RoHS (2011/65/EU)	
Standard accessories	b/w: protection glass	
	color: IR cut filter	
Optional accessories	b/w: IR cut filter, IR pass filter	
	color: protection glass	
On request	Host adapter card, angled head, power out: 6 W (HIROSE)	
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)	

Table 8: Specification Stingray F-046B/C (fiber) (Forts.)

Stingray F-080B/C (fiber)

Feature	Specification
Image device	Type 1/3 (diag. 6 mm) progressive scan SONY IT CCD ICX204AL/AK with HAD micro- lens
Effective chip size	4.8 mm x 3.6 mm
Cell size	4.65 μm x 4.65 μm
Picture size (max.)	1032 x 776 pixels (Format_7 Mode_0)
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) maximum protrusion: 10.1 mm (see Figure 34: on page 77)
	S-Mount: 12.526 mm (in air), Ø 25.4 mm (32 tpi) maximum protrusion: 5.1 mm (see Figure 33: on page 76)
	Note: Maximum protrusion means the distance from lens flange to the glass filter in the camera.
ADC	14 bit
Color modes (IIDC)	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8

Table 9: Specification Stingray F-080B/C (fiber)

Feature	Specification	
Frame rates	Up to 60 fps, up to 31 fps in Format_7	
Gain control	Manual: 0–24.4 dB (0.0359 dB/step); auto gain (select. AOI)	
Shutter speed	49 μs67 s; auto shutter (select. AOI)	
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay	
Internal FIFO memory	32 MByte, up to 19 frames	
Look-up tables	User programmable (12 bit \rightarrow 10 bit); default gamma (0.45)	
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correction, LUT, 32 MByte image memory, mirror, binning (only b/w), sub-sampling, High SNR, deferred image transport, SIS (secure image signature), sequence mode, 4 storable user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness	
I/0	Two configurable inputs, four configurable outputs	
	RS232 port (serial port, IIDC V1.31)	
Transfer rate	Up to 800 Mbit/s	
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber : IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)	
Power requirements	DC 8 V–36 V via IEEE 1394 cable or 12-pin HIROSE	
Power consumption	Typical < 3.6 Watt (@ 12 V DC); fiber: typical < 4 Watt (@ 12 V DC)	
	(full resolution and maximal frame rates)	
Dimensions (L x W x H)	72.9 mm x 44 mm x 29 mm, incl. connectors, w/o tripod and lens	
Mass	92 g (without lens) for cameras with S/N ≤ 09/17-285831532	
	108 g (without lens) for cameras with S/N > 09/17-285831532	
Operating temperature	+ 5 °C + 45 °C ambient temperature (without condensation)	
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)	
Regulations	CE, FCC Class B, RoHS (2011/65/EU)	
Standard accessories	b/w: protection glass	
	color: IR cut filter	
Optional accessories	b/w: IR cut filter, IR pass filter	
	color: protection glass	
On request	Host adapter card, angled head, power out: 6 W (HIROSE)	
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)	

Table 9: Specification Stingray F-080B/C (fiber) (Forts.)

Stingray F-125B/C (fiber)

Feature	Specification
Image device	Type 1/3 (diag. 6 mm) progressive scan SONY IT CCD ICX445ALA/AQA with EXview HAD microlens
Effective chip size	4.8 mm x 3.6 mm
Cell size	3.75 μm x 3.75 μm
Picture size (max.)	1292 x 964 pixels (Format_7 Mode_0)
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) maximum protrusion: 10.1 mm (see Figure 34: on page 77)
	CS-Mount: 12.526 mm (in air), Ø 25.4 mm (32 tpi) maximum protrusion: 5.1 mm (see Figure 33: on page 76)
	Note: Maximum protrusion means the distance from lens flange to the glass filter in the camera.
ADC	14 bit
Color modes (IIDC)	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8
Frame rates	Up to 60 fps, up to 30 fps in Format_7
Gain control	Manual: 0–24.4 dB (0.0359 dB/step); auto gain (select. AOI)
Shutter speed	25 μs 67 s; auto shutter (select. AOI)
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay
Internal FIFO memory	32 MByte, up to 12 frames
Look-up tables	User programmable (12 bit \rightarrow 10 bit); default gamma (0.45)
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 32 MByte image memory, mirror, binning, sub-sampling, High SNR, deferred image transport, SIS (secure image signature), sequence mode, 4 stor- able user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness
I/0	Two configurable inputs, four configurable outputs
	RS232 port (serial port, IIDC V1.31)
Transfer rate	Up to 800 Mbit/s
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber: IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)
Power requirements	DC 8 V–36 V via IEEE 1394 cable or 12-pin HIROSE

Table 10: Specification Stingray F-125B/C (fiber)

Feature	Specification	
Power consumption	Typical < 3.6 Watt (@ 12 V DC); fiber: typical < 4 Watt (@ 12 V DC)	
	(full resolution and maximal frame rates)	
Dimensions (L x W x H)	72.9 mm x 44 mm x 29 mm, incl. connectors, w/o tripod and lens	
Mass	92 g (without lens) for cameras with S/N \leq 09/17-285831532	
	108 g (without lens) for cameras with S/N > 09/17-285831532	
Operating temperature	+ 5 °C + 45 °C ambient temperature (without condensation)	
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)	
Regulations	CE, FCC Class B, RoHS (2011/65/EU)	
Standard accessories	b/w: protection glass	
	color: IR cut filter	
Optional accessories	b/w: IR cut filter, IR pass filter	
	color: protection glass	
On request	Host adapter card, angled head, power out: 6 W (HIROSE)	
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)	

Table 10: Specification Stingray F-125B/C (fiber) (Forts.)

Stingray F-145B/C (fiber)

Feature	Specification
Image device	Type 2/3 (diag. 11 mm) progressive scan SONY IT CCD ICX285AL/AQ with EXview HAD microlens
Effective chip size	9.0 mm x 6.7 mm
Cell size	6.45 μm x 6.45 μm
Picture size (max.)	1388 x 1038 pixels (Format_7 Mode_0)
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) maximum protrusion: 10.1 mm (see Figure 34: on page 77)
	CS-Mount: 12.526 mm (in air), Ø 25.4 mm (32 tpi) maximum protrusion: 5.1 mm (see Figure 33: on page 76)
	Note: Maximum protrusion means the distance from lens flange to the glass filter in the camera.
ADC	14 bit
Color modes (IIDC)	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8
Frame rates	Up to 30 fps, up to 16 fps in Format_7
Gain control	Manual: 0–24.4 dB (0.0359 dB/step); auto gain (select. AOI)
Shutter speed	74 μs 67 s; auto shutter (select. A0I)
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay
Internal FIFO memory	32 MByte, up to 10 frames
Look-up tables	User programmable (12 bit \rightarrow 10 bit); default gamma (0.45)
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 32 MByte image memory, mirror, binning (only b/w), sub-sampling, High SNR, deferred image transport, SIS (secure image signa- ture), sequence mode, 4 storable user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness
I/0	Two configurable inputs, four configurable outputs
	RS232 port (serial port, IIDC V1.31)
Transfer rate	Up to 800 Mbit/s
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber: IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)
Power requirements	DC 8 V–36 V via IEEE 1394 cable or 12-pin HIROSE
Power consumption	Typical < 3.5 Watt (@ 12 V DC); fiber: typical < 4 Watt (@ 12 V DC)
	(full resolution and maximal frame rates)

Table 11: Specification Stingray F-145B/C (fiber)

Feature	Specification		
Dimensions (L x W x H)	72.9 mm x 44 mm x 29 mm, incl. connectors, w/o tripod and lens		
Mass	92 g (without lens) for cameras with S/N \leq 09/17-285831532		
	108 g (without lens) for cameras with S/N > 09/17-285831532		
Operating temperature	+ 5 °C + 45 °C ambient temperature (without condensation)		
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)		
Regulations	CE, FCC Class B, RoHS (2011/65/EU)		
Standard accessories	b/w: protection glass		
	color: IR cut filter		
Optional accessories	b/w: IR cut filter, IR pass filter		
	color: protection glass		
On request	Host adapter card, angled head, power out: 6 W (HIROSE)		
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)		

Table 11: Specification Stingray F-145B/C (fiber) (Forts.)

Stingray F-146B/C (fiber)

Feature	Specification		
Image device	Type 1/2 (diag. 8 mm) progressive scan SONY IT CCD ICX267AL/AK with HAD micro- lens		
Effective chip size	6.5 mm x 4.8 mm		
Cell size	4.65 μm x 4.65 μm		
Picture size (max.)	1388 x 1038 pixels (Format_7 Mode_0)		
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) maximum protrusion: 10.1 mm (see Figure 34: on page 77)		
	CS-Mount: 12.526 mm (in air), Ø 25.4 mm (32 tpi) maximum protrusion: 5.1 mm (see Figure 33: on page 76)		
	Note: Maximum protrusion means the distance from lens flange to the glass filter in the camera.		
ADC	14 bit		
Color modes (IIDC)	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8		
Frame rates	Jp to 60 fps, up to 15 fps in Format_7		
Gain control	Manual: 0–24.4 dB (0.0359 dB/step); auto gain (select. AOI)		
Shutter speed	39 μs 67 s; auto shutter (select. AOI)		
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay		
Internal FIFO memory	32 MByte, up to 10 frames		
Look-up tables	User programmable (12 bit \rightarrow 10 bit); default gamma (0.45)		
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 32 MByte image memory, mirror, binning (only b/w), sub-sampling, High SNR, deferred image transport, SIS (secure image signa- ture), sequence mode, 4 storable user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness		
I/0	Two configurable inputs, four configurable outputs		
	RS232 port (serial port, IIDC V1.31)		
Transfer rate	Up to 800 Mbit/s		
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber: IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)		
Power requirements	DC 8 V–36 V via IEEE 1394 cable or 12-pin HIROSE		
Power consumption	Typical < 3.5 Watt (@ 12 V DC); fiber: typical < 4 Watt (@ 12 V DC)		
	(full resolution and maximal frame rates)		

Table 12: Specification Stingray F-146B/C (fiber)

Feature	Specification		
Dimensions (L x W x H)	72.9 mm x 44 mm x 29 mm, incl. connectors, w/o tripod and lens		
Mass	92 g (without lens) for cameras with S/N ≤ 09/17-285831532		
	108 g (without lens) for cameras with S/N > 09/17-285831532		
Operating temperature	+ 5 °C + 45 °C ambient temperature (without condensation)		
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)		
Regulations	CE, FCC Class B, RoHS (2011/65/EU)		
Standard accessories	b/w: protection glass		
	color: IR cut filter		
Accessories	b/w: IR cut filter, IR pass filter		
	color: protection glass		
On request	Host adapter card, angled head, power out: 6 W (HIROSE)		
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)		

Table 12: Specification Stingray F-146B/C (fiber) (Forts.)

Stingray F-201B/C (fiber)

Feature	Specification		
Image device	Type 1/1.8 (diag. 8.9 mm) progressive scan SONY IT CCD ICX274AL/AQ with Super HAD microlens		
Effective chip size	7.1 mm x 5.4 mm		
Cell size	4.40 μm x 4.40 μm		
Picture size (max.)	1624 x 1234 pixels (Format_7 Mode_0)		
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) maximum protrusion: 10.1 mm (see Figure 34: on page 77)		
	CS-Mount: 12.526 mm (in air), Ø 25.4 mm (32 tpi) maximum protrusion: 5.1 mm (see Figure 33: on page 76)		
	Note: Maximum protrusion means the distance from lens flange to the glass filter in the camera.		
ADC	14 bit		
Color modes (IIDC)	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8		
Frame rates	Up to 60 fps, up to 14 fps in Format_7		
Gain control	Manual: 0–24.4 dB (0.0359 dB/step); auto gain (select. AOI)		
Shutter speed	48 μs 67 s; auto shutter (select. AOI)		
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay		
Internal FIFO memory	32 MByte, up to 7 frames		
Look-up tables	User programmable (12 bit \rightarrow 10 bit); default gamma (0.45)		
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 32 MByte image memory, mirror, binning, sub-sampling, High SNR, deferred image transport, SIS (secure image signature), sequence mode, 4 stor- able user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness		
I/0	Two configurable inputs, four configurable outputs		
	RS232 port (serial port, IIDC V1.31)		
Transfer rate	Up to 800 Mbit/s		
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber : IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opt cal fiber on LCLC), (daisy chain)		
	to be continued on next page		
Power requirements	DC 8 V–36 V via IEEE 1394 cable or 12-pin HIROSE		

Table 13: Specification F-201B/C (fiber)

Feature	Specification		
Power consumption	Typical < 3.5 Watt (@ 12 V DC); fiber: typical < 4 Watt (@ 12 V DC)		
	(full resolution and maximal frame rates)		
Dimensions (L x W x H)	72.9 mm x 44 mm x 29 mm, incl. connectors, w/o tripod and lens		
Mass	92 g (without lens)for cameras with S/N ≤ 09/17-285831532		
	108 g (without lens) for cameras with S/N > 09/17-285831532		
Operating temperature	- 5 °C + 45 °C ambient temperature (without condensation)		
Storage temperature	- 10 °C + 70 °C ambient temperature (without condensation)		
Regulations	CE, FCC Class B, RoHS (2011/65/EU)		
Standard accessories	b/w: protection glass		
	color: IR cut filter		
Optional accessories	b/w: IR cut filter, IR pass filter		
	color: protection glass		
On request	Host adapter card, angled head, power out: 6 W (HIROSE)		
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)		

Table 13: Specification F-201B/C (fiber) (Forts.)

Stingray F-504B/C (fiber)

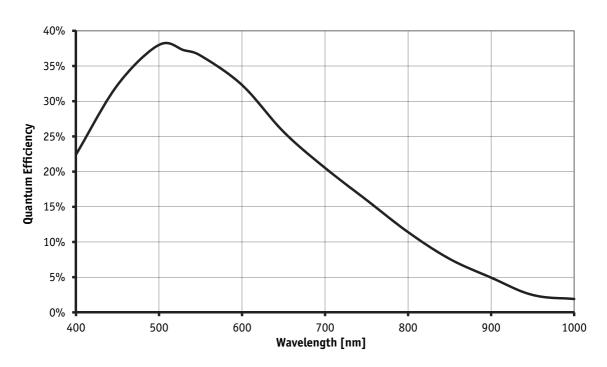
Feature	Specification		
Image device	Type 2/3 (diag. 11 mm) progressive scan SONY IT CCD ICX655ALA/AQA with Super HAD microlens		
Effective chip size	8.5 mm x 7.1 mm		
Cell size	3.45 μm x 3.45 μm		
Picture size (max.)	2452 x 2056 pixels (Format_7 Mode_0)		
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) maximum protrusion: 10.1 mm (see Figure 34: on page 77)		
	CS-Mount: 12.526 mm (in air), Ø 25.4 mm (32 tpi) maximum protrusion: 5.1 mm (see Figure 33: on page 76)		
	Note: Maximum protrusion means the distance from lens flange to the glass filter in the camera.		
ADC	14 bit		
Color modes (IIDC)	Only color: Raw8, Raw12, Raw16, Mono8, YUV422, YUV411, RGB8		
Frame rates	Up to15 fps, up to 9 fps in Format_7		
Gain control	Manual: 0–24.053 dB (0.0359 dB/step); auto gain (select. AOI)		
Shutter speed	42 μs 67 s; auto shutter (select. A0I)		
External trigger shutter	Programmable, trigger level control, single trigger, bulk trigger, programmable trigger delay		
Internal FIFO memory	64 MByte, up to 5 frames		
Look-up tables	User programmable (12 bit $ ightarrow$ 10 bit); default gamma (0.45)		
Smart functions	AGC (auto gain control), AEC (auto exposure control), real-time shading correc- tion, LUT, 64 MByte image memory, mirror, binning (b/w and color models), sub- sampling, High SNR, deferred image transport, SIS (secure image signature), sequence mode, 4 storable user sets only color: AWB (auto white balance), color correction, hue, saturation, sharpness		
I/0	Two configurable inputs, four configurable outputs		
	RS232 port (serial port, IIDC V1.31)		
Transfer rate	Up to 800 Mbit/s		
Digital interface	IEEE 1394b (IIDC V1.31), 2 x copper connectors (bilingual) (daisy chain) fiber : IEEE 1394b, 2 connectors: 1 x copper (bilingual), 1 x GOF connector (2 x opti- cal fiber on LCLC), (daisy chain)		
Power requirements	DC 8 V–36 V via IEEE 1394 cable or 12-pin HIROSE		
Power consumption	Typical < 3.9 Watt (@ 12 V DC); fiber: typical < 4.2 Watt (@ 12 V DC)		
	(full resolution and maximal frame rates)		

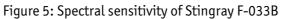
Table 14: Specification Stingray F-504B/C (fiber)

Feature	Specification		
Dimensions (L x W x H)	72.9 mm x 44 mm x 29 mm, incl. connectors, w/o tripod and lens		
Mass	92 g (without lens) for cameras with S/N \leq 09/17-285831532		
	108 g (without lens) for cameras with S/N > 09/17-285831532		
Operating temperature	+ 5 °C + 45 °C ambient temperature (without condensation)		
Storage temperature	10 °C + 70 °C ambient temperature (without condensation)		
Regulations	CE, FCC Class B, RoHS (2011/65/EU)		
Standard accessories	b/w: protection glass		
	color: IR cut filter		
Optional accessories	b/w: IR cut filter, IR pass filter		
	color: protection glass		
On request	Host adapter card, angled head, power out: 6 W (HIROSE)		
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)		

Table 14: Specification Stingray F-504B/C (fiber) (Forts.)

Spectral sensitivity




All measurements were done without protection glass / without filter.

The uncertainty in measurement of the QE values is $\pm 10\%$. This is mainly due to:

- Manufacturing tolerance of the sensor
- Uncertainties in the measuring apparatus itself

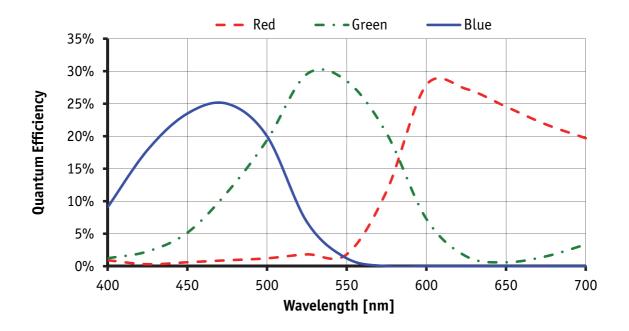
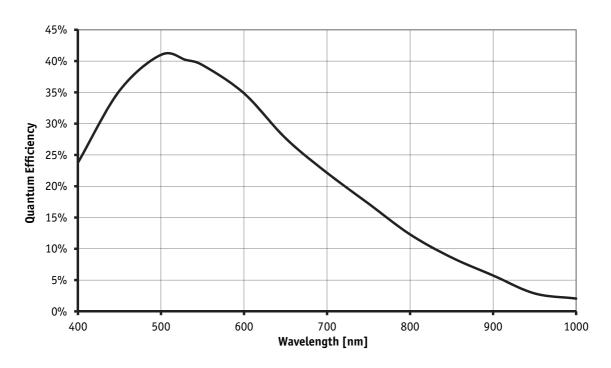



Figure 6: Spectral sensitivity of Stingray F-033C (without IR cut filter)

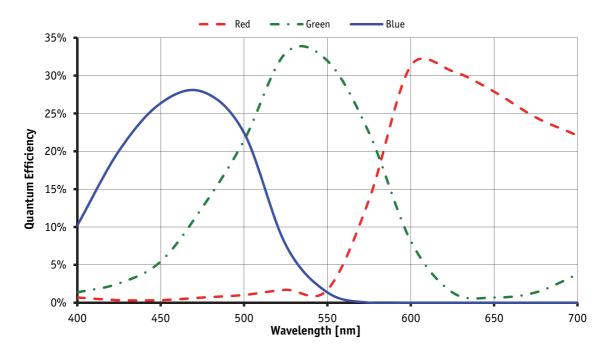


Figure 8: Spectral sensitivity of Stingray F-046C (without IR cut filter)

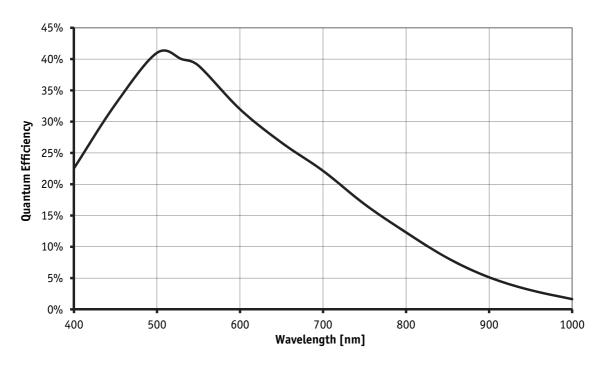


Figure 9: Spectral sensitivity of Stingray F-080B

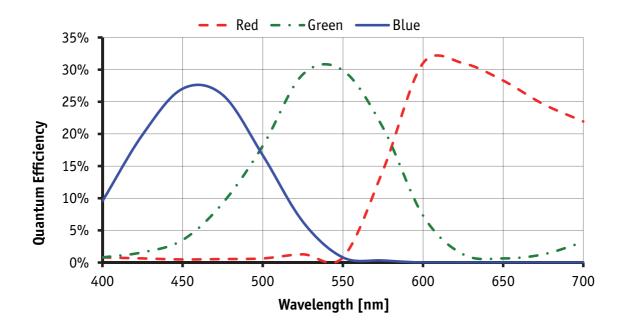


Figure 10: Spectral sensitivity of Stingray F-080C (without IR cut filter)

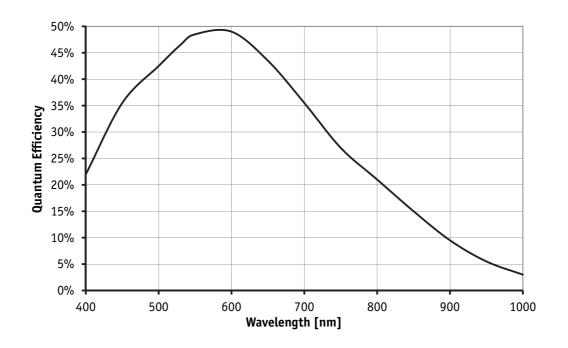


Figure 11: Spectral sensitivity of Stingray F-125B

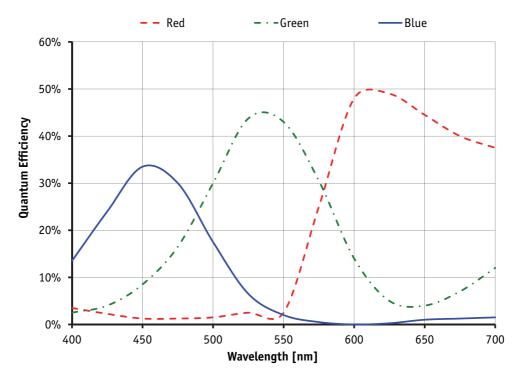


Figure 12: Spectral sensitivity of Stingray F-125C (without IR cut filter)

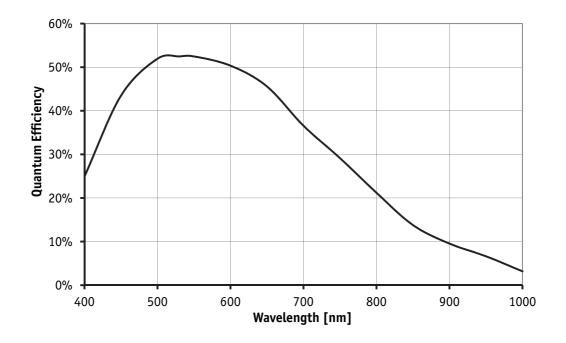


Figure 13: Spectral sensitivity of Stingray F-145B

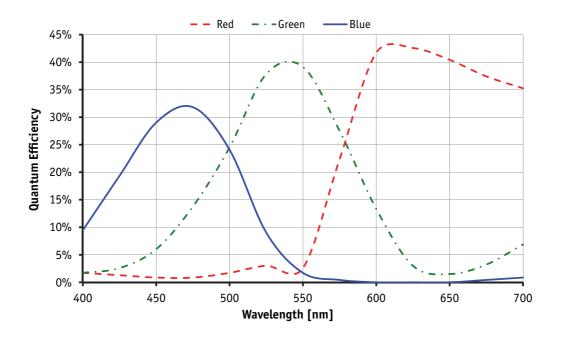


Figure 14: Spectral sensitivity of Stingray F-145C (without IR cut filter)

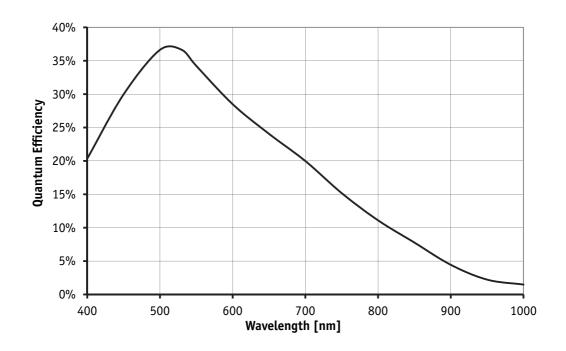


Figure 15: Spectral sensitivity of Stingray F-146B

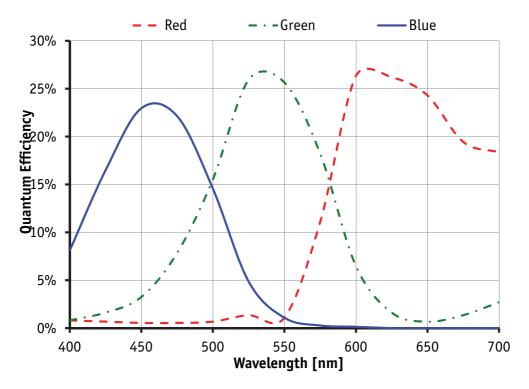


Figure 16: Spectral sensitivity of Stingray F-146C (without IR cut filter)

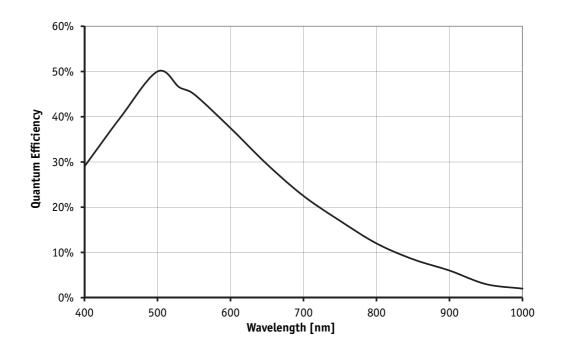


Figure 17: Spectral sensitivity of Stingray F-201B

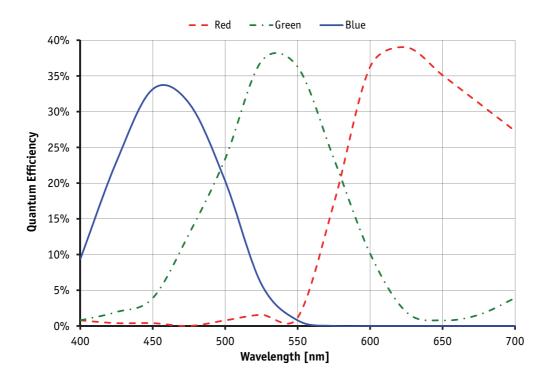


Figure 18: Spectral sensitivity of Stingray F-201C (without IR cut filter)

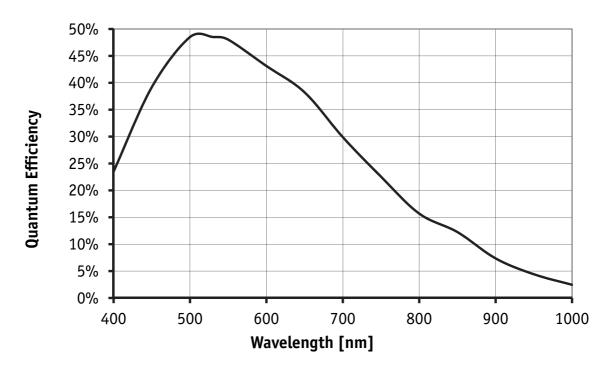


Figure 19: Spectral sensitivity of Stingray F-504B

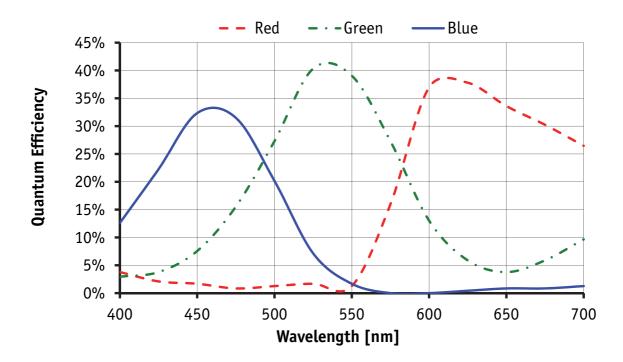


Figure 20: Spectral sensitivity of Stingray F-504C (without IR cut filter)

Camera dimensions

Note

For information on sensor position accuracy:

(sensor shift x/y, optical back focal length z and sensor rotation α) see Chapter Sensor position accuracy of Stingray cameras on page 315.

For information on the Stingray Compact (modular concept) see Chapter Stingray Compact on page 75 and **Modular Concept**:

http://www.alliedvision.com

Camera model	E-number	Starting
Stingray F-046B ASG	E0010003	from SN: 09/17-285843839
Stingray F-046C IRF	E0010004	from SN: 09/17-285843873
Stingray F-125C IRF	E0010063	from SN: 09/17-285843866
Stingray F-201B ASG	E0010007	from SN: 09/17-285843801
Stingray F-201C IRF	E0010008	from SN: 09/17-285843904

Serial numbers for starting new front flange

Table 15: Starting serial numbers for new front flange

Stingray standard housing (2 x 1394b copper)

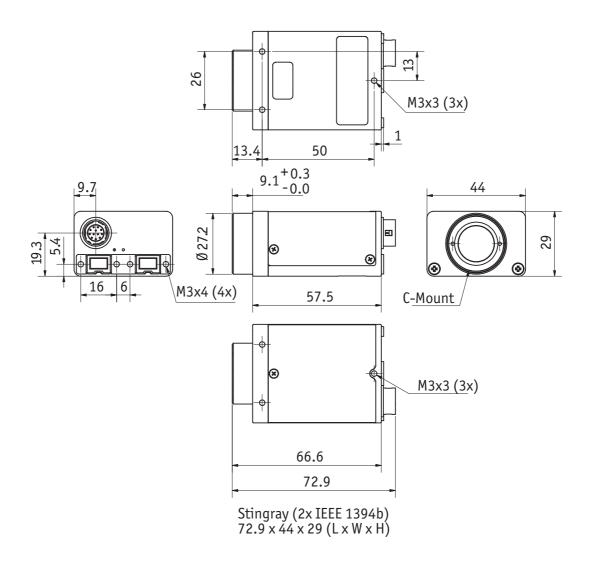


Figure 21: Camera dimensions (2 x 1394b copper)

Camera dimensions

Stingray (1394b: 1 x GOF, 1 x copper)

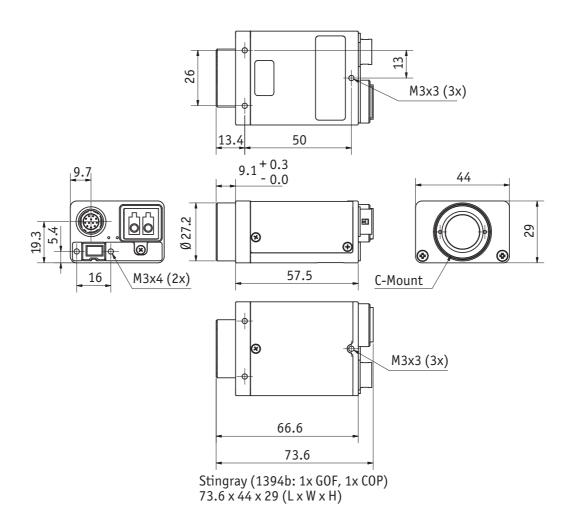
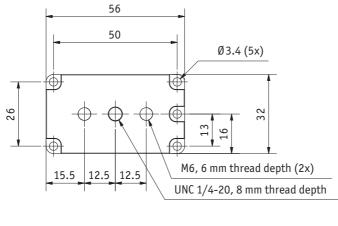


Figure 22: Camera dimensions (1394b: 1 x GOF, 1 x copper)

Tripod adapter


This five hole tripod adapter (Order number E 5000007) ...

- ... can be used for Stingray as well as for Marlin. The original four hole adapter of the Marlin should not be used with Stingray.
- ... is only designed for standard housings, but not for the angled head versions.

Note If you need a tripod adapter for angled head versions, please contact Allied Vision support.

Body size: 56 mm x 32 mm x 10 mm (L x W x H)

Figure 23: Tripod dimensions

Stingray Technical Manual V.4.5.0

Camera dimensions

Stingray W90 (2 x 1394b copper)

This version has the sensor tilted by 90 degrees clockwise, so that it views upwards.

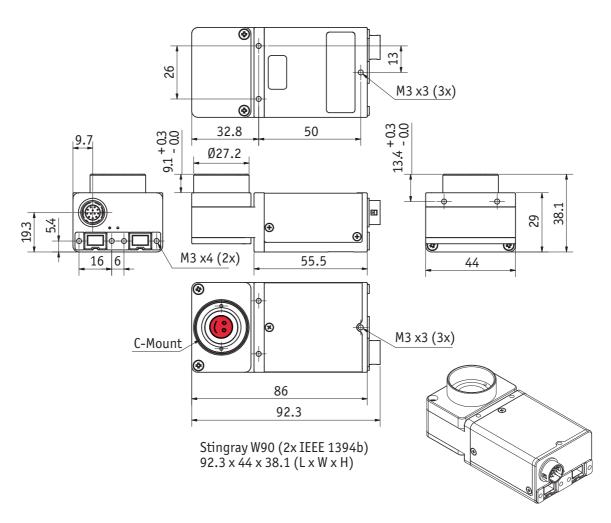


Figure 24: Stingray W90 (2 x 1394b copper)

Camera dimensions

Stingray W90 (1394b: 1 x GOF, 1 x copper)

This version has the sensor tilted by 90 degrees clockwise, so that it views upwards.

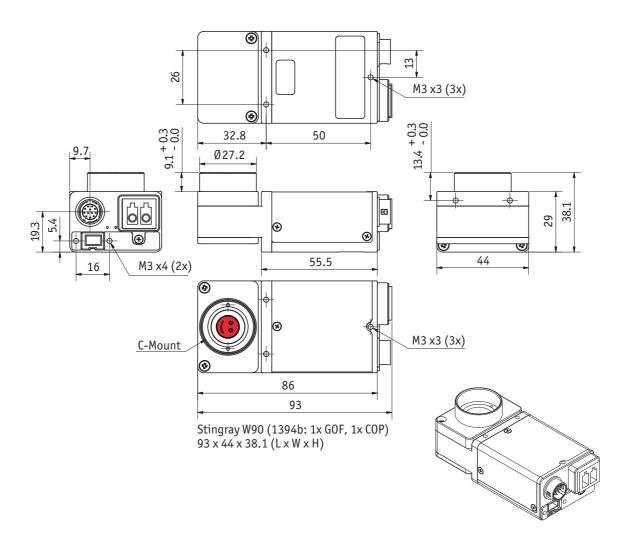


Figure 25: Stingray W90 (1394b: 1 x GOF, 1 x copper)

Stingray W90 S90 (2 x 1394b copper)

This version has the sensor tilted by 90 degrees clockwise, so that it views upwards.

The sensor is also rotated by 90 degrees clockwise.

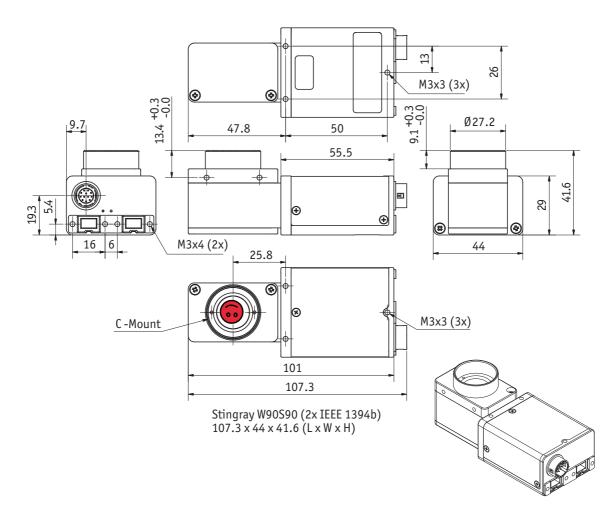


Figure 26: Stingray W90 S90 (2 x 1394b copper)

Stingray W90 S90 (1394b: 1 x GOF, 1 x copper)

This version has the sensor tilted by 90 degrees clockwise, so that it views upwards.

The sensor is also rotated by 90 degrees clockwise.

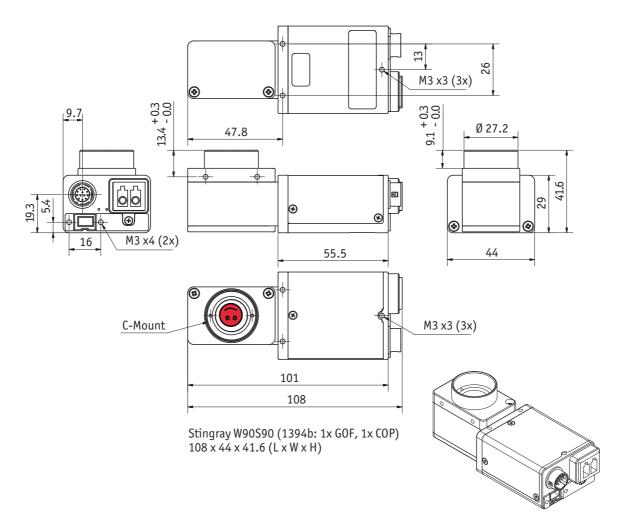


Figure 27: Stingray W90 S90 (1394b: 1 x GOF, 1 x copper)

Stingray W270 (2 x 1394b copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

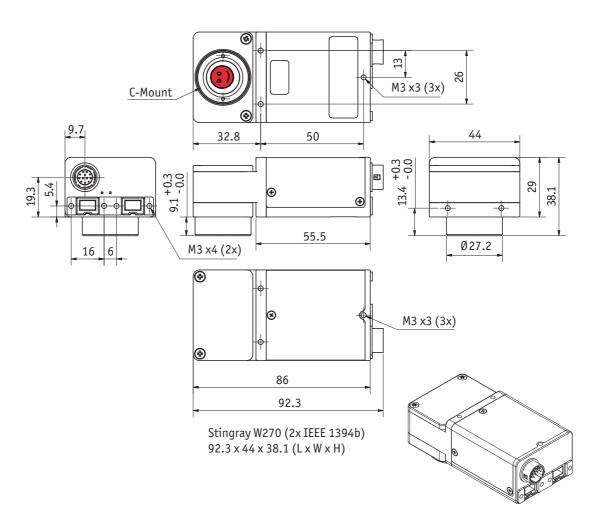


Figure 28: Stingray W270 (2 x 1394b copper)

Stingray W270 (1394b: 1 x GOF, 1 x copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

Figure 29: Stingray W270 (1394b: 1 x GOF, 1 x copper)

Stingray W270 S90 (2 x 1394b copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

The sensor is also rotated by 90 degrees clockwise.

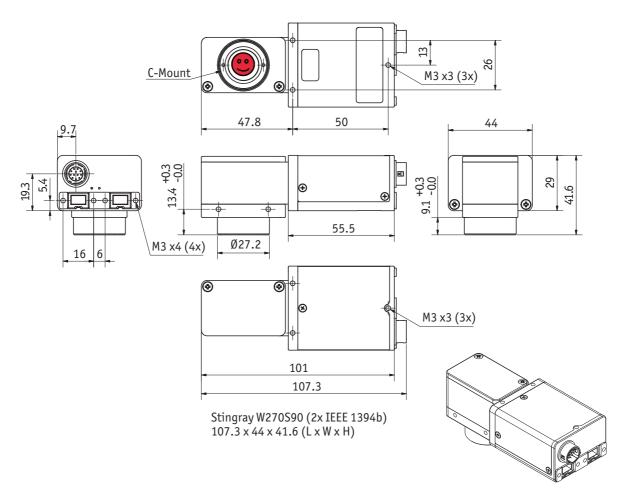


Figure 30: Stingray W270 S90 (2 x 1394b copper)

Stingray W270 S90 (1394b: 1 x GOF, 1 x copper)

This version has the sensor tilted by 270 degrees clockwise, so that it views downwards.

The sensor is also rotated by 90 degrees clockwise.

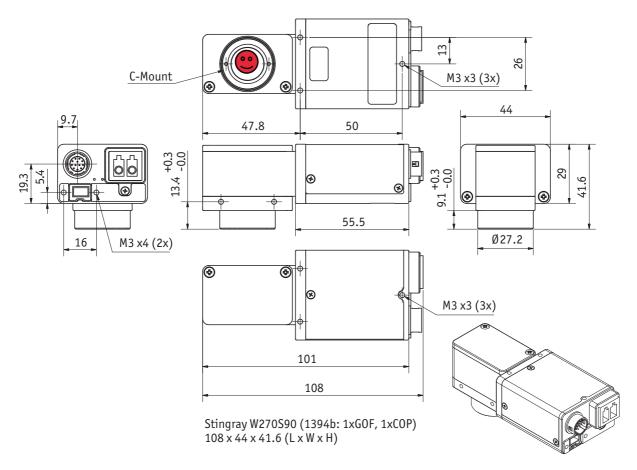
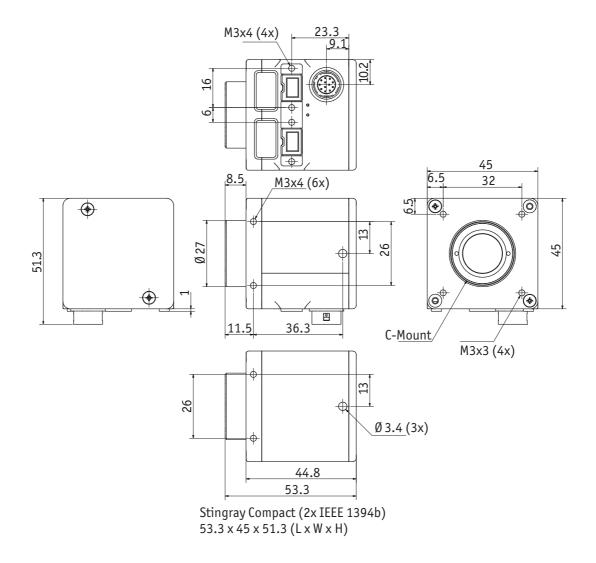
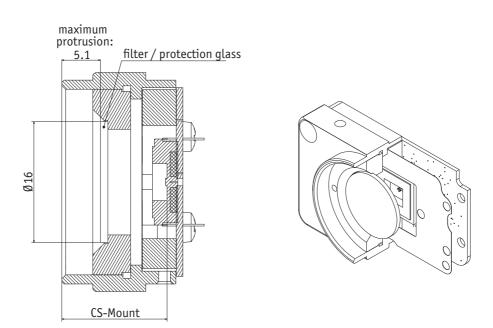


Figure 31: Stingray W270 S90 (1394b: 1 x GOF, 1 x copper)

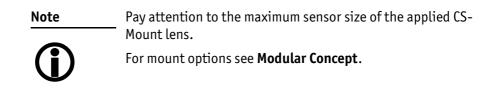
Camera dimensions

Stingray Compact




Figure 32: Stingray Compact (2 x 1394b copper. No angled heads. No fiber option. 145 g)

Camera dimensions



Cross section: CS-Mount

All Stingray cameras can be delivered with CS-Mount.

Stingray Technical Manual V.4.5.0

Cross section: C-Mount

- All monochrome Stingrays are equipped with the same model of protection glass.
- All color Stingrays are equipped with the same model of IR cut filter.

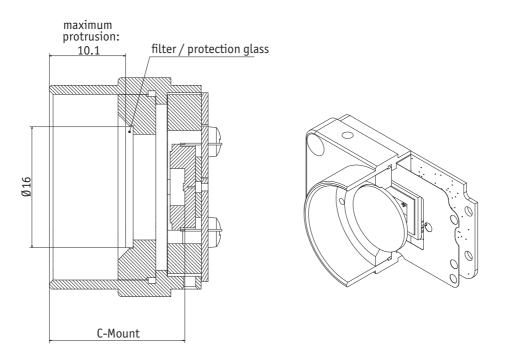


Figure 34: Stingray C-Mount dimensions

Adjustment of C-Mount and CS-Mount

The dimensional adjustment cannot be done any more by the customer. All **modifications** have to be done by the Allied Vision factory.

If you need any modifications, please contact Customer Care: For phone numbers and e-mail: See Chapter Contacting Allied Vision on page 11.

Stingray board level: dimensions

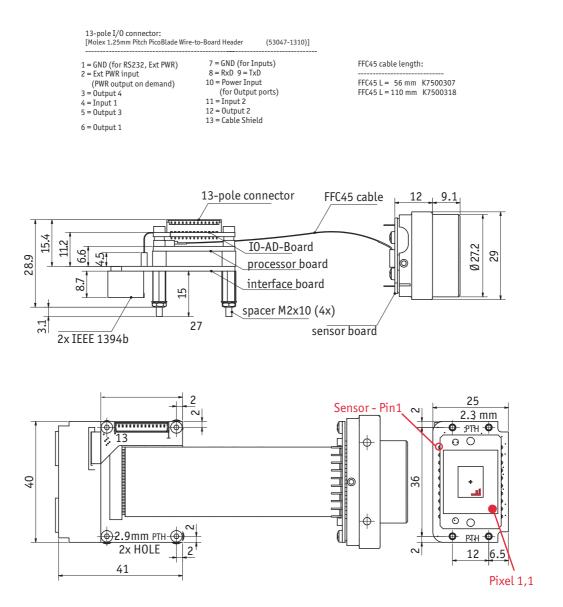


Figure 35: Stingray board level dimensions

Stingray board level: CS-Mount

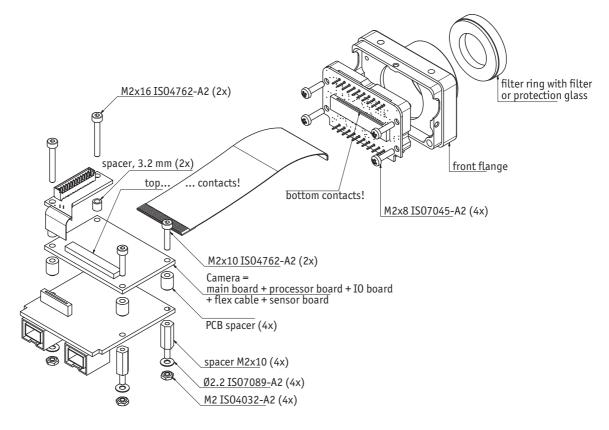


Figure 36: Stingray board level: CS-Mount

Stingray board level: C-Mount

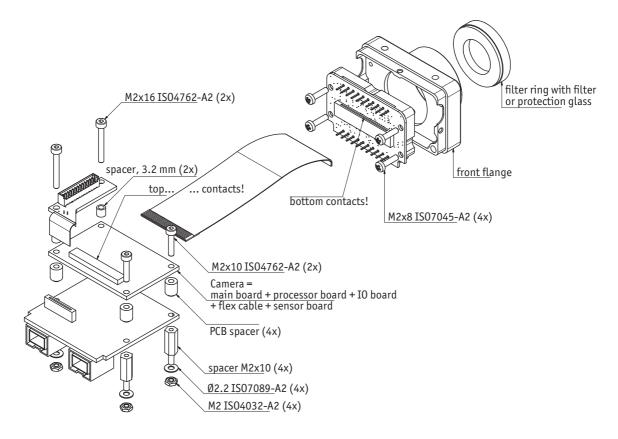


Figure 37: Stingray board level: C-Mount

Filter and lenses

IR cut filter: spectral transmission

Only Stingray color cameras have a built-in IR cut filter. The following illustration shows the spectral transmission of the IR cut filter:

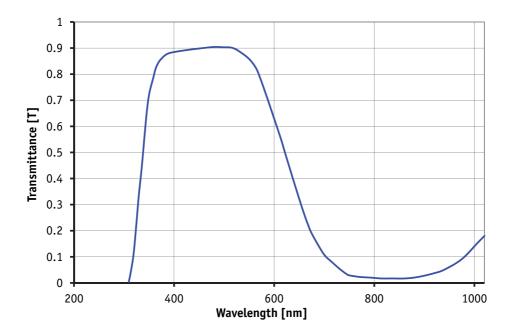


Figure 38: Approximate spectral transmission of IR cut filter (may vary slightly by filter lot) (type Hoya C5000)

Camera lenses

Allied Vision offers different lenses from a variety of manufacturers. The following table lists selected image formats in **width x height** depending on camera type, distance, and focal length of the lens.

Focal length for type 1/3 sensors Stingray F-080/125	Distance = 500 mm	Distance = 1000 mm
4.8 mm	495 mm x 371 mm	995 mm x 746 mm
8 mm	295 mm x 221 mm	595 mm x 446 mm
12 mm	195 mm x 146 mm	395 mm x 296 mm
16 mm	145 mm x 109 mm	295 mm x 221 mm
25 mm	91 mm x 68 mm	187 mm x 140 mm
35 mm	64 mm x 48 mm	132 mm x 99 mm
50 mm	43 mm x 32 mm	91 mm x 68 mm

Table 16: Focal length vs. field of view (Stingray F-080)

Focal length for type 1/2 sensors Stingray F-033/046/146	Distance = 500 mm	Distance = 1000 mm
4.8 mm	660 mm x 495 mm	1327 mm x 995 mm
8 mm	394 mm x 295 mm	794 mm x 595 mm
12 mm	260 mm x 195 mm	527 mm x 395 mm
16 mm	194 mm x 145 mm	394 mm x 295 mm
25 mm	122 mm x 91 mm	250 mm x 187 mm
35 mm	85 mm x 64 mm	176 mm x 132 mm
50 mm	58 mm x 43 mm	122 mm x 91 mm

Table 17: Focal length vs. field of view (Stingray F-033/046/146)

Focal length for type 1/1.8 sensors Stingray F-201	Distance = 500 mm	Distance = 1000 mm
4.8 mm	740 mm x 549 mm	1488 mm x 1103 mm
8 mm	441 mm x 327 mm	890 mm x 660 mm
12 mm	292 mm x 216 mm	591 mm x 438 mm
16 mm	217 mm x 161 mm	441 mm x 327 mm
25 mm	136 mm x 101 mm	280 mm x 207 mm
35 mm	95 mm x 71 mm	198 mm x 147 mm
50 mm	65 mm x 48 mm	136 mm x 101 mm

Table 18: Focal length vs. field of view (Stingray F-201)

Focal length for type 2/3 sensors Stingray F-145/504	Distance = 500 mm	Distance = 1000 mm
4.8 mm	908 mm x 681 mm	1825 mm x 1368 mm
8 mm	541 mm x 406 mm	1091 mm x 818 mm
12 mm	358 mm x 268 mm	725 mm x 543 mm
16 mm	266 mm x 200 mm	541 mm x 406 mm
25 mm	167 mm x 125 mm	343 mm x 257 mm
35 mm	117 mm x 88 mm	243 mm x 182 mm
50 mm	79 mm x 59 mm	167 mm x 125 mm

Table 19: Focal length vs. field of view (Stingray F-145)

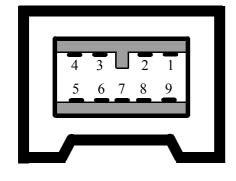
Lenses with focal lengths < 8 mm may show shading in the edges of the image and due to micro lenses on the sensor's pixel.

Ask your dealer if you require non C-Mount lenses.

Camera interfaces

This chapter gives you detailed information on status LEDs, inputs and outputs, trigger features, and transmission of data packets.

Note



For a detailed description of the camera interfaces (FireWire, I/O connector), ordering numbers, and operating instructions see the 1394 Installation Manual, Chapter *Camera interfaces*.

Read all the Notes and Cautions in the **1394 Installation Manual**, before using any interfaces.

IEEE 1394b port pin assignment

The IEEE 1394b connector is designed for industrial use and has the following pin assignment as per specification:

Pin	Signal
1	TPB-
2	TPB+
3	TPA-
4	TPA+
5	TPA (Reference ground)
6	VG (GND)
7	N.C.
8	VP (Power, VCC)
9	TPB (Reference ground)

Figure 39: IEEE 1394b connector

• Both IEEE 1394b connectors with **screw lock** mechanism provide access to the IEEE 1394 bus, enabling control of the camera and output frames. Connect the camera by using either of the connectors. The remaining connector can be used to daisy chain a second camera.

• Cables with latching connectors on one or both sides can be used and are available with lengths of 5 m or 7.5 m. Ask your local dealer for more details.

www

For **more information on cables** and on **ordering cables online** (by clicking the article and sending an inquiry) go to:

http://www.alliedvision.com/en/contact

Board level camera: IEEE 1394b port pin assignment

Board level Stingray cameras have two 1394b ports to allow daisy chaining of cameras.

They have the same pin assignment as the Stingray housing cameras.

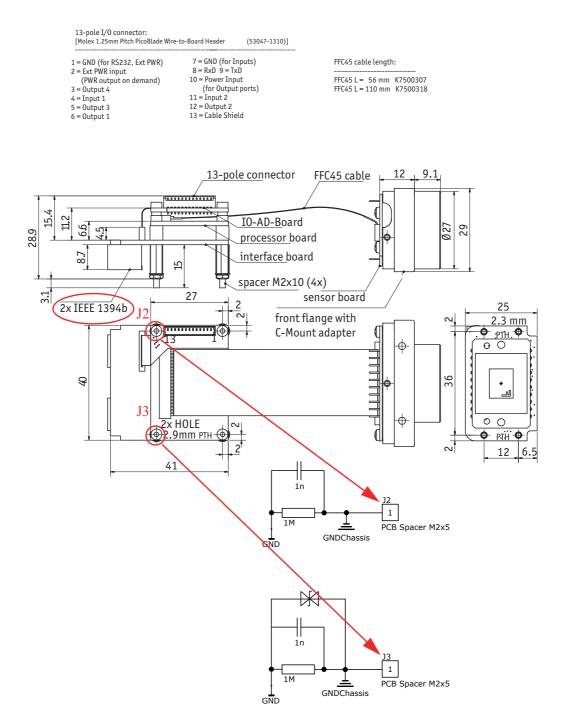


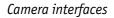
Figure 40: Board level camera: two IEEE 1394b FireWire connectors

Stingray Technical Manual V.4.5.0

Camera I/O connector pin assignment

(For board level see Chapter Board level camera: I/O pin assignment on page 87)

	Pin	Signal	Direction	Level	Description
	1	External GND		GND for RS232 and ext. power	External Ground for RS232 and external power
	2	External Power		+8+36 V DC	Power supply
	3	Camera Out 4	Out	Open emitter	Camera Output 4 (GPOut4) default: -
	4	Camera In 1	In	U _{in} (high) = 3 V-24 V U _{in} (low) = 0 V-1.5 V	Camera Input 1 (GPIn1) default: Trigger
	5	Camera Out 3	Out	Open emitter	Camera Output 3 (GPOut3) default: Busy
4 5 6	6	Camera Out 1	Out	Open emitter	Camera Output 1 (GPOut1) default: IntEna
	7	Camera In GND	In	Common GND for inputs	Camera Common Input Ground (In GND)
	8	RxD RS232	In	RS232	Terminal Receive Data
	9	TxD RS232	Out	RS232	Terminal Transmit Data
	10	Camera Out Power	In	Common VCC for outputs max. 36 V DC	External Power for digital outputs (OutVCC)
	11	Camera In 2	In	U _{in} (high) = 3 V-24 V U _{in} (low) = 0 V-1.5 V	Camera Input 2 (GPIn2) default: -
	12	Camera Out 2	Out	Open emitter	Camera Output 2 (GPOut2) default: Follow CameraIn2


Figure 41: Camera I/O connector pin assignment

Note GP = General Purpose

For a detailed description of the I/O connector and its operating instructions see the 1394 Installation Manual, Chapter *Stingray input description*.

Read all Notes and Cautions in the 1394 Installation Manual, before using the I/O connector.

Board level camera: I/O pin assignment

The following diagram shows the 13-pole I/O pin connector of a board level camera:

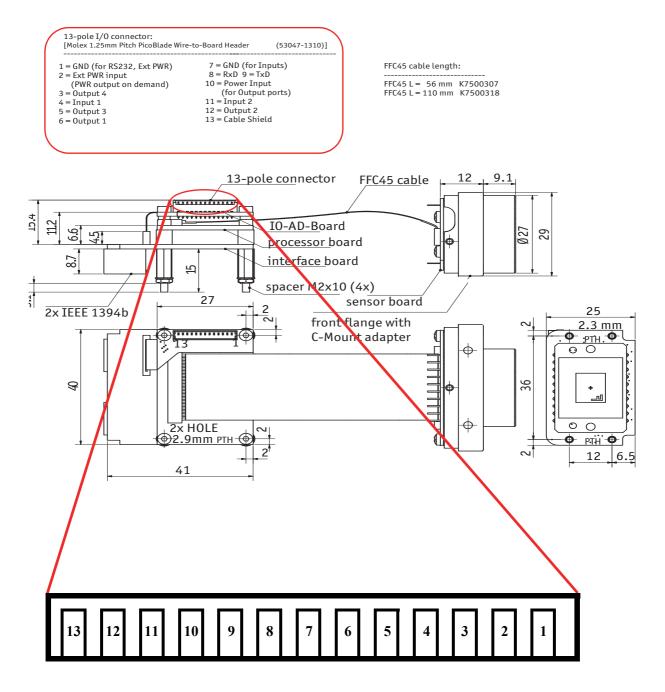


Figure 42: Board level camera: I/O pin assignment

Status LEDs

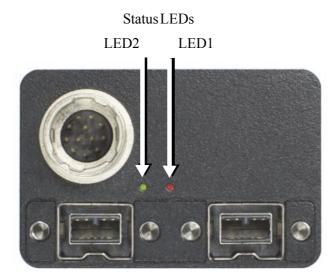


Figure 43: Position of status LEDs

Each of the two LEDs is tricolor: showing green, red, or orange.

RED means: red LED permanent on

RED blinking means: red LED blinks fast

+RED pulsing means: red LED is switched on for a short time. If the red LED is already on, the LED will be switched of The state of the other color of the same LED could be on or of

GREEN means: green LED permanent on

GREEN blinking means: green LED blinks fast

+GREEN pulsing means: green LED is switched on for a short time. If the green LED is already on, the LED will be switched of The state of the other color of the same LED could be on or of

+GREEN pulsing (inverted) means: green LED is switched off for a short time.

Note

Both LEDs can be switched off by:

- Setting bit [17] to 1, see Table 166: on page 308
- Activating **Disable LED functionality** check box in Smart-View (**Adv3** tab).

Error conditions will be shown although LEDs are switched of

Normal conditions

Event	LED1 LED2				
Camera startup	During startup all LEDs are switched on consecu- tively to show the startup progress:				
	Phase1: LED1 RED				
	Phase2: LED1 RED + LED1 GRE	EEN			
	Phase3: LED1 RED + LED1 GRE	EEN + LED2 RED			
	Phase4: LED1 RED + LED1 GRE	EEN + LED2 RED + LED2 GREEN			
Power on		GREEN			
Bus reset		GREEN blinking			
Asynchronous traffic	+GREEN pulsing	GREEN			
Only GOF: asynchronous traffic	+GREEN pulsing (inverted)	GREEN			
Only GOF: GOF signal detect	GREEN	GREEN			
Isochronous traffic	+RED pulsing	GREEN			
Waiting for external trig- ger	RED	GREEN			
External trigger event	RED	+RED pulsing			

Table 20: LEDs showing normal conditions

Error conditions

LED1 RED	Warning 1 pulse	DCAM 2 pulse	MISC 3 pulse	FPGA 4 pulse	Stack 5 pulse
LED2 GREEN					
FPGA boot error				1-5 pulse	
Stack setup					1 pulse
Stack start					2 pulse
No FLASH object			1 pulse		
No DCAM object		1 pulse			
Register mapping		3 pulse			
VMode_ERROR_STATUS	1 pulse				
FORMAT_7_ERROR_1	2 pulse				
FORMAT_7_ERROR_2	3 pulse				

Table 21: Error codes

Stingray Technical Manual V.4.5.0

Control data signals

The inputs and outputs of the camera can be configured by software. The different modes are described below.

Inputs

For a general description of the inputs and warnings see the 1394 Installation Manual, Chapter Stingray input description.

The optocoupler inverts all input signals. Inversion of the signal is controlled via the IO_INP_CTRL1..2 register (see Table 22: on page 91).

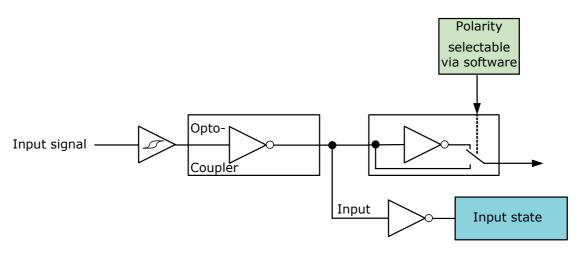


Figure 44: Input block diagram

Triggers

All inputs configured as triggers are linked by AND. If several inputs are being used as triggers, a high signal must be present on all inputs in order to generate a trigger signal. Each signal can be inverted. The camera must be set to **external triggering** to trigger image capture by the trigger signal.

Input/output pin control

All input and output signals running over the camera $\rm I/O$ connector are controlled by an advanced feature register.

Register	Name	Field	Bit	Description
0xF1000300	IO_INP_CTRL1	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[16]	Reserved
		Polarity	[7]	0: Signal not inverted 1: Signal inverted
			[810]	Reserved
		InputMode	[1115]	Mode see Table 23: on page 91
			[1630]	Reserved
		PinState	[31]	RD: Current state of pin
0xF1000304	IO_INP_CTRL2	Same as IO_INP_C- TRL1		

Table 22: Advanced register: Input control

IO_INP_CTRL 1-2

The **Polarity** flag determines whether the input is low active (0) or high active (1). The **input mode** can be seen in the following table. The **PinState** flag is used to query the current status of the input.

The **PinState** bit reads the inverting optocoupler status after an internal negation. See Figure 44: Input block diagram on page 90.

This means that an open input sets the **PinState** bit to **0**. (This is different to Marlin, where an open input sets **PinState** bit to **1**.)

ID	Mode	Default	
0x00	Off		
0x01	Reserved		
0x02	Trigger input	Input 1	
0x03	Reserved		
0x06	Sequence Step		
0x07	Sequence Reset		
0x080x1F	Reserved		

Table 23: Input routing

Note

If you set more than 1 input to function as a trigger input, all trigger inputs are ANDed.

Trigger delay

Stingray cameras feature various ways to delay image capture based on external trigger.

With IIDC V1.31 there is a standard CSR at Register F0F00534/834h to control a delay up to FFFh x time base value.

The following table explains the inquiry register and the meaning of the various bits.

Register	Name	Field	Bit	Description		
0xF0F00534	534 TRIGGER_DELAY_INQUIRY	Presence_Inq	[0]	Indicates presence of this feature (read only)		
		Abs_Control_Inq	[1]	Capability of control with absolute value		
			[2]	Reserved		
		One_Push_Inq	[3]	One-push auto mode (con- trolled automatically by the camera once)		
		Readout_Inq	[4]	Capability of reading out the value of this feature		
				ON_OFF	[5]	Capability of switching this feature ON and OFF
			Auto_Inq	[6]	Auto mode (controlled auto- matically by the camera)	
				Manual_Inq	[7]	Manual mode (controlled by user)
		Min_Value	[819]	Minimum value for this fea- ture		
		Max_Value	[2031]	Maximum value for this fea- ture		

Table 24: Trigger delay inquiry register

Register	Name	Field	Bit	Description
0xF0F00834	TRIGGER_DELAY	Presence_Inq	[0]	Presence of this feature:
				0: N/A
				1: Available
		Abs_Control	[1]	Absolute value control
				0: Control with value in the value field
				1: Control with value in the absolute value CSR. If this bit=1 the value in the value field has to be ignored.
			[25]	Reserved
		ON_OFF	[6]	Write ON or OFF this feature
				Read: Status of the feature
				0N=1
				0FF=0
			[719]	Reserved
		Value	[2031]	Value

Table 25: Trigger Delay CSR

The cameras also have an advanced register which allows even more precise image capture delay after receiving a hardware trigger.

Trigger delay advanced register

Register	Name	Field	Bit	Description
0xF1000400	TRIGGER_DELAY	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Trigger delay on/off
			[710]	Reserved
		DelayTime	[1131]	Delay time in µs

Table 26: Trigger delay advanced CSR

The advanced register allows the start of the integration to be delayed by max. $2^{21}\,\mu s,$ which is max. 2.1 s after a trigger edge was detected.

- Switching trigger delay to ON also switches external Trigger_Mode_0 to ON.
- This feature works with external Trigger_Mode_0 only.

Outputs

For a general description of the outputs and warnings see the 1394 Installation Manual, Chapter Stingray output description.

Output features are configured by software. Any signal can be placed on any output.

The main features of output signals are described below:

Signal	Description
IntEna (Integration Enable) signal	This signal displays the time in which exposure was made. By using a register this output can be delayed by up to 1.05 seconds.
Fval (Frame valid) signal	This feature signals readout from the sensor. This signal Fval fol- lows IntEna.
Busy signal	This signal appears when:
	the exposure is being made or
	 the sensor is being read out or
	data transmission is active.
	The camera is busy.
PulseWidthMod (pulse-width modula- tion) signal	Each output has pulse-width modulation (PWM) capabilities, which can be used for motorized speed control or autofocus con- trol. See Chapter Pulse-width modulation (Stingray housing and Stingray board level models) on page 99
WaitingForTrigger signal	This signal is available and useful for the outputs in Trigger Edge Mode. (In level mode it is available but useless, because expo- sure time is unknown. (Signal always =0))
	In edge mode it is useful to know if the camera can accept a new trigger (without overtriggering).
	See Table 29: on page 97 and Figure 46: on page 98

Table 27: Output signals

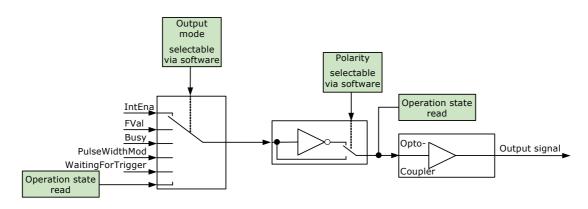


Figure 45: Output block diagram

IO_OUTP_CTRL 1-4

The outputs (output mode, polarity) are controlled via 4 advanced feature registers (see Table 28: on page 96).

The **Polarity** field determines whether the output is inverted or not. For the **Output mode** see Table 29: on page 97 for details. The current status of the output can be queried and set via the **PinState**.

It is possible to read back the status of an output pin regardless of the output mode. For example, this allows the host computer to determine if the camera is busy by simply polling the BUSY output.

Note

Outputs in **Direct** Mode:

For correct functionality the **polarity should always be set to 0** (SmartView: Trig/I0 tab, Invert=No).

Camera interfaces

Output control

Register	Name	Field	Bit	Description
0xF1000320	IO_OUTP_CTRL1	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
		PWMCapable	[1]	Indicates if an output pin sup- ports the PWM feature.
				See Table 30: on page 99.
			[26]	Reserved
		Polarity	[7]	0: Signal not inverted
				1: Signal inverted
			[810]	Reserved
		Output mode	[1115]	Mode
				see Table 29: on page 97
			[1630]	Reserved
		PinState	[31]	RD: Current state of pin
				WR: New state of pin
0xF1000324	IO_OUTP_CTRL2	Same as IO_OUT- P_CTRL1		
0xF1000328	IO_OUTP_CTRL3	Same as IO_OUT- P_CTRL1		
0xF100032C	IO_OUTP_CTRL4	Same as IO_OUT- P_CTRL1		

Table 28: Advanced register: **Output control**

Output modes

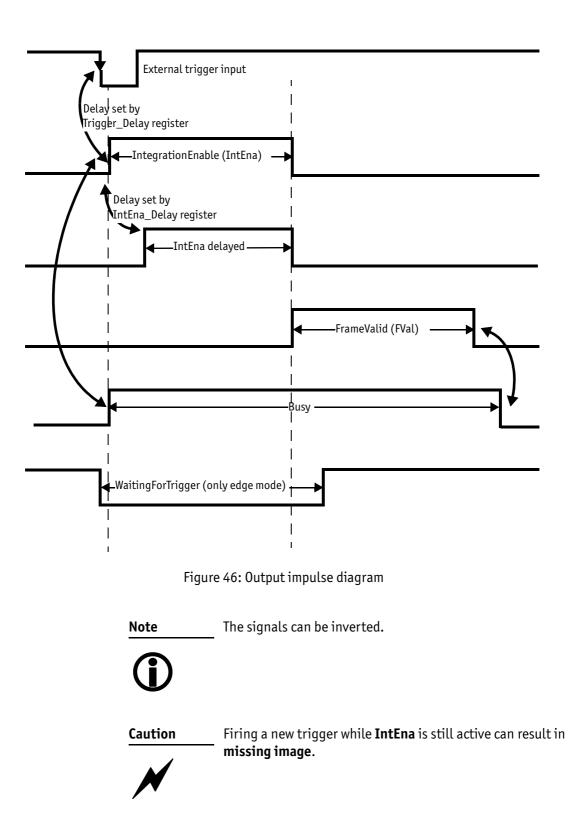

ID	Mode	Default / description
0x00	Off	
0x01	Output state follows PinState bit	Using this mode, the Polarity bit has to be set to 0 (not inverted). This is necessary for an error free display of the output status.
0x02	Integration enable	Output 1
0x03	Reserved	
0x04	Reserved	
0x05	Reserved	
0x06	FrameValid	
0x07	Busy	Output 2
0x08	Follow corresponding input (Inp1 \rightarrow Out1, Inp2 \rightarrow Out2)	
0x09	PWM (=pulse-width modulation)	Stingray housed and board level models
0x0A	WaitingForTrigger	Only in Trigger Edge Mode.
		All other Mode = 0
		WaitingForTrigger is useful to know, if a new trigger will be accepted.
0x0B0x1F	Reserved	

Table 29: Output modes

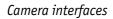
PinState 0 switches off the output transistor and produces a low level over the resistor connected from the output to ground.

The following diagram illustrates the dependencies of the various output signals.

Note

- Note that trigger delay delays the image capture, whereas IntEna_Delay only delays the leading edge of IntEna output signal, but it does not delay the image capture.
- The outputs can be set by software. In this case, the achievable maximum frequency is strongly dependent on individual software capabilities. As a rule of thumb, the camera itself will limit the toggle frequency to not more than 700 Hz.

Pulse-width modulation (Stingray housing and Stingray board level models)


The 2 inputs and 4 outputs are independent. Each output has pulse-width modulation (PWM) capabilities, which can be used for motorized speed control or autofocus control with additional external electronics.

Period and pulse width are adjustable via the following registers. For additional examples see Chapter PWM: Examples in practice on page 101:

Register	Name	Field	Bit	Description
0xF1000800	IO_OUTP_PWM1	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[1]	Reserved
			[23]	Reserved
		MinPeriod	[419]	Minimum PWM period in µs (read only)
			[2027]	Reserved
			[2831]	Reserved
0xF1000804		PulseWidth	[015]	PWM pulse width in µs
		Period	[1631]	PWM period in µs
0xF1000808	IO_OUTP_PWM2	Same as IO_OUT-		
0xF100080C	-	P_PWM1		
0xF1000810	IO_OUTP_PWM3	Same as IO_OUT-		
0xF1000814		P_PWM1		
0xF1000818	IO_OUTP_PWM4	Same as IO_OUT-		
0xF100081C	1	P_PWM1		

Table 30: PWM configuration registers

To enable the PWM feature select output mode 0x09. Control the signal state via the **PulseWidth** and **Period** fields (all times in μ s).

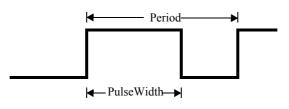


Figure 47: PulseWidth and Period definition

Note the following conditions:

- PulseWidth < Period
- Period \geq MinPeriod

PWM: minimal and maximal periods and frequencies

The following formulas present the minimal/maximal periods and frequencies for the pulse-width modulation (PWM).

period_{min} =
$$3\mu s$$

 \Rightarrow frequency_{max} = $\frac{1}{\text{period}_{min}} = \frac{1}{3\mu s} = 333.33 \text{ kHz}$
frequency_{min} = $\frac{1}{2^{16} \times 10^{-6} \text{ s}} = 15.26 \text{ Hz}$
 \Rightarrow period_{max} = $\frac{1}{\text{frequency}_{min}} = 2^{16} \mu s$

Formula 1: Minimal/maximal period and frequency

Camera interfaces

PWM: Examples in practice

This chapter presents two examples, on how to write values in the PWM registers. All values have to be written in microseconds in the PWM registers.

Example 1:

Set PWM with 1kHz at 30% pulse width.

RegPeriod = $\frac{1}{\text{frequency} \times 10^{-6} \text{s}} = \frac{1}{1 \text{kHz} \times 10^{-6} \text{s}} = 1000$

RegPulseWidth = RegPeriod \times 30% = 1000 \times 30% = 300

Formula 2: PWM example 1

Example 2:

Set PWM with 250 Hz at 12% pulse width.

RegPeriod = $\frac{1}{\text{frequency} \times 10^{-6} \text{s}} = \frac{1}{250 \text{Hz} \times 10^{-6} \text{s}} = 4000$

RegPulseWidth = RegPeriod \times 12% = 4000 \times 12% = 480

Formula 3: PWM example 2

Pixel data

Pixel data are transmitted as isochronous data packets in accordance with the 1394 interface described in IIDC V1.31. The first packet of a frame is identified by the **1** in the **sync bit** (sy) of the packet header.

sync bit

0-7	8-15		16-23	24	-31
data_l	ength	tg	channel	tCode	sy
	header_CRC				
	Video data payload				
data_CRC					

Table 31: Isochronous data block packet format. Source: IIDC V1.31

Field	Description
data_length	Number of bytes in the data field
tg	Tag field
	shall be set to zero
channel	Isochronous channel number , as programmed in the iso_channel field of the cam_sta_ctrl register
tCode	Transaction code
	shall be set to the isochronous data block packet tCode
sy	Synchronization value (sync bit)
	This is one single bit. It indicates the start of a new frame.
	It shall be set to 0001h on the first isochronous data block of a frame, and shall be set to zero on all other isochronous blocks
Video data payload	Shall contain the digital video information

Table 32: Description of data block packet format

- The video data for each pixel are output in either 8-bit or 14-bit format (**Packed 12-Bit Mode:** 12-bit format).
- Each pixel has a range of 256 or 16384 (**Packed 12-Bit Mode:** 4096) shades of gray.
- The digital value 0 is black and 255 or 65535 (**Packed 12-Bit Mode**: 4095) is white, but only every fourth value is used. In 16-bit mode the data output is MSB aligned.

The following tables provide a description of the video data format for the different modes. (Source: IIDC V1.31; packed 12-bit mode: Allied Vision)

<YUV8 (4:2:2) format>

Each component has 8-bit data.

<yuv8 (4:2:2)="" format=""></yuv8>				
U _(K+0)	Y _(K+0)	V _(K+0)	Y _(K+1)	
U _(K+2)	Y _(K+2)	V _(K+2)	Y _(K+3)	
U _(K+4)	Y _(K+4)	V _(K+4)	Y _(K+5)	
U _(K+Pn-6)	Y _(K+Pn-6)	V _(K+Pn-6)	Y _(K+Pn-5)	
U _(K+Pn-4)	Y _(K+Pn-4)	V _(K+Pn-4)	Y _(K+Pn-3)	
U _(K+Pn-2)	Y _(K+Pn-2)	V _(K+Pn-2)	Y _(K+Pn-1)	

Table 33: YUV8 (4:2:2) format: Source: IIDC V1.31

<YUV8 (4:1:1) format>

Each component has 8-bit data.

<yuv8 (4:1:1)="" format=""></yuv8>				
U _(K+0)	Y _(K+0)	Y _(K+1)	V _(K+0)	
Y _(K+2)	Y _(K+3)	U _(K+4)	Y _(K+4)	
Y _(K+5)	V _(K+4)	Y _(K+6)	Y _(K+7)	
U _(K+Pn-8)	Y _(K+Pn-8)	Y _(K+Pn-7)	V _(K+Pn-8)	
Y _(K+Pn-6)	Y _(K+Pn-5)	U _(K+Pn-4)	Y _(K+Pn-4)	
Y _(K+Pn-3)	V _(K+Pn-4)	Y _(K+Pn-2)	Y _(K+Pn-1)	

Table 34: YUV8 (4:1:1) format: Source: IIDC V1.31

<Y (Mono8/Raw8) format>

Y component has 8-bit data.

<y (mono8="" format="" raw8)=""></y>				
Y _(K+0)	Y _(K+1)	Y _(K+2)	Y _(K+3)	
Y _(K+4)	Y _(K+5)	Y _(K+6)	Y _(K+7)	
<u></u>				
Y _(K+Pn-8)	Y _(K+Pn-7)	Y _(K+Pn-6)	Y _(K+Pn-5)	

Table 35: Y (Mono8) format: Source: IIDC V1.31 / Y (Raw8) format: Allied Vision

<Y (Mono16/Raw16) format>

Y component has 16-bit data.

<y (mono16)="" form<="" th=""><th>iat></th><th></th></y>	iat>	
High byte	Low byte	
Y _{(K}	(+0)	Y _(K+1)
Y _{(K}	(+2)	Y _(K+3)
Ү _(К+Рп-4)		Y _(K+Pn-3)
Y _(K+Pn-2)		Y _(K+Pn-1)

Table 36: Y (Mono16) format: Source: IIDC V1.31

<Y (Mono12/Raw12) format>

<y (mono12)="" format=""></y>					
Y _(K+0) [114]	Y _(K+1) [30]	Y _(K+1) [114]	Y _(K+2) [114]		
	Y _(K+0) [30]				
Y _(K+3) [30]	Y _(K+3) [114]	Y _(K+4) [114]	Y _(K+5) [30]		
Y _(K+2) [30]			Y _(K+4) [30]		
Y _(K+5) [114]	Y _(K+6) [114]	Y _(K+7) [30]	Y _(K+7) [114]		
		Y _(K+6) [30]			

Table 37: Packed 12-Bit Mode (mono and raw) Y12 format (Allied Vision)

<RGB8 format>

Each component has 8-bit data.

<rgb8 format=""></rgb8>				
R _(K+0)	G _(K+0)	B _(K+0)	R _(K+1)	
G _(K+1)	B _(K+1)	R _(K+2)	G _(K+2)	
B _(K+2)	R _(K+3)	G _(K+3)	B _(K+3)	
_				
R _(K+Pn-4)	G _(K+Pn-4)	B _(K+Pn-4)	R _(K+Pn-3)	
G _(K+Pn-3)	B _(K+Pn-3)	R _(K+Pn-2)	G _(K+Pn-2)	
B _(K+Pn-2)	R _(K+Pn-1)	G _(K+Pn-1)	B _(K+Pn-1)	

Table 38: RGB8 format: Source: IIDC V1.31

<Y(Mono8/Raw8), RGB8>

Each component (Y, R, G, B) has 8-bit data. The data type is *Unsigned Char*.

Y, R, G, B	Signal level (decimal)	Data (hexadecimal)
Highest	255	0xFF
	254	0xFE
	•	
	•	
	1	0x01
Lowest	0	0x00

Figure 48: Data structure of Mono8, RGB8; Source: IIDC V1.31 / Y(Mono8/Raw8) format: Allied Vision

<YUV8>

Each component (Y, U, V) has 8-bit data. The Y component is the same as in the above table.

U, V	Signal level (decimal)	Data (hexadecimal)
Highest (+)	127	0xFF
	126	0×FE
	•	
	•	
	1	0x81
Lowest	0	0x80
	-1	0x7F
	-127	0x01
Highest (-)	-128	0x00

Figure 49: Data structure of YUV8; Source: IIDC V1.31

<Y(Mono16)>

Y component has 16-bit data. The data type is Unsigned Short (big-endian).

Y	Signal level (decimal)	Data (hexadecimal)
Highest	65535	0xFFFF
	65534	0xFFFE
	•	•
	•	•
	1	0x0001
Lowest	0	0×0000

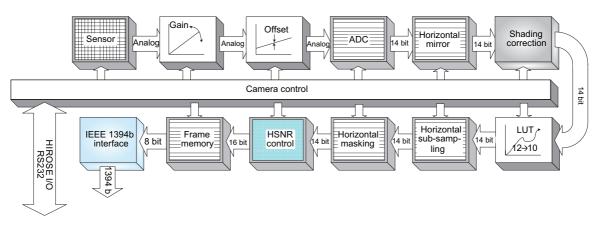
Figure 50: Data structure of Y(Mono16); Source: IIDC V1.31

<Y(Mono12)>

Y component has 12-bit data. The data type is *unsigned*.

Y	Signal level (decimal)	Data (hexadecimal)
Highest	4095	0x0FFF
	4094	0x0FFE
	•	•
	•	•
	1	0x0001
Lowest	0	0×0000

Table 39: Data structure of **Packed 12-Bit Mode** (mono and raw) (Allied Vision)

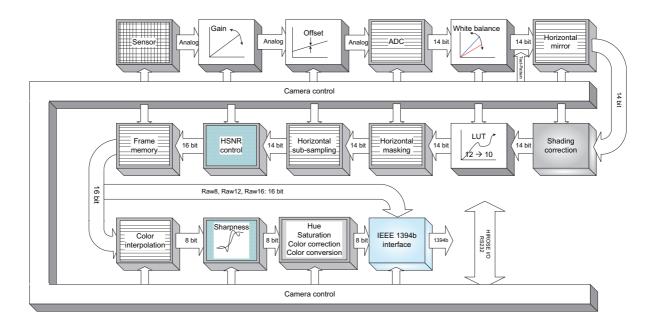


Description of the data path

Block diagrams of the cameras

The following diagrams illustrate the data flow and the bit resolution of image data after being read from the CCD sensor chip in the camera. The individual blocks are described in more detail in the following paragraphs. For sensor data see chapter Specifications on page 45.

Black and white cameras



Setting LUT = OFF: Effectively makes full use of the 14 bit by bypassing the LUT circuitry Setting LUT = ON: The most significant 12 bit of the 14 bit are used and further down converted to 10 bit

Figure 51: Block diagram b/w camera

Color cameras

Setting LUT = OFF: Effectively makes full use of the 14 bit by bypassing the LUT circuitry Setting LUT = ON: The most significant 12 bit of the 14 bit are used and further down converted t 10 bit

Figure 52: Block diagram color camera

White balance

There are two types of white balance:

- one-push white balance: white balance is done only once (not continuously)
- auto white balance (AWB): continuously optimizes the color characteristics of the image

Stingray color cameras have both one-push white balance and auto white balance.

White balance is applied so that non-colored image parts are displayed non-colored.

From the user's point, the white balance settings are made in register 80Ch of IIDC V1.31. This register is described in more detail below.

Register	Name	Field	Bit	Description
0xF0F0080C	WHITE_BALANCE	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the Value field 1: Control with value in the Absolute value CSR If this bit=1, the value in the Value field will be ignored.
			[24]	Reserved
		One_Push	[5]	Write 1: begin to work (self-cleared after operation) Read: 1: in operation 0: not in operation If A_M_Mode = 1, this bit will be ignored.
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status 0: OFF 1: ON
		A_M_MODE	[7]	Write: set mode Read: read current mode 0: MANUAL 1: AUTO
		U/B_Value	[819]	U/B value This field is ignored when writing the value in Auto or OFF mode. If readout capability is not available, read- ing this field has no meaning.
		V/R_Value	[2031]	V/R value
				This field is ignored when writing the value in Auto or OFF mode. If readout capability is not available, read- ing this field has no meaning.

Table 40: White balance register

The values in the U/B_Value field produce changes from green to blue; the V/ R_Value field from green to red as illustrated below.

Note

While lowering both U/B and V/R registers from 284 towards 0, the lower one of the two effectively controls the green gain.

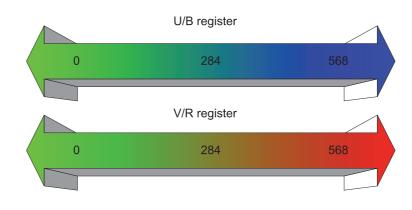


Figure 53: U/V slider range

Туре	Range	Range in dB
Stingray color cameras	0 568	\pm 10 dB

Table 41: Manual gain range of the various Stingray types

The increment length is ~0.0353 dB/step.

One-push white balance

Configuration

Note

To configure this feature in control and status register (CSR): See Table 40: on page 110.

The camera automatically generates frames, based on the current settings of all registers (GAIN, OFFSET, SHUTTER, etc.).

For white balance, in total 9 frames are processed. The whole image or a subset of it is used for the white balance algorithm. The R-G-B component values of the samples are added and are used as actual values for the one-push white balance.

This feature assumes that the R-G-B component sums of the samples shall be equal; i.e., that the average of the sampled grid pixels is monochrome.

Note

The following ancillary condition should be observed for successful white balance:

• There are no stringent or special requirements on the image content, it requires only the presence of mono-chrome pixels in the image.

If the image capture is active (e.g. IsoEnable set in register 614h), the frames used by the camera for white balance are also output on the 1394 bus. Any previously active image capture is restarted after the completion of white balance.

The following flow diagram illustrates the one-push white balance sequence.

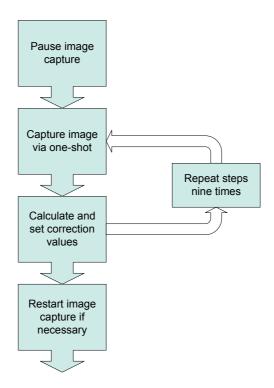


Figure 54: One-push white balance sequence

Finally, the calculated correction values can be read from the WHITE_BALANCE register 80Ch.

Auto white balance (AWB)

The auto white balance feature continuously optimizes the color characteristics of the image.

For the white balance algorithm the whole image or a subset of it is used.

Auto white balance can also be enabled by using an external trigger. However, if there is a pause of >10 seconds between capturing individual frames this process is aborted.

Note The following ancillary conditions should be observed for successful white balance:

- There are no stringent or special requirements on the image content, it requires only the presence of equally weighted RGB pixels in the image.
- Auto white balance can be started both during active image capture and when the camera is in idle state.

Note Configuration

To set position and size of the control area (Auto_Function_AOI) in an advanced register: see Table 147: on page 292.

AUTOFNC_AOI affects the auto shutter, auto gain and auto white balance features and is independent of the Format_7 AOI settings. If this feature is switched off the work area position and size will follow the current active image size.

Within this area, the R-G-B component values of the samples are added and used as actual values for the feedback.

The following drawing illustrates the AUTOFNC_AOI settings in greater detail.

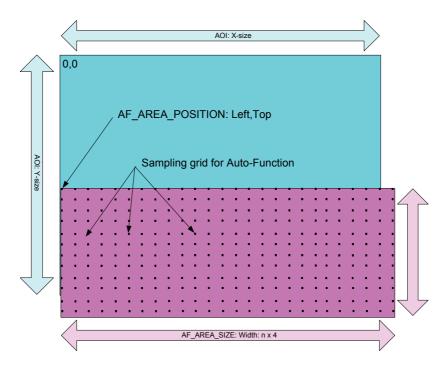


Figure 55: AUTOFNC_AOI positioning

The algorithm is assumes that the R-G-B component sums of the samples are equal, i.e., that the mean of the sampled grid pixels is monochrome.

Auto shutter

Stingray cameras are equipped with auto shutter feature. When enabled, the auto shutter adjusts the shutter within the default shutter limits or within those set in advanced register F1000360h in order to reach the reference brightness set in auto exposure register.

Note

Target grey level parameter in SmartView corresponds to Auto_exposure register 0xF0F00804 (IIDC).

Increasing the auto exposure value increases the average brightness in the image and vice versa.

The applied algorithm uses a proportional plus integral controller (PI controller) to achieve minimum delay with zero overshot.

Register	Name	Field	Bit	Description
0xF0F0081C	SHUTTER	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the Value field 1: Control with value in the Absolute value CSR If this bit=1, the value in the Value field will be ignored.
			[24]	Reserved
		One_Push	[5]	Write 1: begin to work (self-cleared after operation) Read: 1: in operation 0: not in operation If A_M_Mode = 1, this bit will be ignored.
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status O: OFF 1: ON
		A_M_MODE	[7]	Write: set mode Read: read current mode 0: MANUAL 1: AUTO
			[819]	Reserved
		Value	[2031]	Read/Write Value This field is ignored when writing the value in Auto or OFF mode. If readout capability is not available, reading this field has no meaning.

To configure this feature in control and status register (CSR):

Table 42: CSR: Shutter

Configuration

To configure this feature in an advanced register: See Table 145: on page 290.

Auto gain

All Stingray cameras are equipped with auto gain feature.

Note Configuration

To configure this feature in an advanced register: See Table 146: on page 291.

When enabled auto gain adjusts the gain within the default gain limits or within the limits set in advanced register F1000370h in order to reach the brightness set in auto exposure register as reference.

Increasing the auto exposure value (target grey value) increases the average brightness in the image and vice versa.

The applied algorithm uses a proportional plus integral controller (PI controller) to achieve minimum delay with zero overshot.

The following tables show the gain and auto exposure CSR.

Register	Name	Field	Bit	Description
0xF0F00820	GAIN	Presence_Inq	[0]	Presence of this feature:
				0: N/A 1: Available
		Abs_Control	[1]	Absolute value control
				O: Control with value in the value field 1: Control with value in the absolute value CSR If this bit=1 the value in the value field has to be ignored.
			[24]	Reserved
		One_Push	[5]	Write: Set bit high to start Read: Status of the feature: Bit high: WIP Bit low: Ready
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status 0: OFF 1: ON
	-	A_M_MODE	[7]	Write: set mode Read: read current mode 0: MANUAL 1: AUTO
			[819]	Reserved
		Value	[2031]	Read/Write Value
				This field is ignored when writing the value in Auto or OFF mode.
				If readout capability is not available, reading this field has no meaning.

Table 43: CSR: Gain

Register	Name	Field	Bit	Description
0xF0F00804	AUTO_EXPOSURE	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the value field 1: Control with value in the absolute value CSR If this bit=1 the value in the value field has to be ignored.
			[24]	Reserved
		One_Push	[5]	Write: Set bit high to star Read: Status of the feature:
				Bit high: WIP
				Bit low: Ready
		ON_OFF	[6]	Write: ON or OFF this feature
				Read: read a status
				0: OFF 1: ON
		A_M_MODE	[7]	Write: set mode Read: read current mode
				0: MANUAL 1: AUTO
			[819]	Reserved
		Value	[2031]	Read/Write Value
				This field is ignored when writing the value in Auto or OFF mode.
				If readout capability is not available, reading this field has no meaning.

Table 44: CSR: Auto Exposure

Configuration

Note

To configure this feature in an advanced register: See Table 146: on page 291.

- Values can only be changed within the limits of gain CSR.
- Changes in auto exposure register only have an effect when auto gain is active.
- Auto exposure limits are 50..205. (SmartView→Ctrl1 tab: Target grey level)

Manual gain

Stingray cameras are equipped with a gain setting, allowing the gain to be manually adjusted on the fly by means of a simple command register write.

The following ranges can be used when manually setting the gain for the analog video signal:

Туре	Range	Range in dB	Increment length
Stingray color cameras	0–680	0-24.4 dB	
Stingray b/w cameras	0–680	0-24.4 dB	~0.0359 dB/step
Stingray F-504B/C	0–670	0-24.053 dB	

Table 45: Manual gain range of the various Stingray types

- Setting the gain does not change the offset (black value)
 A higher gain produces greater image noise. This reduces
- image quality. For this reason, try first to increase the brightness, using the aperture of the camera optics and/ or longer shutter settings.

Brightness (black level or offset)

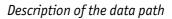
It is possible to set the black level in the camera within the following ranges:

0 ... +16 gray values (@ 8 bit)

Increments are in 1/64 LSB (@ 8 bit)

Note

• Setting the gain does not change the offset (black value).


The IIDC register brightness at offset 800h is used for this purpose.

Register	Name	Field	Bit	Description
0xF0F00800	BRIGHTNESS	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the value field 1: Control with value in the absolute value CSR If this bit=1 the value in the value field has to be ignored
			[24]	Reserved
		One_Push	[5]	Write: Set bit high to start Read: Status of the feature:
				Bit high: WIP
				Bit low: Ready
		ON_OFF	[6]	Write: ON or OFF this feature
				Read: read a status
				0: OFF 1: ON
		A_M_MODE	[7]	Write: set mode Read: read current mode
				0: MANUAL 1: AUTO
			[819]	Reserved
		Value	[2031]	Read/Write Value; this field is ignored when writing the value in Auto or OFF mode; if readout capability is not avail- able reading this field has no meaning.

The following table shows the BRIGHTNESS register:

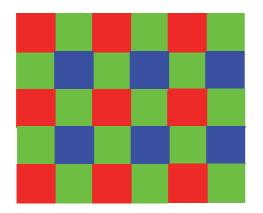
Table 46: CSR: Brightness

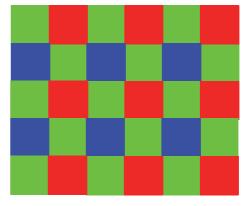
Horizontal mirror function

All Stingray cameras are equipped with an electronic mirror function, which mirrors pixels from the left side of the image to the right side and vice versa.

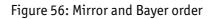
The mirror is centered to the current FOV center and can be combined with all image manipulation functions, like binning and shading.

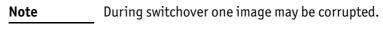
This function is especially useful when the camera is looking at objects with the help of a mirror or in certain microscopy applications.


Note Configuration


To configure this feature in an advanced register: See Table 150: on page 294.

Note


The use of the mirror function with color cameras and image output in RAW format has implications on the BAYER-ordering of the colors.



Mirror OFF: R-G-G-B (all Stingray color cameras)

Mirror ON: G-R-B-G (all Stingray color cameras)

Stingray Technical Manual V.4.5.0

Shading correction

Shading correction is used to compensate for non-homogeneities caused by lighting or optical characteristics within specified ranges.

To correct a frame, a multiplier from 1-2 is calculated for each pixel in 1/256 steps: this allows for shading to be compensated by up to 50 %.

Besides generating shading data off-line and downloading it to the camera, the camera allows correction data to be generated automatically in the camera itsel

Note

- Shading correction does not support the mirror function.
- If you use shading correction with mirror function, activate the mirror before building shading image.
- Due to binning and sub-sampling in the Format_7 modes read the following hints to build shading image in Format_7 modes.

Building shading image in Format_7 modes

- **horizontal** Binning/sub-sampling is always done after shading correction. Shading is always done on full horizontal resolution. Therefore shading image has always to be built in full horizontal resolution.
 - **vertical** Binning, sub-sampling and mirror are done before shading correction. Therefore, shading image has to be built in the correct vertical resolution and with needed mirror settings.

Note

 Build shading image always with the full horizontal resolution

(0 x horizontal binning / 0 x horizontal sub-sampling), but with the desired vertical binning/sub-sampling/mirror.

• Shading correction in F7 mode 0 (Mono8) is only available up to S400.

First example

4 x horizontal binning, 2 x vertical binning ⇒ build shading image with 0 x horizontal binning and 2 x vertical binning

Second example

2 out of 8 horizontal sub-sampling, 2 out of 8 vertical sub-sampling ⇒ build shading image with 0 x horizontal sub-sampling and 2 out of 8 vertical sub-sampling

How to store shading image

There are two storing possibilities:

- After generating the shading image in the camera, it can be uploaded to the host computer for nonvolatile storage purposes.
- The shading image can be stored in the camera itsel

The following illustration shows the process of automatic generation of correction data. Surface plots and histograms were created using the ImageJ program.

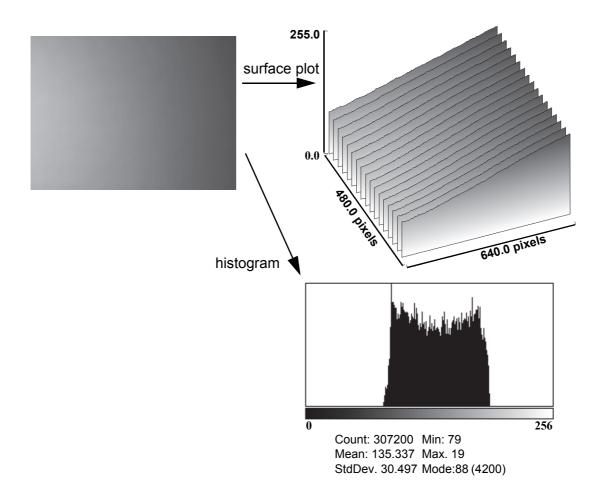


Figure 57: Shading correction: Source image with non-uniform illumination

- The source image with non-uniform illumination (on the left).
- The surface plot on the right clearly shows a gradient of the brightness (0: brightest → 255: darkest pixels).
- The histogram shows a wide band of gray values.

High-frequency image data is removed from the source image, by defocusing the lens; therefore, this data is not included in the shading image.

Automatic generation of correction data

Requirements

Shading correction compensates for non-homogeneities by giving all pixels the same gray value as the brightest pixel. This means that only the background must be visible and the brightest pixel has a gray value of less than 255 when automatic generation of shading data is started.

It may be necessary to use a neutral white reference, e.g. a piece of paper, instead of the real image.

Algorithm

After the start of automatic generation, the camera pulls in the number of frames set in the GRAB_COUNT register. Recommended values are 2, 4, 8, 16, 32, 64, 128 or 256. An arithmetic mean value is calculated from them to reduce noise.

Consecutively, a search is made for the brightest pixel in the mean value frame. The brightest pixel(s) remain unchanged. A factor is then calculated for each pixel to be multiplied by, giving it the gray value of the brightest pixel.

All of these multipliers are saved in a shading reference image. The time required for this process depends on the number of frames to be calculated and on the resolution of the image.

Correction alone can compensate for shading by up to 50% and relies on full resolution data to minimize the generation of missing codes.

The following flowchart shows the process in detail:

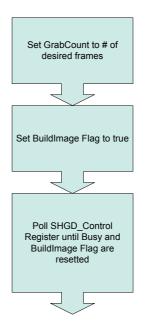
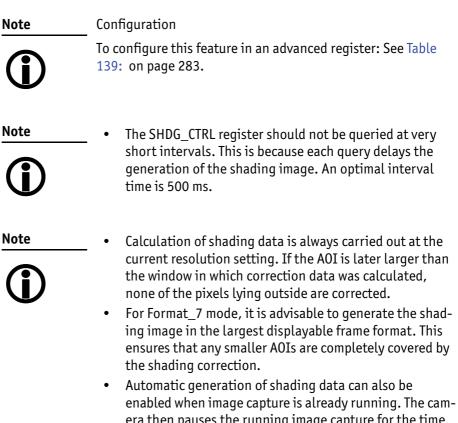



Figure 58: Automatic generation of a shading image

- era then pauses the running image capture for the time needed for generation and resumes after generation is completed.
- Shading correction can be combined with the image mirror and gamma functionality.
- Changing binning modes involves the generation of new shading reference images due to a change in the image size.

After the lens has been focused again the image below will be seen, but now with a considerably more uniform gradient.

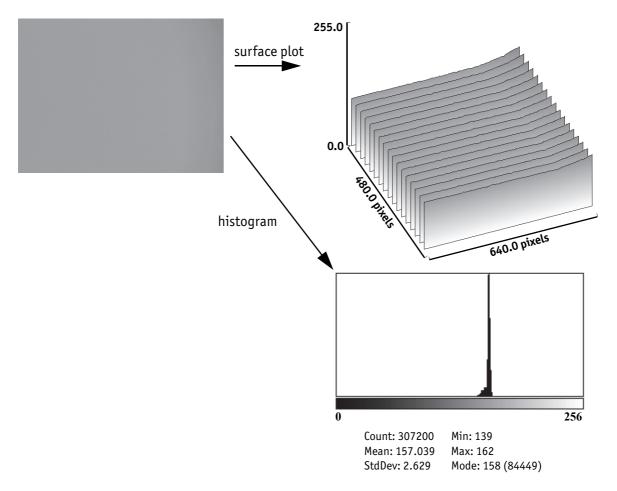


Figure 59: Example of shaded image

- The image after shading correction (on the left).
- The surface plot on the right clearly shows nearly no more gradient of the brightness (0: brightest → 255: darkest pixels). The remaining gradient is related to the fact that the source image is lower than 50% on the right hand side.
- The histogram shows a peak with very few different gray values.

Loading a shading image out of the camera

GPDATA_BUFFER is used to load a shading image out of the camera. Because the size of a shading image is larger than GPDATA_BUFFER, input must be handled in several steps:

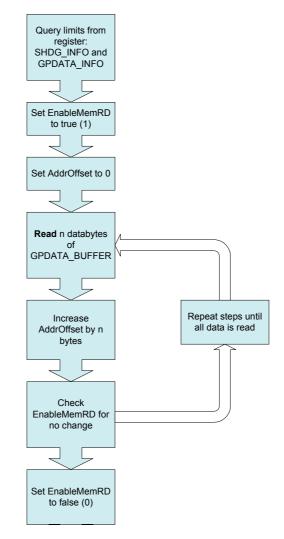
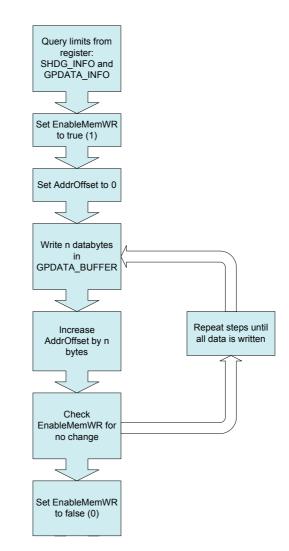
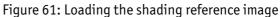


Figure 60: Uploading shading image to host

Configuration




- To configure this feature in an advanced register: See Table 139: on page 283.
- For information on GPDATA_BUFFER: See chapter GPDATA_BUFFER on page 328.

Loading a shading image into the camera

GPDATA_BUFFER is used to load a shading image into the camera. Because the size of a shading image is larger than GPDATA_BUFFER, input must be handled in several steps (see Chapter Reading or writing shading image from/into the camera on page 284).

Look-up table (LUT) and gamma function

The Stingray camera provides one user-defined LUT(LUT). The use of this LUT allows any function (in the form Output = F(Input)) to be stored in the camera's RAM and to be applied on the individual pixels of an image at run-time.

The address lines of the RAM are connected to the incoming digital data, these in turn point to the values of functions calculated offline; e.g., with a spread-sheet program.

This function needs to be loaded into the camera's RAM before use.

One example of using an LUT is the gamma LUT:

There is one gamma LUT (gamma = 0.45)

 $Output = (Input)^{0.45}$

This gamma LUT is used with all Stingray models.

Gamma is known as compensation for the nonlinear brightness response of many displays e.g. CRT monitors. The LUT converts the incoming 12 bit from the digitizer to outgoing 10 bit.

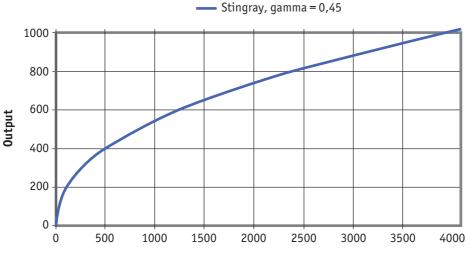


Figure 62: LUT with gamma = 0.45 and Output = f(Input)

Note

- The input value is the most significant 12-bit value from the digitizer.
 - Gamma 1 (gamma=0.45) switches on the LUT. After overriding the LUT with a user defined content, gamma functionality is no longer available until the next full initialization of the camera.
 - LUT content is volatile if you do not use the user profiles to save the LUT.

Loading an LUT into the camera

Loading the LUT is carried out through the data exchange buffer called GPDATA_BUFFER. As this buffer can hold a maximum of 2 kB, and a complete LUT at 4096 x 10 bit is 5 kByte, programming can not take place in a one block write step because the size of an LUT is larger than GPDATA_BUFFER. Therefore, input must be handled in several steps, as shown in the following flow diagram.

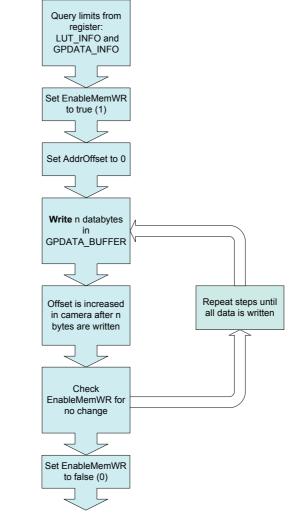


Figure 63: Loading an LUT

Note

- To configure this feature in an advanced register: See Table 138: on page 281.
- For information on GPDATA_BUFFER: See chapter GPDATA_BUFFER on page 328.

Defect pixel correction

The mechanisms of defect pixel correction are explained in the following drawings. All examples are done in Format_7 Mode_0 (full resolution).

The X marks a defect pixel.

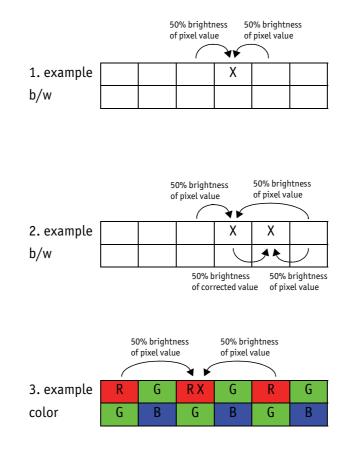


Figure 64: Mechanisms of defect pixel correction

Building defect pixel correction image in Format_7 modes

- **horizontal** Binning/sub-sampling is always done after defect pixel correction. Defect pixel correction is always done on full horizontal resolution. Therefore, defect pixel detection has always to be done in full horizontal resolution.
 - **vertical** Binning/sub-sampling is done in the sensor, before defect pixel correction. Therefore, defect pixel detection has to be done in the correct vertical resolution.

Note

Detect defect pixels always with the full horizontal resolution (0 x horizontal binning / 0 x horizontal sub-sampling), but with the desired vertical binning/sub-sampling.

First example

4 x horizontal binning, 2 x vertical binning ⇒ detect defect pixels with 0 x horizontal binning and 2 x vertical binning

Second example

2 out of 8 horizontal sub-sampling, 2 out of 8 vertical sub-sampling ⇒ detect defect pixels with 0 x horizontal sub-sampling and 2 out of 8 vertical sub-sampling

Flow diagram of defect pixel correction

The following flow diagram illustrates the defect pixel detection:

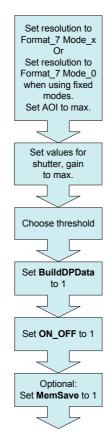


Figure 65: Defect pixel correction: build and store

Note	While building defect pixel correction data or uploading them from host, the defect pixel correction data are stored volatile in FPGA.
Ψ	Optional you can store the data in a non-volatile memory (Set MemSave to 1).
Note	Configuration
(i)	To configure this feature in an advanced register: See Table 143: on page 287.

Building defect pixel data

- Defect pixel detection is only possible in Mono8/Raw8 modes. In all other modes you get an error message in advanced register 0xF1000298 bit [1] see Table 143: on page 287.
- Using Format_7 Mode_x: Defect pixel detection is done in Format_7 Mode_x.
- Using a fixed format (Format_0, Format_1 or Format_2): Defect pixel detection is done in Format_7 Mode_0.
- When using defect pixel correction with binning and subsampling: first switch to binning/sub-sampling mode and then apply defect pixel detection.
- Optional: To improve the quality of defect pixel detection, activate HSNR mode additionally.
- There is a maximum of 256 defect pixels that can be found. If the algorithm detects more defect pixels, then it will end with an error. For more details, see DPDataSize register on page 288.

To build defect pixel data perform the following steps:

Grab an image with defect pixel data

- 1. Take the camera, remove lens, and put on lens cap.
- 2. Set image resolution to Format_7 Mode_x or Format_7 Mode_0 (when using fixed modes) and set AOI to maximum.
- 3. Set values for shutter and gain to max.
- 4. Grab a single image.

Calculate defect pixel coordinates

5. Accept default threshold from system or choose a different threshold.

Note

A mean value is calculated over the entire image that is grabbed internal.

grabbed internal. Definition: A defect pixel is every pixel value of this previously grabbed image that is:

- greater than (mean value + threshold)
- or
 - less than (mean value threshold)
- 6. Set the BuildDPData flag to 1.

In microcontroller the defect pixel calculation is started. The detected defect pixel coordinates are stored in the dual port RAM of the FPGA.

Defect pixel coordinates are:

- 16-bit y-coordinate and
- 16-bit x-coordinate

The calculated mean value is written in advanced register Mean field (0xF1000298 bit [18..24]).

The number of defect pixels is written in advanced register DPDataSize (0xF100029C bit [4..17]). Due to 16-bit format: to get the number of defect pixels read out this value and divide through 4. For more information see Table 143: on page 287.

Reset values (resolution, shutter, gain, brightness)

- 7. Take the camera, remove lens cap, and thread the lens onto the camera.
- 8. Reset values for image resolution, shutter, gain, and brightness (offset) to their previous values.
- 9. Grab a single image (one-shot).

Activate/deactivate defect pixel correction

Activate:

1. Set ON_OFF flag to 1.

The defect pixel correction is activated in FPGA.

Deactivate:

1. Set ON_OFF flag to 0.

The defect pixel correction is deactivated in FPGA.

Store defect pixel data non-volatile

1. Set the MemSave flag to 1.

All previous calculated defect pixel coordinates are transferred from the dual port RAM to the EEPROM on the sensor board.

- \Rightarrow Defect pixel data is stored twice in the camera:
- Stored volatile: in dual port RAM
- Stored non-volatile: in EEPROM

Load non-volatile stored defect pixel data

1. Set the MemLoad flag to 1.

All non-volatile stored defect pixel coordinates within the EEPROM are loaded into the dual port RAM.

Note

- Switch off camera and switch on again: ⇒ defect pixel data in dual port RAM will get lost
- Start-up camera / initialize camera:
 ⇒ non-volatile stored defect pixel data are loaded automatically from EEPROM to dual port RAM.

Send defect pixel data to the host

- 1. Set EnaMemRD flag to 1.
 - Defect pixel data is transferred from dual port RAM to host.
- 2. Read DPDataSize.

This is the current defect pixel count from the camera.

Receive defect pixel data from the host

1. Set EnaMemWR flag to 1.

Defect pixel data is transferred from host to dual port RAM.

DPC data: storing mechanism

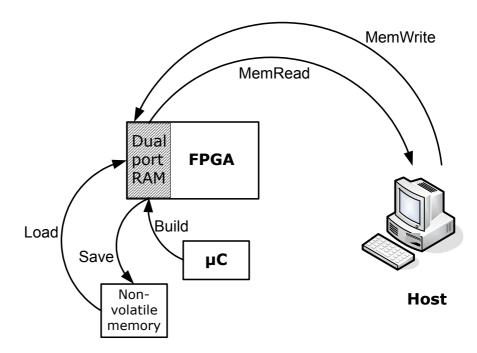


Figure 66: DPC data: storing mechanism

Binning (only Stingray b/w and F-201C/504C)

2 x / 4 x / 8 x binning (F-201C only 2 x vertical binning)

Definition Binning is the process of combining neighboring pixels while being read out from the CCD chip.

- Only Stingray b/w cameras and Stingray F-201C/ F-504C have this feature
- Stingray F-201C: color binning
 - Stingray F-504C: usual binning (no color binning)
 - Binning does not change offset, brightness or blacklevel

Binning is used primarily for 3 reasons:

- A reduction in the number of pixels; thus, the amount of data while retaining the original image area angle
- An increase in the frame rate (vertical binning only)
- A brighter image, resulting in an improvement in the signal-to-noise ratio of the image (depending on the acquisition conditions)

Signal-to-noise ratio (SNR) and signal-to-noise separation specify the quality of a signal with regard to its reproduction of intensities. The value signifies how high the ratio of noise is in regard to the maximum achievable signal intensity.

The higher this value, the better the signal quality. The unit of measurement used is decibel (dB).

However, the advantages of increasing signal quality are accompanied by a reduction in resolution.

Only Format_7 Binning is possible only in video Format_7. The type of binning used depends on the video mode.

Changing binning modes involves the generation of new shading reference images due to a change in the image size.

- Types In general, we distinguish between the following types of binning
 - (H = horizontal, V = vertical):
 - 2 x H-binning
 - 2 x V-binning
 - 4 x H-binning
 - 4 x V-binning
 - 8 x H-binning
 - 8 x V-binning

and the full binning modes:

- 2 x full binning (a combination of 2 x H-binning and 2 x V-binning)
- 4 x full binning (a combination of 4 x H-binning and 4 x V-binning)
- 8 x full binning (a combination of 8 x H-binning and 8 x V-binning)

Vertical binning

Vertical binning increases light sensitivity of the camera by a factor of two (4 or 8) by adding together the values of two (4 or 8) adjoining vertical pixels output as a single pixel. This is done directly in the horizontal shift register of the sensor.

Format_7 Mode_2 By default and without further remapping use Format_7 Mode_2 for 2 x vertical binning.

This reduces vertical resolution, depending on the model.

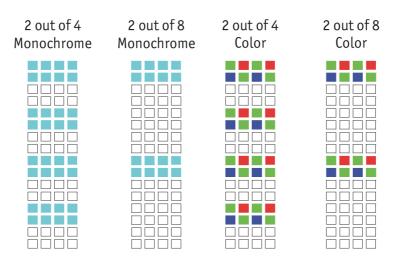


Figure 67: Vertical binning

4x vertical binning combines 4 pixels to 1 pixel in a row.

Note	For Stingray F-201C only 2x vertical binning is available.
()	
Note	If vertical binning is activated the image may appear to be over-exposed and may require correction.
Note	Vertical resolution is reduced, but signal-to noise ratio (SNR) is increased by about 3, 6 or 9 dB (2 x, 4 x or 8 x binning).
Note	The image appears vertically compressed in this mode and no longer exhibits a true aspect ratio.

Horizontal binning (F-201C only 2 x horizontal binning)

F-504C has 2x/4x/8x horizontal binning (no color binning)

Definition In horizontal binning adjacent horizontal pixels in a line are combined digitally in the FPGA of the camera without accumulating the black level:

2 x horizontal binning: 2 pixel signals from 2 horizontal neighboring pixels are combined.

4 x horizontal binning: 4 pixel signals from 4 horizontal neighboring pixels are combined.

8 x horizontal binning: 8 pixel signals from 8 horizontal neighboring pixels are combined.

Horizontal binning	Light sensitivity	Signal-to-noise ratio
2x	6dB	3dB
4x	12dB	6dB
8x	18dB	9dB

Table 47: Binning affecting light sensitivity and signal-to-noise ratio

Horizontal resolution Horizontal resolution is lowered, depending on the model.

Format_7 Mode_1 By default and without further remapping use Format_7 Mode_1 for 2 x horizontal binning.

Monochrome	Color

Figure 68: 2 x horizontal binning

4x horizontal binning combines 4 pixels to 1 pixel in a row.

Figure 69: 8 x horizontal binning

Note For Stingray F-201C only 2x horizontal binning is available.

Note

The image appears horizontally compressed in this mode and does no longer show true aspect ratio.

If horizontal binning is activated the image may appear to be over-exposed and must eventually be corrected.

2 x full binning/4 x full binning/8 x full binning (F-201C only 2 x full binning)

F-504C has 2x/4x/8x full binning (no color binning)

If horizontal and vertical binning are combined, every 4 (16 or 64) pixels are consolidated into a single pixel. At first two (4 or 8) vertical pixels are put together and then combined horizontally.

Light sensitivity This increases light sensitivity by a total of a factor of 4 (16 or 64) and at the same time signal-to-noise separation is improved by about 6 (12 or 18) dB.

Resolution Resolution is reduced, depending on the model.

Format_7 Mode_3 By default and without further remapping use Format_7 Mode_3 for 2 x full binning.

Monochrome	Color

Figure 70: 2 x full binning

4x H+V binning combines 4 pixels in a row and 4 pixel in a column to 1 pixel.

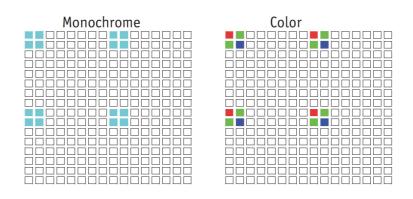


Figure 71: 8 x full binning (not F-201C, but F-504C)

Sub-sampling (Stingray b/w and color)

What is sub-sampling?

Definition Sub-sampling is the process of skipping neighboring pixels (with the same color) while being read out from the CCD chip.

Which Stingray models have sub-sampling?

All Stingray models, both color and b/w, have this feature.

Description of sub-sampling

Sub-sampling is used primarily for reducing the number of pixels and thus the amount of data while retaining the original image area angle and image brightness

Similar to binning mode the cameras support horizontal, vertical and H+Vsubsampling mode.

- Format_7 Mode_4 By default and without further remapping use Format_7 Mode_4 for
 - B/W cameras: 2 out of 4 horizontal sub-sampling
 - Color cameras: 2 out of 4 horizontal sub-sampling

The different sub-sampling patterns are shown below.

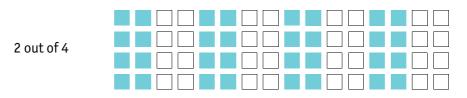


Figure 72: Horizontal sub-sampling 2 out of 4 (b/w)

2 out of 8 only F-145, F-146, F-201	

Figure 73: Horizontal sub-sampling 2 out of 8 (b/w)

2 out of 4	

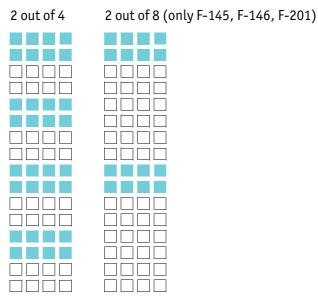
Figure 74: Horizontal sub-sampling 2 out of 4 (color)

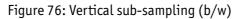
2 out of 8 only F-145,	
F-146, F-201,	
F504C	

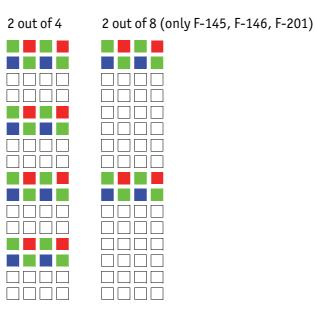
Figure 75: Horizontal sub-sampling 2 out of 8 (color)

The image appears horizontally compressed in this mode and no longer exhibits a true aspect ratio.

Description of the data path

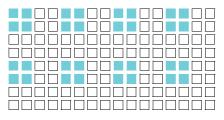


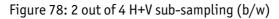

Format_7 Mode_5 By default and without further remapping use Format_7 Mode_5 for


- b/w cameras: 2 out of 4 vertical sub-sampling
- color cameras: 2 out of 4 vertical sub-sampling

The different sub-sampling patterns are shown below.

Note


The image appears vertically compressed in this mode and no longer exhibits a true aspect ratio.

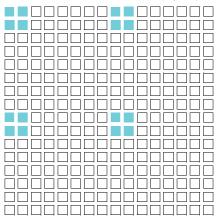
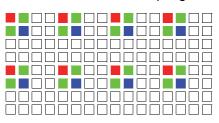
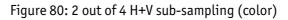


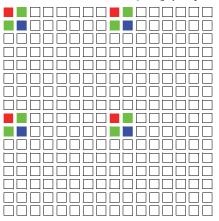
Format_7 Mode_6 By default and without further remapping use Format_7 Mode_6 for 2 out of 4 H+V sub-sampling

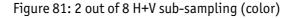
The different sub-sampling patterns are shown below.

2 out of 4 H+V sub-sampling

2 out of 8 H+V sub-sampling (only F-145, F-146, F-201)


Figure 79: 2 out of 8 H+V sub-sampling (b/w)


2 out of 4 H+V sub-sampling

2 out of 8 H+V sub-sampling (only F-145, F-146, F-201)

Changing sub-sampling modes involves the generation of new shading reference images due to a change in the image size.

Binning and sub-sampling access

The binning and sub-sampling modes described in the last two sections are only available as pure binning or pure sub-sampling modes. A combination of both is not possible.

Whereas there are some possible combinations, the number of available Format_7 modes is limited:

- Format_7 Mode_0 is fixed and cannot be changed.
- A maximum of 7 individual modes can be mapped to Format_7 Mode_1 to Mode_7

(see Figure 82: on page 148).

- Mappings can be stored via register (see chapter Format_7 mode mapping on page 315) and are uploaded automatically into the camera on camera reset.
- The default settings (per factory) in the Format_7 modes are listed in the following table.

Format_7	Stingray monochrome cameras Format_7	Stingray color cameras Format_7
Mode_0	full resolution, no binning, no sub-sampling	full resolution, no sub-sampling
Mode_1	2 x horizontal binning	Only F-201C/F-504C: 2 x horizontal binning
Mode_2	2 x vertical binning	Only F-201C/F-504C: 2 x vertical binning
Mode_3	2 x full binning	Only F-201C/F-504C: 2 x full binning
Mode_4	2 out of 4 horizontal sub-sampling	2 out of 4 horizontal sub-sampling
Mode_5	2 out of 4 vertical sub-sampling	2 out of 4 vertical sub-sampling
Mode_6	2 out of 4 full sub-sampling	2 out of 4 full sub-sampling

Table 48: Default Format_7 binning and sub-sampling modes (per factory)

• A combination of binning and sub-sampling modes is not possible.

Use either binning or sub-sampling modes.

• The Format_ID numbers 0...27 in the binning / sub-sampling list on page 148 do not correspond to any of the Format_7 modes.

F7 modes		Forma	t_ID (see p301) Allie	ed Vision modes	
according to IIDC 1394	л 🗸	0	0 x horizontal		
F7M0 (no change)		1	2 x horizontal	0 x vertical	
(3,		2	4 x horizontal		4C)
F7M1		3	8 x horizontal		-50
F7M2		4	0 x horizontal		1C/F
17 MZ	-	5	2 x horizontal	2 x vertical	-203
F7M3		6	4 x horizontal		+
	 mapping of each of 27 modes 	7	8 x horizontal		eras
F7M4	to F7M1F7M7	8	0 x horizontal	4 x vertical	cam
F7M5	possible	9	2 x horizontal	(not F-201C,	b/w
	-	10	4 x horizontal	but F-504C)	nly
F7M6		11	8 x horizontal		g (o
	-	12	0 x horizontal	8 x vertical	binning (only b/w cameras + F-201C/F-504C)
F7M7		13	2 x horizontal	(not F-201C,	hid
		14	4 x horizontal	but F-504C)	
		15	8 x horizontal		
		16		-	
		17	2 out of 4 horizontal	2 out of 2 vertical	
		18	2 out of 8 horizontal	-	(m/
		19	2 out of 16 horizontal		q pu
		20	2 out of 2 horizontal	-	or ai
		21	2 out of 4 horizontal	2 out of 4 vertical	(col
		22	2 out of 8 horizontal	-	ing
		23	2 out of 16 horizontal		mpl
	·	24	2 out of 2 horizontal	2 out of 8 vertical	sub-sampling (color and b/w)
	\ \	25	2 out of 4 horizontal	(only F-145, F-146,	su
	\ \	26	2 out of 8 horizontal	F-201)	
		27	2 out of 16 horizontal		

Figure 82: Mapping of possible Format_7 modes to F7M1...F7M7

Note

To configure this feature in an advanced register: See Table 158: on page 301.

Quick parameter change timing modes

Stingray timing modes

Configuration

- Frame rate or transfer rate is always constant (precondition: shutter < transfer time)
- The delay from shutter update until the change takes place: up to 3 frames. Figure 83: on page 149 demonstrates this behavior. It shows that the camera receives a shutter update command while the sensor is currently integrating (Sync is low) with shutter setting 400. The camera continues to integrate and this image is output with the next FVal. The shutter change command becomes effective with the next falling edge of sync and finally the image taken with shutter 200 is output with a considerable delay.
- Parameters that are sent to the camera faster than the max. frame rate per second are stored in a FIFO and are activated in consecutive images.

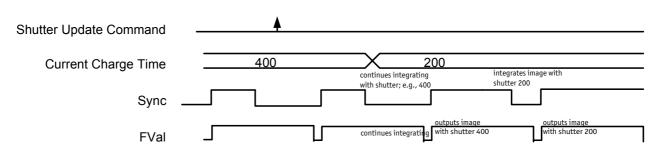


Figure 83: Former standard timing

Principally, a Stingray camera is not able to recognize how many parameter the user will change. Due to the fact that communication between host and camera is asynchronous, it may happen that one part of parameter changes is done in image n+1 and the other part is done in image n+2.

To optimize the transfer of parameter changes there is a new timing mode called Quick Format Change Mode, which effectively resets the current shutter.

Therefore, you can choose between the following update timing modes:

- Standard Parameter Update Timing
- Quick Format Change Mode

In the following you find a short description of both timing modes:

Standard Parameter Update Timing

The Standard Parameter Update Timing keeps the frame rate constant and does not create any gaps between two image transfers via bus (precondition: exposure (shutter) time must be smaller than transfer time).

- Frame rate / transfer rate is always constant (if shutter time < transfer time)
- Delay from shutter update until change takes place is always 2 frames (delay from update command reception by FPGA and not by microcontroller)
- Parameters sent to the camera faster than max. frame rate are no longer stored in a FIFO. The last sent parameter will be activated for the next image. All others will be dropped. This ensures that the last image is shot with the last shutter setting.

Quick Format Change Mode (QFCM)

The Quick Format Change Mode creates gaps between two images. Current exposure is interrupted and the new exposure is started immediately with new parameters if a new shutter command is received.

- Frame rate / transfer rate can be *interrupted*, whenever FVal goes low after a reception of a new shutter command while Sync was low. This is shown in the diagram below
- Shutter will be interrupted, if the update command is received while camera integrates.
- Delay from shutter update until change takes place is always 1 frame.

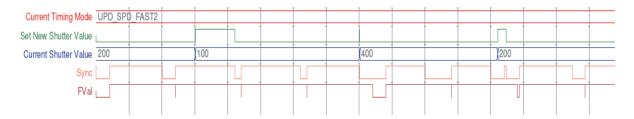


Figure 84: Quick Format Change Mode

How to transfer parameters to the camera

The following 3 variants of transferring the parameters are available:

Transfer mode	Advantage 😊	Disadvantage 🛞
Encapsulated Update (begin/ end)	Easy to use (standard quad writes in camera register is possible)	One write access per register access
Parameter-List Update	Only one write access for all parameters	Shot so easy to use (block writes)
	© Fastest host to camera trans- fer (faster than encapsulated mode, if more than 4 parame- ters are used)	Max. 64 entries for parameter list
	Easy handling of parameter list	
Standard Update (IIDC)	© Compliant with IIDC V1.31	Non deterministic change of parameters

Table 49: Comparison of 3 transfer modes

In the following section you find a short description of each variant:

Encapsulated Update (begin/end)

Encapsulated Update (begin/end) has the following characteristics:

- Host will set a parameter update begin flag in the camera (UpdActive Field in Register 0xF1000570, see Table 155: on page 299).
- Host will send several parameters to the camera and signal end by resetting the flag.
- All parameters will become active for the same next image.
- Depending on timing mode, the camera
 - (standard Update): uses the previous parameters until the update flag is reset.
 - (Quick Format Change Mode): waits until the update flag is reset.

In the Encapsulated Update (begin/end) the exact sequence is as follows:

- 1. Parameter update begin (advanced feature register)
- 2. Standard IIDC register update (1..N register) (standard feature register)
- 3. Parameter update end (advanced feature register)

The following section shows, how parameters determine camera timing behavior:

Fast Parameter Update Timing	Quick Format Change Mode
After the parameter update stop command, all changed parameters are valid for the available next image. Frame rate is constant.	After the parameter update start command, current transfer is interrupted. An on-going exposure will be interrupted until the next parameter update stop command. Consecutively, exposure of the next image will start with new parameters. There may be a gap between two succeeding images but images are always transmitted completely.

Table 50: Encapsulated Update (begin/end): comparison of standard timing and fast timing 2

If after the end of time-out (10 seconds after Quick Format Change Mode) no parameter update end is sent to the camera, all changes will become valid.

A new write event of parameter update begin starts time-out again.

Parameter-List Update

In the Parameter-List Update mode a complete list with IIDC addresses and values of up to 64 parameters is sent to the camera.

- Host sends a list with parameters to the camera (advanced feature space)
- Microcontroller processes that list
- All parameters will become active for the same image
- Dependent on timing mode, the camera will:
 - Standard Format Change Mode: use the previous parameters until the new parameter set is copied to the FPGA
 - Quick Format Change Mode (QFCM): waits until all parameters have been copied to the FPGA and may interrupt an already started integration for a new integration with the new settings

Example of parameter list:

Address	Value
0xF0F0081C	0x80000100
0xF0F00820	0x800000ac
0xF0F00818	0x82000001

Table 51: Example of parameter list

The exact sequence is:

Block-write of list to advanced feature address.

This needs to be a functionality of the underlying software stack (e.g. FirePackage).

It may not be available for third party IIDC software stacks.

The following section shows, how parameters determine camera timing behavior:

Fast Parameter Update Timing	Quick Format Change Mode (QFCM)
After block write command is processed in the cam- era, all changed parameters are valid for the avail- able next image. Frame rate is constant.	After transfer of the parameter list via block write, current transfer will be finished. An on-going expo- sure will be interrupted until the microcontroller has processed the list and copied it into the FPGA. Consecutively, exposure of the next image with new parameters is started. There may be a gap between two images.

Table 52: Parameter-List Update: comparison of standard timing and QFCM

Standard Update (IIDC)

In the Standard Update (IIDC) mode single parameter are sent to the camera.

- Standard Update (IIDC) shows the same behavior as Marlin.
- Parameter will be sent from host to camera and will be activated as soon as possible without interruption of the transfer.
- If the host updates more than one parameter (without block write), the parameters may become active in different images.
- Standard Update (IIDC) can be combined with the new parameter update timing modes.

The following section shows, how parameters determine camera timing behavior:

Fast Parameter Update Timing	Quick Format Change Mode (QFCM)
After sending a new parameter value, the changed parameter value is valid for the available next image. Frame rate is constant.	After sending a new parameter value, the changed parameter value is valid for the available next image. On-going exposure will be interrupted and the image will be dropped.
	There may be a gap between two consecutive image transfers.

Table 53: Standard Update (IIDC): comparison of Standard Format Change Mode and QFCM

Packed 12-Bit Mode

All Stingray cameras have Packed 12-Bit Mode. This means: two 12-bit pixel values are packed into 3 bytes instead of 4 bytes.

B/w cameras	Color cameras	
Packed 12-Bit MONO camera mode	Packed 12-Bit RAW camera mode	
SmartView: MON012	SmartView: RAW12	
Mono and raw mode have the same implementation.		

Table 54: Packed 12-Bit Mode

Note

For data block packet format see Table 37: on page 105.

For data structure see Table 39: on page 107.

The color codings are implemented via Vendor Unique Color_Coding according to IIDC V1.31: COLOR_CODING_INQ @ 024h...033h, IDs=128-255)

See Table 126: on page 266.

Mode	Color_Coding	ID
Packed 12-Bit MONO	ECCID_MON012	ID=132
Packed 12-Bit RAW	ECCID_RAW12	ID=136

Table 55: Packed 12-Bit Mode: color coding

High SNR mode (High Signal Noise Ratio)

Note

Configuration

To configure this feature in an advanced register: See Table 152: on page 296.

In this mode, the camera grabs and averages a set number of images to one output image with the same bit depth and brightness. This means that the camera will output an 8-bit averaged image when an 8-bit image format is selected.

Because of the fact that normally uncorrelated (photon-, amplifier-) noise dominates over correlated noise (fixed pattern noise), adding two images will double (6 dB) the gray levels but only increase the noise levels by $\sqrt{2}$ (3 dB).

This enhances both the dynamic range as well as the signal-to-noise ratio.

Consequently, adding 256 8-bit images will lead to a potential signal-to-noise enhancement of 24 dB or a resulting bit depth of 16 bit.

- Only if the camera is idle, it can toggle this feature on/of. Idle means: no image acquisition, no trigger.
- Set grab count and activation of HighSNR in one single write access.

Note

- **()**
- The averaged image is output at a lower frame rate roughly equivalent to fps_old/N, where N is the number of images averaged. In fact, due to camera internal conditions, and according to which format and mode settings are in use, it can vary slightly to be closer sometimes to 1/ ((N/fps_old) + T_shutter). It is impractical to express in a formula or tables, across all camera models and modes. But these notes should be sufficient to help each user determine that the camera behaves as described.
- The potential SNR enhancement may be lower when using more than 8-bit original bit depth.
- Select 16-bit image format in order to take advantage of the full potential SNR and DNR (DyNamic Range) enhancements.
- For 8-bit video modes, the internal HSNR calculations are done with 14 bit.

Frame memory and deferred image transport

An image is normally captured and transported in consecutive steps. The image is taken, read out from the sensor, digitized, and sent over the 1394 bus.

Deferred image transport

As all Stingray cameras are equipped with built-in image memory, the order of events can be paused or delayed by using the deferred image transport feature.

Stingray cameras are equipped with 32 MByte of RAM (Stingray F-504: 64 MByte). The table below shows how many frames can be stored by each model. The memory operates according to the FIFO (first in, first out) principle. This makes addressing for individual images unnecessary.

Model	Memory size
Stingray F-033B/C	32 MB memory: 50 frames
Stingray F-033B/C fiber	
Stingray F-046B/C	32 MB memory: 35 frames
Stingray F-046B/C fiber	
Stingray F-080B/C	32 MB memory: 19 frames
Stingray F-080B/C fiber	
Stingray F-125B/C	32 MB memory: 12 frames
Stingray F-125B/C fiber	
Stingray F-145B/C	32 MB memory: 10 frames
Stingray F-145B/C fiber	
Stingray F-146B/C	32 MB memory: 10 frames
Stingray F-146B/C fiber	
Stingray F-201B/C	32 MB memory: 7 frames
Stingray F-201B/C fiber	
Stingray F-504B/C	64 MB memory: 5 frames
Stingray F-504B/C fiber	

Table 56: FIFO memory size

Deferred image transport is especially useful for multi-camera applications:

Assuming several cameras acquire images concurrently, these images are stored in the built-in image memory of each camera. Until this memory is full, the limiting factor of available bus bandwidth, DMA- or ISO-channel is overcome.

Image transfer is controlled from the host computer by addressing individual cameras one after the other and reading out the desired number of images.

Note

To configure this feature in an advanced register: See Table 141: on page 286.

HoldImg mode

Configuration

By setting the HoldImg flag, transport of the image over the 1394 bus is stopped completely. All captured images are stored in the internal ImageFiFo. The camera reports the maximum possible number of images in the FiFoSize variable.

Note

- Pay attention to the maximum number of images that can be stored in FIFO. If you capture more images than the number in FIFOSize, the oldest images are overwritten.
- The extra SendImage flag is set to true to import the images from the camera. The camera sends the number of images set in the NumOfImages parameter.
- If NumOfImages is 0, all images stored in FIFO will be sent.
- If NumOfImages is not 0, the corresponding number of images will be sent.
- If the HoldImg field is set to false, all images in ImageFIFO will be deleted. No images will be sent.
- The last image in the FIFO will be corrupted, when simultaneously used as input buffer while being read out. In this case read out one image less than max. buffer size.
- NumOfImages is incremented after an image was read out of the sensor and therefore stored into the onboard image FIFO.
- NumOfImages is decremented after the last isochronous packet of an image was handed over to the IEEE1394 chipset of the camera.

The following screenshot shows the sequence of commands needed to work with deferred mode:

St	ingra	iy F	145C (CO, NO) -	Direct access	X
F	Regist	er:	ADV_DEFERRED	TRANS	
,	Addre:	ss:	F1000260 🗸	Read	ו
(Data:		82000A00	Write	
	#	rw	Address	Value	ן
	11	rd	F1000260	82000A00	1
	10	wr	F1000260	86000A01	
	9	rd	F1000260	82000A01	
	8	wr	F1000260	86000A01	
	7	rd	F1000260	82000A02	
	6	wr	F0F0061C	82000000	
	5	wr	F0F0061C	82000000	
	4	wr	F1000260	82000A00	
	3	rd	F1000260	80000A00	
	2	wr	F0F00614	00000000	
	1	rd	F0F00614	0000000	

Figure 85: Example: Controlling deferred mode (SmartView - Direct Access; Stingray F-145C)

#	rw	Address	Value	Description
11	rd	F1000260	82006900h	Check how many images are left in FIFO
10	wr	F1000260	86006901h	Read out the second image of FIFO
9	rd	F1000260	82006901h	Check how many images are left in FIFO
8	wr	F1000260	86006901h	Read out the first image of FIFO
7	rd	F1000260	82006902h	Check that two images are in FIFO
6	wr	F0F0061C	82000000h	Do second one-shot
5	wr	F0F0061C	82000000h	Do first one-shot
4	wr	F1000260	82000A00h	Switch deferred mode on
3	rd	F1000260	80000A00h	Check presence of deferred mode and FIFO size (0Ah $ ightarrow$ 10 frames)
2	wr	F0F00614	00000000h	Stop continuous mode of camera
1	rd	F0F00614	00000000h	Starting SmartView

For a description of the commands see the following table:

Table 57: Example: Controlling deferred mode (SmartView - Direct Access; Stingray F-145C)

FastCapture mode

This mode can be activated only in Format_7.

Note

By setting FastCapture to false, the maximum frame rate both for image acquisition and read out is associated with the packet size set in the BYTE_PER_PACKET register. The lower this value is, the lower the attainable frame rate is.

By setting FastCapture to true, all images are recorded at the highest possible frame rate, i.e., the setting above does not affect the frame rate for the image intake but only the read out. The speed of the image transport over the 1394 bus can be defined via the BytesPerPacket register. This mode is ideal for applications where a burst of images need to be recorded at the highest sensor speed but the output can be at a lower frame frequency to save bandwidth.

Similar to the HoldImg mode, captured images will be stored in the internal image FIFO, if the transport over the 1394 bus is slower than images are captured.

Color interpolation (BAYER demosaicing)

The color sensors capture the color information via so-called primary color (R-G-B) filters placed over the individual pixels in a BAYER mosaic layout. An effective BAYER \rightarrow RGB color interpolation already takes place in all Stingray color version cameras.

In color interpolation a red, green, or blue value is determined for each pixel. An Allied Vision proprietary BAYER demosaicing algorithm is used for this interpolation (2x2), optimized for both sharpness of contours as well as reduction of false edge coloring.

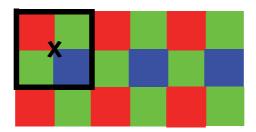


Figure 86: BAYER demosaicing (example of 2x2 matrix)

Color processing can be bypassed by using so-called RAW image transfer.

RAW mode is primarily used to:

- Save bandwidths on the IEEE 1394 bus.
- Achieve higher frame rates.
- Use different BAYER demosaicing algorithms on the PC (for all Stingray models the first pixel of the sensor is RED).

Note

If the PC does not perform BAYER to RGB post-processing, the b/w image will be superimposed with a checkerboard pattern.

In color interpolation a red, green, or blue value is determined for each pixel. Only two lines are needed for this interpolation:

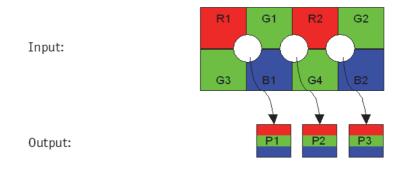


Figure 87: BAYER demosaicing (interpolation)

$P1_{red} = R1$	$P2_{red} = R2$	$P3_{red} = R2$
$P1_{green} = \frac{G1+G3}{2}$	$P2_{green} = \frac{G1 + G4}{2}$	$P3_{green} = \frac{G2 + G4}{2}$
P1 _{blue} = B1	$P2_{blue} = B1$	P3 _{blue} = B2

Formula 4: BAYER demosaicing

NotePlease note that on the color camera, a wrongly colored border
of one or two pixel wide forms on the left and right image bor-
ders. This is a consequence of BAYER demosaicing as the image
width displayed on the color camera is not scaled down.

Sharpness

The Stingray color models are equipped with a four-step sharpness control, applying a discreet horizontal high pass in the Y channel as shown in the next five line profiles.

Sharpness 0, 1, 2, 3, 4 is calculated with the following scheme:

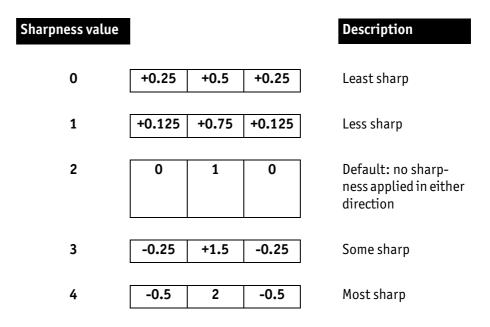


Table 58: Sharpness scheme

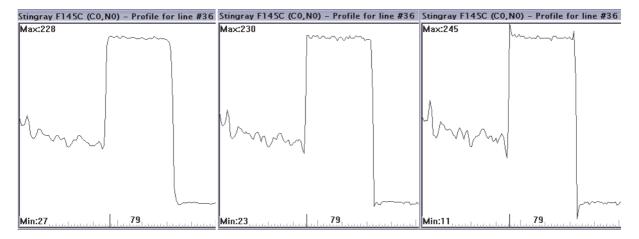
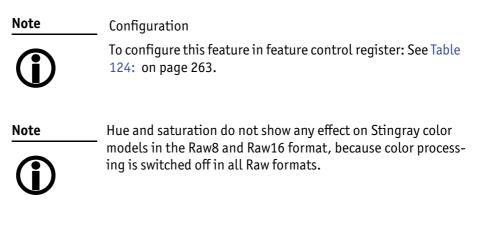


Figure 88: Sharpness: left: 2, middle: 3, right: 4

Note	Sharpness does not show any effect on Stingray color models in the Raw8, Raw12 and Raw16 format, because color processing is switched off in all Raw formats.
Note	Configuration To configure this feature in feature control register: See Table 124: on page 263.


Hue and saturation

Stingray CCD color models are equipped with hue and saturation registers.

The hue register at offset 810h allows the color of objects to be changed without altering the white balance, by \pm 128 steps (\pm 10°) from the nominal perception: 1/12.8° per step; values from 0–256. Register value 128 means 0°. Use this setting to manipulate the color appearance after having carried out the white balance.

The saturation register at offset 814h allows the intensity of the colors to be changed between 0 and 200% in steps of 1/256.

This means a setting of zero changes the image to black and white and a setting of 511 doubles the color intensity compared to the nominal one at 256.

Color correction

Why color correction?

The spectral response of a CCD is different of those of an output device or the human eye. This is the reason for the fact that perfect color reproduction is not possible. In each Stingray camera there is a factory setting for the color correction coefficients, see chapter GretagMacbeth ColorChecker on page 171.

Color correction is needed to eliminate the overlap in the color channels. This overlap is caused by the fact that:

- Blue light: is seen by the red and green pixels on the CCD
- Red light: is seen by the blue and green pixels on the CCD
- Green light: is seen by the red and blue pixels on the CCD

The color correction matrix subtracts out this overlap.

Color correction in Allied Vision cameras

In Allied Vision cameras the color correction is realized as an additional step in the process from the sensor data to color output.

Color correction is used to harmonize colors for the human eye.

Stingray cameras have the color correction matrix, enabling to manipulate the color-correction coefficients.

Color correction: formula

Before converting to the YUV format, color correction on all color models is carried out after BAYER demosaicing via a matrix as follows:

 $Red = Crr \times Red + Cgr \times Green + Cbr \times Blue$ Green = Crg × Red + Cgg × Green + Cbg × Blue Blue = Crb × Red + Cgb × Green + Cbb × Blue

Formula 5: Color correction

GretagMacbeth ColorChecker

Sensor-specific coefficients C_{xy} are scientifically generated to ensure that GretagMacbeth^{\mbox{\tiny M}} ColorChecker® colors are displayed with highest color fidelity and color balance.

These coefficients are stored in user set 0 and can not be overwritten (factory setting).

Changing color correction coefficients

You can change the color-correction coefficients according to your own needs. Changes are stored in the user settings.

Note

- A number of 1000 equals a color correction coefficient of 1.
- To obtain an identity matrix set values of 1000 for the diagonal elements and 0 for all others. As a result you qet colors like in the RAW modes.
- The sums of all rows should be equal to each other. If not, • you get tinted images.
- Color correction values range -1000 ... +2000 and are signed 32 bit.
- In order for white balance to work properly ensure that the row sum equals 1000.
- Each row should sum up to 1000. If not, images are less or more colorful.
- The maximum row sum is limited to 2000.

Note

Configuration

To configure the color-correction coefficients in an advanced register: See Table 148: on page 293.

To change the color-correction coefficients in SmartView, go to Adv3 tab.

Switch color correction on/off

Color correction can also be switched off in YUV mode:

Note		
(i		

Configuration

To configure this feature in an advanced register: See Table 148: on page 293.

Note

Color correction is deactivated in RAW mode.

Description of the data path

Color conversion (RGB \rightarrow YUV)

The conversion from RGB to YUV is made using the following formulae:

 $Y = 0.3 \times R + 0.59 \times G + 0.11 \times B$ $U = -0.169 \times R - 0.33 \times G + 0.498 \times B + 128 (@ 8 bit)$ $V = 0.498 \times R - 0.420 \times G - 0.082 \times B + 128 (@ 8 bit)$

Formula 6: RGB to YUV conversion

- As mentioned above: Color processing can be bypassed by using so-called RAW image transfer.
- RGB → YUV conversion can be bypassed by using RGB8 format and mode. This is advantageous for edge color definition but needs more bandwidth (300% instead of 200% relative to b/w or RAW consumption) for the transmission, so that the maximal frame frequency will drop.

Bulk Trigger

See chapter Trigger modi on page 179 and the following pages.

Level Trigger

See Trigger Mode 1 in chapter Trigger modi on page 179.

Serial interface

All Stingray cameras are equipped with the SIO (serial input/output) feature as described in IIDC V1.31. This means that the Stingray's serial interface can be used as a general RS232 interface.

Data written to a specific address in the IEEE 1394 address range will be sent through the serial interface. Incoming data of the serial interface is put in a camera buffer and can be polled via simple read commands from this buffer. Controlling registers enable the settings of baud rates and the check of buffer sizes and serial interface errors.

• Hardware handshaking is not supported.

Typical PC hardware does not usually support 230400 bps or more.

Base address for the function is: F0F02100h.

•

Offset	Name	Field	Bit	Description
000h	SERIAL_MODE_REG	Baud_Rate	[07]	Baud rate setting WR: Set baud rate RD: Read baud rate 0: 300 bps 1: 600 bps 2: 1200 bps 3: 2400 bps 4: 4800 bps 5: 9600 bps 6: 19200 bps 7: 38400 bps 8: 57600 bps 9: 115200 bps 10: 230400 bps 0ther values reserved
		Char_Length	[815]	Character length setting WR: Set data length (7 or 8 bit) RD: Get data length 7: 7 bits 8: 8 bits Other values reserved
		Parity	[1617]	Parity setting WR: Set parity RD: Get parity setting 0: None 1: Odd 2: Even
		Stop_Bit	[1819]	Stop bits WR: Set stop bit RD: Get stop bit setting 0: 1 1: 1.5 2: 2
			[2023]	Reserved
		Buffer_Size_Inq	[2431]	Buffer Size (RD only) This field indicates the maximum size of receive/transmit data buffer. If this value=1, Buffer_Status_Control and SIO_Data_Register Char 1-3 should be ignored.

To configure this feature in access control register (CSR):

Table 59: Serial input/output control and status register (SIO CSR)

Offset Name	Field	Bit	Description
0004h SERIAL_CONTROL_REG	RE	[0]	Receive enable RD: Current status WR: 0: Disable 1: Enable
	TE	[1]	Transmit enable RD: Current status WR: 0: disable 1: Enable
		[27]	Reserved
SERIAL_STATUS_REG	TDRD	[8]	Transmit data buffer ready Read only 0: not ready 1: ready
		[9]	Reserved
	RDRD	[10]	Receive data buffer ready Read only 0: not ready 1: ready
		[11]	Reserved
	ORER	[12]	Receive data buffer overrun error Read: current status WR: O: no error (to clear status) 1: Ignored
	FER	[13]	Receive data framing error Read: current status WR: 0: no error (to clear status) 1: Ignored
	PER	[14]	Receive data parity error Read: current status WR: 0: no error (to clear status) 1: Ignored
		[1531]	Reserved

Table 59: Serial input/output control and status register (SIO CSR) (Forts.)

Offset	Name	Field	Bit	Description
008h	RECEIVE_BUFFER_ STATUS_CONTRL	RBUF_ST	[07]	SIO receive buffer status RD: Number of bytes pending in receive buffer WR: Ignored
		RBUF_CNT	[815]	SIO receive buffer control RD: Number of bytes to be read from the receive FIFO WR: Number of bytes left for readout from the receive FIFO
			[1631]	Reserved
00Ch	TRANSMIT_BUFFER_ STATUS_CONTRL	TBUF_ST	[07]	SIO output buffer status RD: Space left in TX buffer WR: Ignored
		TBUF_CNT	[815]	SIO output buffer control RD: Number of bytes written to transmit FIFO WR: Number of bytes to transmit
			[1631]	Reserved
010h 0FFh				Reserved
100h	SIO_DATA_REGISTER	CHAR_0	[07]	Character_0 RD: Read character from receive buffer WR: Write character to transmit buffer
	SIO_DATA_REGISTER	CHAR_1	[815]	Character_1 RD: Read character from receive buffer+1 WR: Write character to transmit buffer+1
	SIO_DATA_REGISTER	CHAR_2	[1623]	Character_2 RD: Read character from receive buffer+2 WR: Write character to transmit buffer+2
	SIO_DATA_REGISTER	CHAR_3	[2431]	Character_3 RD: Read character from receive buffer+3 WR: Write character to transmit buffer+3
104h 1FFH	SIO_DATA_REGIS- TER_ALIAS		[031]	Alias SIO_Data_Register area for block transfer

Table 59: Serial input/output control and status register (SIO CSR) (Forts.)

To read data:

1. Query RDRD flag (buffer ready?) and write the number of bytes the host wants to read to RBUF_CNT.

- 2. Read the number of bytes pending in the receive buffer RBUF_ST (more data in the buffer than the host wanted to read?) and the number of bytes left for reading from the receive FIFO in RBUF_CNT (host wanted to read more data than were in the buffer?).
- 3. Read received characters from SIO_DATA_REGISTER, beginning at char 0.
- 4. To input more characters, repeat from step 1.

To write data:

- 1. Query TDRD flag (buffer ready?) and write the number of bytes to send (copied from SIO register to transmit FIFO) to TBUF_CNT.
- 2. Read the available data space left in TBUF_ST (if the buffer can hold more bytes than are to be transmitted) and number of bytes written to transmit buffer in TBUF_CNT (if more data is to be transmitted than fits in the buffer).
- 3. Write character to SIO_DATA_REGISTER, beginning at char 0.
- 4. To output more characters, repeat from step 1.

- Should you need detailed support to use this feature, please contact support@alliedvision.com.
-) ·
 - Allied Vision recommends the use of Hyperterminal[™] or other communication programs to test the functionality of this feature. Alternatively, use SmartView to try out this feature.

Controlling image capture

Shutter modes	The cameras support the SHUTTER_MODES specified in IIDC V1.31. For all models this shutter is a global pipelined shutter ; meaning that all pixels are exposed to the light at the same moment and for the same time span.
Pipelined	Pipelined means that the shutter for a new image can already happen, while the preceding image is transmitted.
Continuous mode	In continuous modes, the shutter is opened shortly before the vertical reset happens, thus acting in a frame-synchronous way.
External trigger	Combined with an external trigger, it becomes asynchronous in the sense that it occurs whenever the external trigger occurs. Individual images are recorded when an external trigger impulse is present. This ensures that even fast moving objects can be grabbed with no image lag and with minimal image blur.
Software trigger	Stingray cameras know also a trigger initiated by software (status and control register 62Ch on page 261 or in SmartView by Trig/IO tab, Stop trigger button).
Camera I/O	The external trigger is fed as a TTL signal through Pin 4 of the camera I/O connector.

Trigger modes

Stingray cameras support IIDC conforming Trigger_Mode_0 and Trigger_Mode_1 and special Trigger_Mode_15 (bulk trigger).

Trigger mode	also known as	Description
Trigger_Mode_0	Edge mode	Sets the shutter time according to the value set in the shutter (or extended shutter) register
Trigger_Mode_1	Level mode	Sets the shutter time according to the active low time of the pulse applied (or active high time in the case of an inverting input)
Trigger_Mode_15	Programmable mode	Is a bulk trigger , combining one external trigger event with continuous or one-shot or multi-shot internal trigger

Table 60: Trigger modi

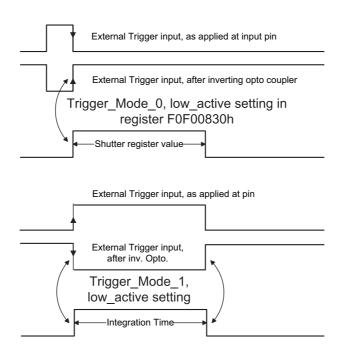


Figure 89: Trigger_Mode_0 and 1

Bulk trigger (Trigger_Mode_15)

Trigger_Mode_15 is an extension to the IIDC trigger modes. One external trigger event can be used to trigger a multitude of internal image intakes.

This is especially useful for:

- Grabbing exactly one image based on the first external trigger.
- Filling the camera's internal image buffer with one external trigger without overriding images.
- Grabbing an unlimited amount of images after one external trigger (surveillance).

The figure below illustrates this mode.

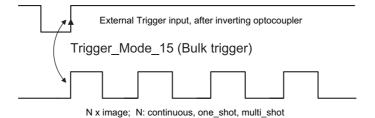


Figure 90: Trigger_Mode_15 (bulk trigger)

The functionality is controlled via bit [6] and bitgroup [12-15] of the following register:

Register	Name	Field	Bit	Description
0xF0F00830	0xF0F00830 TRIGGER_MODE	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the Value field 1: Control with value in the Absolute value CSR If this bit = 1 the value in the Value field has to be ignored
			[25]	Reserved
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status O: OFF 1: ON If this bit = 0, other fields will be read only
		Trigger_Polarity	[7]	Select trigger polarity (Except for software trigger)
				If Polarity_Inq is 1: Write to change polarity of the trigger input. Read to get polarity of the trigger input.
				If Polarity_Inq is 0: Read only. 0: Low active input 1: High active input
		Trigger_Source	[810]	Select trigger source Set trigger source ID from trigger source ID_Inq
		Trigger_Value	[11]	Trigger input raw signal value read only
				0: Low 1: High
		Trigger_Mode	[1215]	Trigger_Mode (Trigger_Mode_015)
			[1619]	Reserved
		Parameter	[2031]	Parameter for trigger function, if required (optional)

Table 61: Trigger_Mode_15 (Bulk trigger)

The screenshots below illustrate the use of Trigger_Mode_15 on a register level:

- Line #1switches continuous mode off, leaving viewer in listen mode.
- Line #2 prepares 830h register for external trigger and Mode_15.

Left = continuous	Middle = one-shot	Right = multi-shot
Line #3 switches camera back to	Line #3 toggles one-shot bit [0]	Line #3 toggles multi-shot bit [1]
continuous mode. Only one	of the one-shot register 61C so	of the one-shot register 61C so
image is grabbed precisely with	that only one image is grabbed,	that Ah images are grabbed,
the first external trigger.	based on the first external trig-	starting with the first external
To repeat rewrite line three.	ger.	trigger.
	To repeat rewrite line three.	To repeat rewrite line three.

Table 62: Description: using Trigger_Mode_15: continuous, one-shot, multi-shot

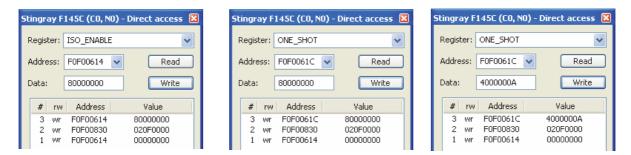


Figure 91: Using Trigger_Mode_15: continuous, one-shot, multi-shot

Note

Shutter for the images is controlled by shutter register.

Trigger delay

As already mentioned earlier Stingray cameras feature various ways to delay image capture based on external trigger.

With IIDC V1.31 there is a standard CSR at register F0F00534/834h to control a delay up to FFFh x time base value.

The following table explains the inquiry register and the meaning of the various bits.

Register	Name	Field	Bit	Description
0xF0F00534	TRIGGER_DLY_INQUIRY	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Abs_Control_Inq	[1]	Capability of control with absolute value
			[2]	Reserved
		One_Push_Inq	[3]	One-push auto mode (controlled automatically by the camera once)
		ReadOut_Inq	[4]	Capability of reading out the value of this feature
		On_Off_Inq	[5]	Capability of switching this feature ON and OFF
		Auto_Inq	[6]	Auto mode (controlled automati- cally by the camera)
		Manual_Inq	[7]	Manual mode (controlled by user)
		Min_Value	[819]	Minimum value for this feature
		Max_Value	[2031]	Maximum value for this feature

Table 63: Trigger delay inquiry register

Register	Name	Field	Bit	Description
0xF0F00834	TRIGGER_DELAY	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the Value field 1: Control with value in the Absolute value CSR If this bit = 1, the value in the Value field has to be ignored
			[25]	Reserved
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status O: OFF 1: ON If this bit = 0, other fields will be read only.
			[719]	Reserved
		Value	[2031]	Value
				If you write the value in OFF mode, this field will be ignored.
				If ReadOut capability is not available, then the read value will have no meaning.

Table 64: CSR: trigger delay

Trigger delay advanced register

In addition, the cameras have an advanced register that allows even more precise image capture delay after receiving a hardware trigger.

Register	Name	Field	Bit	Description
0xF1000400	TRIGGER_DELAY	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[15]	Reserved
		ON_OFF	[6]	Trigger delay on/off
			[710]	Reserved
		DelayTime	[1131]	Delay time in µs

Table 65: Advanced CSR: trigger delay

The advanced register allows start of the integration to be delayed by max. $2^{21} \mu s$, which is max. 2.1 s after a trigger edge was detected.

Note

 Switching trigger delay to ON also switches external Trigger_Mode_0 to ON.

This feature works with external Trigger_Mode_0 only.

Software trigger

A software trigger is an external signal that is controlled via a status and control register: 62Ch on page 261: to activate software trigger set bit [0] to 1.

The behavior is different dependent on the trigger mode used:

- Edge mode, programmable mode: trigger is automatically reset (self cleared)
- Level mode: trigger is active until software trigger register is reset manually

 \Rightarrow in advanced register 62Ch on page 261: set bit [0] to 0

⇒ in SmartView: Trig/IO tab, Stop trigger button

Debounce

Only for input ports:

There is an adjustable debounce time for trigger: separate for each input pin. The debounce time is a waiting period where no new trigger is allowed. This helps to set exact one trigger.

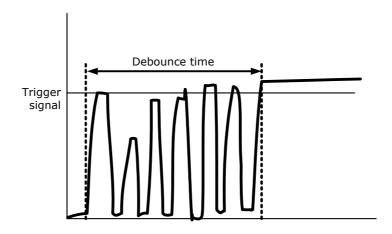


Figure 92: Example of debounce time for trigger

To set this feature in an advanced register: see Chapter Debounce time on page 179.

To set this feature in SmartView: **Trig/IO** tab, **Input pins** table, **Debounce** column.

Debounce time

This register controls the debounce feature of the camera's input pins. The debounce time can be set for each available input separately.

General preconditions:

- Increment is 500 ns
- Debounce time is set in Time x 500 ns
- Minimum debounce time is 1.5 μ s \Rightarrow 3 x 500 ns
- Maximum debounce time is ~16 ms \Rightarrow (2¹⁵-1) x 500 ns

Offset	Name	Field	Bit	Description
0xF1000840	IO_INP_DEBOUNCE_1	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[27]	Reserved
		Time	[831]	Debounce time in steps of 500 ns (24 bit) see examples above
0xF1000844		MinValue	[031]	Minimum debounce time
0xF1000848		MaxValue	[031]	Maximum debounce time
0xF100084C			[031]	Reserved
0xF1000850	IO_INP_DEBOUNCE_2			same as IO_INP_DEBOUNCE_1
0xF1000860	IO_INP_DEBOUNCE_3			same as IO_INP_DEBOUNCE_1
0xF1000870	IO_INP_DEBOUNCE_4			same as IO_INP_DEBOUNCE_1
0xF1000880				Reserved
0xF1000890			1	Reserved
0xF10008A0				Reserved
0xF10008B0				Reserved

Table 66: Advanced register: Debounce time for input ports

- The camera corrects invalid values automatically.
- This feature is not stored in the user settings.

Exposure time (shutter) and offset

The exposure (shutter) time for continuous mode and Trigger_Mode_0 is based on the following formula:

Shutter register value x time base + offset

The register value is the value set in the corresponding IIDC 1.31 register (SHUTTER [81Ch]). This number lies between 1 and 4095.

The shutter register value is multiplied by the time base register value (see Table 135: on page 278). The default value here is set to $20 \ \mu$ s.

A camera-specific offset is also added to this value. It is different for the camera models:

Camera model	Exposure time offset	Minimum exposure time	Effective min. exp. time = Min. exp. time + offset
Stingray F-033	27 µs	4 µs	4 μs + 27 μs = 31 μs
Stingray F-046	27 µs	4 µs	4 μs + 27 μs = 31 μs
Stingray F-080	45 μs	4 µs	4 μs + 45 μs = 49 μs
Stingray F-125	21 µs	4 µs	4 μs + 21 μs = 25 μs
Stingray F-145	70 µs	4 µs	4 μs + 70 μs = 74 μs
Stingray F-145-30	37 μs	4 µs	4 μs + 37 μs = 41 μs
Stingray F-146	35 µs	4 µs	4 μs + 35 μs = 39 μs
Stingray F-201	44 µs	4 µs	4 μs + 44 μs = 48 μs

Exposure time offset, minimum exposure time

Table 67: Camera-specific exposure time offset, minimum exposure time

Example: Stingray F-033

Camera	Register value	Time base (default)
Stingray F-033	100	20 µs

Table 68: Register value and time base for Stingray F-033

The following example shows the relation between register value and exposure time in practice:

register value x time base = exposure time

 $100 \times 20 \ \mu\text{s} + 27 \ \mu\text{s} = 2027 \ \mu\text{s}$ exposure time

The minimum adjustable exposure time set by register is 4 μ s. \rightarrow The real minimum exposure time of **Stingray F-033** is then: 4 μ s + 27 μ s = 31 μ s

Extended shutter

The exposure time for long-term integration of up to 67 seconds can be extended via the advanced register: EXTENDED_SHUTTER

Register	Name	Field	Bit	Description
0xF100020C	EXTD_SHUTTER	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[1 5]	Reserved
		ExpTime	[631]	Exposure time in µs

Table 69: Advanced register: **Extended shutter**

The longest exposure time, 3FFFFFh, corresponds to 67.11 sec.

The lowest possible value of **ExpTime** is camera-specific (see Table 67: on page 180).

- Exposure times entered via the 81Ch register are mirrored in the extended register, but not vice versa.
- Longer integration times not only increase sensitivity, but may also increase some unwanted effects such as noise and pixel-to-pixel non-uniformity. Depending on the application, these effects may limit the longest usable integration time.
- Changes in this register have immediate effect, even when the camera is transmitting.
- Extended shutter becomes inactive after writing to a format/mode/frame rate register.
- Extended shutter setting will thus be overwritten by the normal time base/shutter setting after Stop/Start of **FireView** or **FireDemo**.

One-shot

Stingray cameras can record an image by setting the **one-shot bit** in the 61Ch register. This bit is automatically cleared after the image is captured. If the camera is placed in ISO_Enable mode (see Chapter ISO_Enable / free-run on page 185), this flag is ignored.

If **one-shot mode** is combined with the external trigger, the **one-shot** command is used to arm it. The following screenshot shows the sequence of commands needed to put the camera into this mode. It enables the camera to grab exactly one image with an external trigger edge.

If there is no trigger impulse after the camera has been armed, **one-shot** can be cancelled by clearing the bit.

Stingray F	145C (CO, NO) -	Direct access 🔀
Register:	ONE_SHOT	~
Address:	F0F0061C 💌	Read
Data:	8000000	Write
# rw		Value
7 wr 6 rd	F0F0061C F0F0061C	80000000
5 wr	F0F00830	82000000
4 rd	F0F00830	80000000
3 wr 2 rd		00000000 80000000
2 ra 1 rd	F0F00614 F0F00614	00000000
1 10	10100014	0000000

Figure 93: One-shot control (SmartView)

#	Read = rd Write = wr	Address	Value	Description
7	wr	F0F0061C	80000000	Do one-shot.
6	rd	F0F0061C	0000000	Read out one-shot register.
5	wr	F0F00830	82000000	Switch on external trigger mode 0.
4	rd	F0F00830	80000000	Check trigger status.
3	wr	F0F00614	0000000	Stop free-run.
2	rd	F0F00614	80000000	Check Iso_Enable mode (\rightarrow free-run).
1	rd	F0F00614	0000000	This line is produced by SmartView.

Table 70: One-shot control: descriptions

One-shot command on the bus to start exposure

The following sections describe the time response of the camera using a single frame (one-shot) command. As set out in the IIDC specification, this is a software command that causes the camera to record and transmit a single frame.

The following values apply only when the camera is idle and ready for use. Full resolution must also be set.

Feature	Value
	\leq 150 µs (processing time in the microcontroller)
μ C-Sync/ExSync \rightarrow integration start	8 µs

Table 71: Values for one-shot

Microcontroller sync is an internal signal. It is generated by the microcontroller to initiate a trigger. This can either be a direct trigger or a release for ExSync if the camera is externally triggered.

End of exposure to first packet on the bus

After the exposure, the CCD sensor is read out; some data is written into the FRAME_BUFFER before being transmitted to the bus.

The time from the end of exposure to the start of transport on the bus is:

710 μs \pm 62.5 μs

This time *jitters* with the cycle time of the bus (125 μ s).

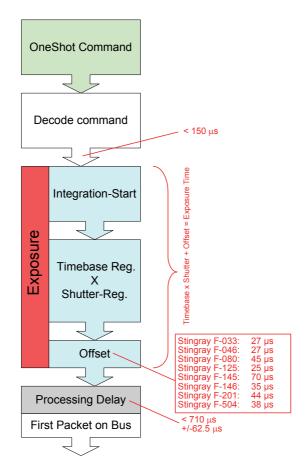


Figure 94: Data flow and timing after end of exposure

Multi-shot

Setting **multi-shot** and entering a quantity of images in **Count_Number** in the 61Ch register enables the camera to record a specified number of images.

The number is indicated in bits 16 to 31. If the camera is put into **ISO_Enable** mode (see Chapter ISO_Enable / free-run on page 185), this flag is ignored and deleted automatically once all the images have been recorded.

If **multi-shot** mode is activated and the images have not yet all been captured, it can be cancelled by resetting the flag. The same result can be achieved by setting the number of images to **0**.

Multi-shot can also be combined with the external trigger in order to grab a certain number of images based on an external trigger. This is especially helpful in combination with the so-called **deferred mode** to limit the number of grabbed images to the FIFO size.

ISO_Enable / free-run

Setting the MSB (bit 0) in the 614h register (ISO_ENA) puts the camera into **ISO_Enable mode** or **Continuous_Shot (free-run)**. The camera captures an infinite series of images. This operation can be quit by deleting the **0** bit.

Asynchronous broadcast

The camera accepts asynchronous broadcasts. This involves asynchronous write requests that use node number 63 as the target node with no acknowledgement.

This makes it possible for all cameras on a bus to be triggered by software simultaneously; e.g., by broadcasting a **one-shot**. All cameras receive the **one-shot** command in the same IEEE 1394 bus cycle. This creates uncertainty for all cameras in the range of 125 μ s.

Inter-camera latency is described in Chapter Jitter at start of exposure on page 186.

The following screenshot shows an example of broadcast commands sent with the Firedemo example of FirePackage:

Direct Ac	cess	×
Address:	F0F0061C	<u>R</u> ead
Data:	82000000	Write
	514 <- 0000000 51C <- 8200000	

Figure 95: Broadcast one-shot

- Line 1 shows the broadcast command, which stops all cameras connected to the same IEEE 1394 bus. It is generated by holding the **Shift** key down while clicking on **Write**.
- Line 2 generates a **broadcast one_shot** in the same way, which forces all connected cameras to simultaneously grab one image.

Jitter at start of exposure

This section discusses the latency time that exists for all Stingray CCD models when either a hardware or software trigger is generated, until the actual image exposure starts.

Owing to the well-known fact that an **Interline Transfer CCD** sensor has both a light sensitive area and a separate storage area, it is common to interleave image exposure of a new frame and output that of the previous one. It makes continuous image flow possible, even with an external trigger.

The uncertain time delay before the start of exposure depends on the state of the sensor. A distinction is made as follows:

FVal is active \rightarrow the sensor is reading out, the camera is busy

In this case, the camera must not change horizontal timing so that the trigger event is synchronized with the current horizontal clock. This introduces a maximum uncertainty, which is equivalent to the line time. The line time depends on the sensor used; and therefore, it can vary from model to model.

FVal is inactive \rightarrow the sensor is ready, the camera is idle

Stingray Technical Manual V.4.5.0

187

In this case, the camera can resynchronize the horizontal clock to the new trigger event, leaving only a very short uncertainty time of the master clock period.

Model	Exposure start jitter (while FVal)	Exposure start jitter (while camera idle)
Stingray F-033	\pm 9.75 μ s	\pm 1.30 μ s
Stingray F-046	± 11.59 μs	\pm 1.30 μ s
Stingray F-080	± 15.29 μs	± 3.33 μs
Stingray F-125	± 13.50 μs	± 3.10 μs
Stingray F-145	± 23.20 μs	\pm 5.40 μ s
Stingray F-146	± 23.20 μs	± 5.87 μs
Stingray F-201	± 22.61 μs	± 3.56 μs
Stingray F-504	\pm 20.46 μ s	\pm 5.81 μ s

Table 72: Jitter at exposure start (no binning, no sub-sampling)

Note

Jitter at the beginning of an exposure has no effect on the length of exposure, i.e., it is always constant.

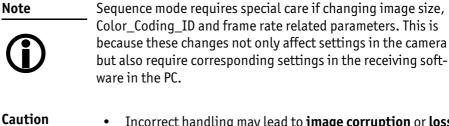
Sequence mode

Generally, all Stingray cameras enable certain image settings to be modified on the fly. For example, gain and shutter can be changed by the host computer by writing into the gain and shutter register even while the camera is running. An uncertainty of up to 3 images remains because normally the host does not know (especially with external trigger) when the next image will arrive.

Sequence mode is a different concept where the camera holds a set of different image parameters for a sequence of images. The parameter set is stored volatile in the camera for each image to be recorded. The advantage is that the camera can easily synchronize this parameter set with the images so that no uncertainty can occur. All Stingray cameras support 32 different sequence parameters.

Additionally, to the sequence mode known from Marlin cameras, the Stingray cameras have:

- Repeat counter per sequence item
- Incrementing list pointer on input status (on/off)
- Pointer reset (software command; on input pin)
- **Examples** For a sequence of images, each image can be recorded with a different shutter or gain to obtain different brightness effects.


The image area (AOI) of a sequence of images can automatically be modified, thus creating a panning or sequential split screen effect.

The following registers can be modified to affect the individual steps of the sequence. Different configurations can be accessed via a footswitch that is connected to an input.

Mode	this registers can be modified
All modes	Cur_V_Mode, Cur_V_Format, ISO_Channel, ISO_Speed, Brightness, White_Balance (color cameras only), Shutter, Gain, LUT, TestImage, Image-Mirror, HSNR, Output-Ctrl, ColorCorrection matrix (color cam- eras only), ISO-Channel, Shading-Ctrl, Sequence-Stepping Mode, SIS_UserValue
Fixed modes only	Cur_V_Frm_Rate
Format_7 only	Image_Position (AOI-Top, AOI-Left), Image_Size (AOI-Width, AOI- Height), Color_Coding_ID*, Binning*, Sub-Sampling*, Byte_Per_Packet *biddon in video formats and video modes
	*hidden in video formats and video modes

Table 73: Registers to be modified within a sequence

 Incorrect handling may lead to image corruption or loss of subsequent images.

• Should you need detailed support to use this feature, please contact support@alliedvision.com.

How is sequence mode implemented?

There is a FIFO (first in first out) memory for each of the IIDC V1.31 registers listed above. The depth of each FIFO is fixed to 32(dec) complete sets. Functionality is controlled by the following advanced registers.

Register	Name	Field	Bit	Description
0xF1000220	SEQUENCE_CTRL	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[14]	Reserved
		AutoRewind	[5]	
		ON_OFF	[6]	Enable/disable this feature
		SetupMode	[7]	Sequence setup mode
			[815]	Reserved
		MaxLength	[1623]	Maximum possible length of a sequence (read only)
		SeqLength	[2431]	Length of the sequence (32 dec for all CCD models)
0xF1000224	SEQUENCE_PARAM		[04]	Reserved
		ApplyParameters	[5]	Apply settings to selected image of sequence; auto reset
			[67]	Reserved
		SeqStepMode	[815]	Sequence stepping mode
		ImageRepeat	[1623]	Image repeat counter
		ImageNo	[2431]	Number of image within a sequence

Table 74: Advanced register: Sequence mode

Register	Name	Field	Bit	Description
0xF1000228	SEQUENCE STEP	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[14]	Reserved
		PerformStep	[5]	Sequence is stepped one item for- ward
		PerformReset	[6]	Reset the sequence to start position
			[723]	Reserved
		SeqPosition	[2431]	Get the current sequence position

Table 74: Advanced register: Sequence mode (Forts.)

Enabling this feature turns the camera into a special mode. This mode can be used to set up a bunch of parameter sets for up to **MaxLength** consecutive images.

Note

The sequence mode of the Stingray series behaves slightly different than the sequence mode of e.g., the Marlin series and implements some new controlling features. You may use a sequence with internal or external trigger and with the Deferred Transport feature.

Setup mode

The **SetupMode** flag allows you to set up a sequence while capturing images. Using this flag you get a visual feedback of the settings.

Set **SetupMode** flag when setting up the sequence and reset the flag before using the sequence.

Sequence step mode

The SeqMode field selects the signal source for stepping the sequence one parameter set further.

SeqMode description

Sequence mode	Description
0x80	This mode is the default sequence mode . With each image integration start the sequence is stepped one item further and the new parameter set becomes active for the next image.
0x82	Stepping of the sequence is controlled by a rising edge of an external signal . The new parameter set becomes active with the next integration start. When using this mode select the suitable input mode of the input lines.
0x84	Stepping of the sequence is controlled by a high level of an external signal . The new parameter set becomes active with the next integration start. When using this mode select the suitable input mode of the input lines.
Other mode	Choosing any other mode value automatically defaults to mode 0x80.

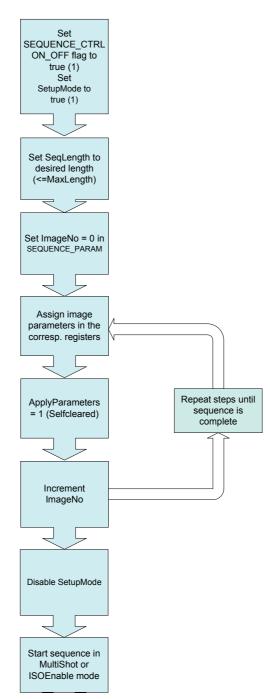
Table 75: Sequence mode description

It is also possible, that a sequence consists of parameter sets with different sequence modes. This can be achieved by using the SeqMode and the ImageNo fields within the Sequence_Param register.

Sequence repeat counter

For each parameter set one can define an image repeat counter. Using the image repeat counter means that a parameter set can be used for n consecutive images before the next parameter set is applied.

Setting the **ImageRepeat** field to 0 has the same effect like setting this field to 1.


Manual stepping & reset

A sequence can be stepped further with a software command. To use manual stepping use stepping mode 0x82 or 0x84, but don't setup any input pin for external sequence stepping.

Every time the **PerformStep** flag is set the sequence will be stepped one parameter set further. Manual stepping observes the repeat counter also.

For some application it could be useful to reset the sequence during runtime. Simply set the **PerformReset** flag to one: the sequence starts over with the very first parameter set.

The following flow diagram shows how to set up a sequence.

Figure 96: Sequence mode flow diagram

During sequencing, the camera obtains the required parameters image by image from the corresponding FIFOs (e.g. information for exposure time).

Which sequence mode features are available?

- Repeat one step of a sequence n times where n can be set by the variable **ImageRepeat** in SEQUENCE_PARAM.
- Define one or two hardware inputs in Input mode field of IO_INP_CTRL as:
 - Sequence step input (if two are set as input, they are AND gated) or
 - Sequence reset input

Note

From now on:

- sequence step is I/O controlled sequence stepping mode
- sequence reset is I/O controlled sequence pointer reset

Setup mode

The **SetupMode** flag allows you to set up a sequence while capturing images. Using this flag you get a visual feedback of the settings. Set this flag when setting up the sequence and reset the flag before using the sequence.

I/O controlled sequence stepping mode

The I/O controlled sequence stepping mode can be done level controlled or edge controlled:

Level controlled	Edge controlled
 As long as the input is in high state the sequence pointer will be incremented from image to image. Can be combined with Quick Format Change Modes. See Chapter Standard Parameter Update Timing on page 150 and Chapter Quick Format Change Mode (QFCM) on page 150. Level change is asynchronous to image change. 	 A rising edge on the input will cause one pointer increment immediately. Can be combined with Quick Format Change Modes. See Chapter Standard Parameter Update Timing on page 150 and Chapter Quick Format Change Mode (QFCM) on page 150.

Table 76: Description of sequence stepping control

The I/O controlled sequence stepping mode can be set for every single sequence entry. Thus, a sequence can be controlled in a very flexible manner.

I/O controlled sequence pointer reset

I/O controlled sequence pointer reset is always edge controlled. A rising edge on the input pin resets the pointer to the first entry.

I/O controlled sequence pointer reset can be combined with **Quick Format Change Modes.** See Chapter Standard Parameter Update Timing on page 150 and Chapter Quick Format Change Mode (QFCM) on page 150.

I/O controlled sequence stepping mode and I/O controlled sequence pointer reset via software command

Both sequence modes can be controlled via software command.

Points to pay attention to when working with a sequence

• If more images are recorded than defined in **SeqLength**, the settings for the last image remain in effect.

- If **sequence** mode is cancelled, the camera can use the FIFO for other tasks. For this reason, a sequence must be loaded back into the camera after **sequence** mode has been cancelled.
- To repeat the sequence, stop the camera and send the **multi-shot** or **IsoEnable** command again. Each of these two commands resets the sequence.
- Using **single-shot** mode in combination with a sequence does not make sense, because **single-shot** mode restarts the sequence every time.
- The sequence may not be active when setting the AutoRewind flag. For this reason it is important to set the flag before the **multi-shot** or **IsoEnable** commands.
- If the sequence is used with the **deferred transport** feature, the number of images entered in **Seq_Length** may not be exceeded.

The following screenshot shows an example of a sequence for eight different image settings. It uses the **Firetool program** as graphical representation. Please note the changes in the shutter time; that creates descending image brightness,

Img.	VFormat	VMode	VFps	ISOChn	IsoSpd	Brightn.	WhiteBalVR	WhiteBalUB	Shutter	Gain	LUT	TestImg	ImgPosL	ImgPosT	ImgSizeW	ImgSizeH	ColorID	BytePacket
	7	0	2			16	0	0	1000	1	0	0	0	0	640	480	0	200
	7	0	2			16	0	0	900	1	0	0	100	0	640	480	0	200
	7	0	2			16	0	0	800	1	0	0	200	0	640	480	0	200
	7	0	2			16	0	0	700	1	0	0	300	0	640	480	0	200
	7	0	2			16	0	0	600	1	0	0	300	100	640	480	0	200
	7	0	2			16	0	0	500	1	0	0	300	200	640	480	0	200
	7	0	2			16	0	0	400	1	0	0	300	300	640	480	0	200
	7	0	2			16	0	0	300	1	0	0	300	400	640	480	0	200
Lo	ad current	paramete	er	Sequence	e length:	8]						 	Auto R	ewind	Sequence	On	Upload

and the change in the image position; which creates a panning effect.

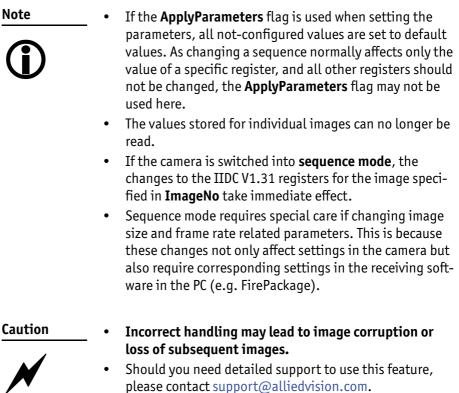
Figure 97: Example of sequence mode settings with Firetool

Instead of **Firetool** you also can use **SmartView** (Version 1.8.0 or greater), but image and transfer formats have to be unchanged (height, width, ColorID).

To open the **Sequence editor** in SmartView:

1. Click **Extras** → **Sequence dialog**

Step	RepCnt	StepMode	VFormat	VMode	VFps	IsoChn	IsoSpd	Brightness	WhiteBalVR	WhiteBalUB	Shutter	Gain	Sharpness	HighSNR	LUT	Shading) Imgl	Mirror	ImgPost	L ImgF
		On		0			5800	16		284	2000		0	0	Off	Off	Off		0	0
	0	On		0	15	0	5800	16	284	284	1800	0	0	0	Off	Off	Off		0	0
	0	On		0	15	0	5800	16	284	284	1600	0	0	0	Off	Off	Off		0	0
1	0	On		0	15	0	S800	16	284	284	1400	0	0	0	Off	Off	Off		0	0
	0	On	2	0	15	0	5800	16	284	284	1200	0	0	0	Off	Off	Off			0
1	0	On	2	0	15	0	5800	16	284	284	1000	0	0	0	Off	Off	Off		0	0
1	0	On	2	0	15	0	5800	16	284	284	800	0	0	0	Off	Off	Off		0	0
	0	On	2	n	15	0	5800	16	284	284	600	0	0	0	Off	Off	Off			0
ngth: [8	Delete row	Get current] /T Smart	¥iew 1.8									Auto-r	ewind 🗌	Disable :	Sequen	ice App	ply Seque
ngth: [8) /T Smart	View 1.8								,	Auto-r	ewind 🗌	Disable :	Sequen	ice App	ply Seque
uence e	8 [ıray F145C [C	0, N 405078;		r. CCCa		oeff2 CC	Coeff3 CCCC			CCCoeff7	CCCoeff8			Output2	Output3	Output4	SIS		
uence e ImgSize ¹ 388	8 C	ray F145C [C H ColorID Mono8	0, N 405078; BytePacket	2814] - AV	r. CCCc 1040	eff1 CCC	130	-270	1300	-30	50	-470	1420	Off C	Output2	Output3 Off	Output4	SIS	SISLine 0 C	SISUserVa)
uence e ImgSize ¹ 388 388	8 a and a second	H ColorID	0, N 405078: BytePacket 2896 2896	2814] - AV ColCor On On	r. CCCc 1040 1040	eff1 CCC -170 -170	130 130	-270 -270	1300 1300	-30 -30	50 50	-470 -470	1420 1420	Off C	Output2	Output3 Off Off	Output4 Off	SIS Off Off	SISLine 0 C 0 C	SISUserVa)
Ingth: [uence e ImgSize ¹ 388 388 388	8 [editor Sting 1038 1038	H ColorID Mono8 Mono8 Mono8	0, N 405078; BytePacket 2896 2896	2814] - A ColCor On On On	r. CCCc 1040 1040 1040	eff1 CCC -170 -170 -170	130 130 130	-270 -270 -270	1300 1300 1300	-30 -30 -30	50 50 50	-470 -470 -470	1420 1420 1420	Off C Off C	Output2 Off Off	Output3 Off Off	Output4 Off Off	SIS Off Off	SISLine 0 0 0 0 0 0	SISUserVa))
Imgth: [uence e ImgSize* 388 388 388 388	8 [editor Stine 1038 1038 1038	ray F145C [0 Mono8 Mono8 Mono8 Mono8	BytePacket 2896 2896 2896 2896	2814] - A ColCor On On On On	r. CCCc 1040 1040 1040 1040	eff1 CCC -170 -170 -170 -170 -170	130 130 130 130	-270 -270 -270 -270	1300 1300 1300 1300	-30 -30 -30	50 50 50 50	-470 -470 -470 -470	1420 1420 1420 1420	Off C Off C Off C	Output2 Dff Dff Dff	Output3 Off Off Off	Output4 Off Off Off Off	SIS Off Off Off Off	SISLine 0 0 0 0 0 0 0 0 0	SISUserVa))
Ingth: [uence e ImgSize ¹ 388 388 388 388 388	8 (1) editor Sting 1038 1038 1038 1038	H ColorID Mono8 Mono8 Mono8 Mono8 Mono8 Mono8	0, N 4050782 BytePacket 2896 2896 2896 2896 2896 2896	2814] - A ColCor On On On On On	r. CCCc 1040 1040 1040 1040 1040 1040	eff1 CCC0 -170 -170 -170 -170 -170 -170	130 130 130 130 130	-270 -270 -270 -270 -270	1300 1300 1300 1300 1300 1300	-30 -30 -30 -30 -30	50 50 50 50 50 50	-470 -470 -470 -470 -470	1420 1420 1420 1420 1420 1420	Off C Off C Off C Off C Off C	Output2 Off Off Off Off	Output3 Off Off Off Off Off	Output4 Off Off Off Off	SIS Off Off Off Off Off	SISLine 0 0 0 0 0 0 0 0 0	SISUserVa)))
uence e ImgSize ¹ 388 388	8 [editor Stine 1038 1038 1038	ray F145C [0 Mono8 Mono8 Mono8 Mono8	BytePacket 2896 2896 2896 2896	2814] - A ColCor On On On On	r. CCCc 1040 1040 1040 1040	eff1 CCC -170 -170 -170 -170 -170	130 130 130 130	-270 -270 -270 -270	1300 1300 1300 1300	-30 -30 -30 -30 -30 -30 -30	50 50 50 50 50 50 50	-470 -470 -470 -470	1420 1420 1420 1420 1420 1420 1420	Off C Off C Off C Off C Off C Off C	Output2 / Off Off Off Off Off	Output3 Off Off Off Off Off Off	Output4 Off Off Off Off Off Off	SIS Off Off Off Off Off Off	SISLine 0 0 0 0 0 0 0 0 0))))


Figure 98: SmartView: **Extras** → **Sequence dialog**

Changing the parameters within a sequence

To change the parameter set for one image, it is not necessary to modify the settings for the entire sequence. The image can simply be selected via the **ImageNo** field and then the corresponding IIDC V1.31 registers can be changed.

Points to pay attention to when changing the parameters

Stingray Technical Manual V.4.5.0

Secure image signature (SIS): definition and scenarios

Note

- For all customers who know SIS from Marlin cameras:
 - Stingray cameras have additional SIS features: AOI, exposure/gain, input/output state, index of sequence mode and serial number.
- Read carefully the following chapter.

SIS: Definition

Secure image signature (SIS) is the synonym for data that is saved with an image to improve or check image integrity.

All Stingray models can save:

- Cycle time (1394 bus cycle time at the beginning of integration)
- Trigger counter (external trigger seen only)
- Frame counter (frames read out of the sensor)
- AOI (x, y, width, height)
- Exposure (shutter) and gain
- Input and output state on exposure start
- Index of sequence mode
- Serial number
- User value

into a selectable line position within the image. Furthermore the trigger counter and the frame counter are available as advanced registers to be read out directly.

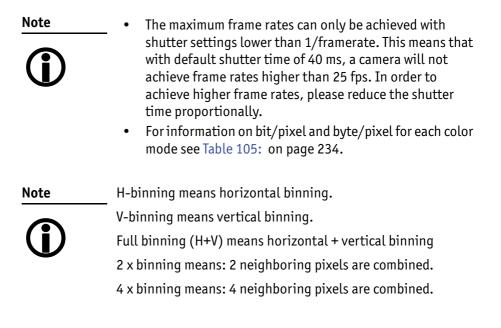
SIS: Scenarios

The following scenarios benefit from this feature:

- Assuming camera runs in **continuous mode**, the check of monotonically changing bus cycle time is a simple test that no image was skipped or lost in the camera or subsequently in the image processing chain.
- In (synchronized) **multi-camera applications**, SIS can be used to identify those images, shot at the same moment in time.
- The cross-check of the frame counter of the camera against the frame counter of the host system also identifies any **skipped or lost images** during transmission.
- The cross-check of the trigger counter against the frame counter in the camera can identify a **trigger overrun** in the camera.
- AOI can be inserted in the image if it was set as a variable e.g. in a sequence.
- Exposure/gain scenario parameters can be inserted in the image if set as a variable in e.g. sequence mode to identify the imaging conditions.
- Inserting input and output state on exposure start can be helpful when working with input and output signals.
- Index of sequence mode is inserted automatically if SIS is used together with sequence mode.
- Serial number inserted in the image helps to document/identify the camera in e.g. multi-camera applications.

9	FirePackage offers additional and independent checks to be
D	performed for the purpose of image integrity. Details can be found in the respective documentation.

More information:


Note

Note

The handling of the SIS feature is fully described in the Chapter Secure image signature (SIS) on page 302.

Video formats, modes and bandwidth

The different Stingray models support different video formats, modes, and frame rates. These formats and modes are standardized in the IIDC (formerly DCAM) specification. Resolutions smaller than the maximum sensor resolution are generated from the center of the sensor and without binning.

Stingray F-033B / Stingray F-033C and board level F-033B BL / F-033C BL

The following tables assume that bus speed is 800 Mbit/s. With lower bus speeds (e.g. 400, 200 or 100 Mbit/s) not all frame rates may be achieved.

The following Format_7 tables show default Format_7 modes without Format_7 mode mapping.

Note

For information on Format_7 mode mapping:

- See Chapter Mapping of possible Format_7 modes to F7M1...F7M7 on page 148
- See Chapter Format_7 mode mapping on page 301

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444								
	1	320 x 240	YUV422			Х	X	Х	Х	Х	Х
	2	640 x 480	YUV411			X	X	X	X	X	x
0	3	640 x 480	YUV422			X	X	X	X	X	x
	4	640 x 480	RGB8			X	x	X	X	x	X
	5	640 x 480	Mono8			x x*	x	x x*	x x*	x x*	x
	6	640 x 480	Mono16			x	x	x	x	x	x

Table 77: Video fixed formats Stingray F-033B / F-033C

*: Color camera outputs Mono8 interpolated image.

Frame rates with shading are only achievable with 1394b (S800).

Note

Table 78: on page 201 shows default Format_7 modes withoutFormat_7 mode mapping.

- For information on Format_7 mode mapping:
- See Chapter Mapping of possible Format_7 modes to F7M1...F7M7 on page 148
- See Chapter Format_7 mode mapping on page 301

Format	: Mode	Resolution	Color mode	Maximal	S800 frame rates for Format_7 modes
	0	656 x 492	Mono8 Mono12 Mono16	84 fps 84 fps 84 fps	
		656 x 492	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	84 fps 84 fps 84 fps 67 fps 84 fps	
	1	328 x 492	Mono8 Mono12 Mono16	84 fps 84 fps 84 fps	2x H-binning 2x H-binning 2x H-binning
	2	656 x 246	Mono8 Mono12 Mono16	149 fps 149 fps 149 fps	2x V-binning 2x V-binning 2x V-binning
	3	328 x 246	Mono8 Mono12 Mono16	149 fps 149 fps 149 fps	2x H+V binning 2x H+V binning 2x H+V binning
	4	328 x 492	Mono8 Mono12 Mono16	84 fps 84 fps 84 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
7		328 x 492	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	84 fps 84 fps 84 fps 84 fps 84 fps 84 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
	5	656 x 246	Mono8 Mono12 Mono16	108 fps 108 fps 108 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
		656 x 246	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	108 fps 108 fps 108 fps 108 fps 108 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
	6	328 x 246	Mono8 Mono12 Mono16	108 fps 108 fps 108 fps	2 out of 4 H+V sub-sampling 2 out of 4 H+V sub-sampling 2 out of 4 H+V sub-sampling
		328 x 246	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	108 fps 108 fps 108 fps 108 fps 108 fps	2 out of 4 H+V sub-sampling 2 out of 4 H+V sub-sampling

Table 78: Video Format_7 default modes Stingray F-033B / Stingray F-033C

Stingray Technical Manual V.4.5.0

Stingray F-046B / Stingray F-046C and board level F-046B BL / F-046C BL

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444								
	1	320 x 240	YUV422			X	Х	Х	Х	Х	Х
	2	640 x 480	YUV411			X	X	X	X	X	X
0	3	640 x 480	YUV422			X	x	X	X	X	X
	4	640 x 480	RGB8			X	x	X	X	X	X
	5	640 x 480	Mono8			x	x	x x*	x	x	x
	6	640 x 480	Mono16			x	x	x	x	x	х

Table 79: Video fixed formats Stingray F-046B / F-046C

*: Color camera outputs Mono8 interpolated image.

Frame rates with shading are only achievable with 1394b (S800).

Note

The following table shows default Format_7 modes without Format_7 mode mapping.

For information on Format_7 mode mapping ...

- ... see Chapter Mapping of possible Format_7 modes to F7M1...F7M7 on page 148
- ... see Chapter Format_7 mode mapping on page 301

Format	Mode	Resolution	Color mode	Maximal	S800 frame rates for Format_7 modes
	0	780 x 580	Mono8 Mono12 Mono16	61 fps 61 fps 61 fps	
		780 x 580	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	61 fps 61 fps 61 fps 48 fps 61 fps	
	1	388 x 580	Mono8 Mono12 Mono16	61 fps 61 fps 61 fps	2x H-binning 2x H-binning 2x H-binning
	2	780 x 290	Mono8 Mono12 Mono16	111 fps 111 fps 111 fps	2x V-binning 2x V-binning 2x V-binning
	3	388 x 290	Mono8 Mono12 Mono16	111 fps 111 fps 111 fps	2x H+V binning 2x H+V binning 2x H+V binning
	4	388 x 580	Mono8 Mono12 Mono16	61 fps 61 fps 61 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
7		388 x 580	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	61 fps 61 fps 61 fps 61 fps 61 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
	5	780 x 290	Mono8 Mono12 Mono16	79 fps 79 fps 79 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
		780 x 290	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	79 fps 79 fps 79 fps 79 fps 79 fps 79 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
	6	388 x 290	Mono8 Mono12 Mono16	79 fps 79 fps 79 fps	2 out of 4 H+V sub-sampling 2 out of 4 H+V sub-sampling 2 out of 4 H+V sub-sampling
		388 x 290	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	79 fps 79 fps 79 fps 79 fps 79 fps 79 fps	2 out of 4 H+V sub-sampling 2 out of 4 H+V sub-sampling

Table 80: Video Format_7 default modes Stingray F-046B / Stingray F-046C

Stingray Technical Manual V.4.5.0

Stingray F-080B / Stingray F-080C and board level F-080B BL / F-080C BL

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
0	0	160 x 120	YUV444								
	1	320 x 240	YUV422			X	X	X	X	X	X
	2	640 x 480	YUV411				X	X	X	X	X
	3	640 x 480	YUV422				X	X	X	X	X
	4	640 x 480	RGB8				X	X	X	X	X
	5	640 x 480	Mono8				x x*	x x*	x x*	x x*	x x*
	6	640 x 480	Mono16				x	x	x	x	x
1	0	800 x 600	YUV422				X	X	X	X	
	1	800 x 600	RGB8				X	X	X		
	2	800 x 600	Mono8				x x*	x x*	x x*		
	3	1024 x 768	YUV422				X	X	X	X	X
	4	1024 x 768	RGB8				X	x	X	X	X
	5	1024 x 768	Mono8				x x*	x x*	x x*	x x*	x x*
	6	800 x 600	Mono16				x	x	x	x	
	7	1024 x 768	Mono16				x	x	x	x	x

Table 81: Video fixed formats Stingray F-080B / F-080C

*: Color camera outputs Mono8 interpolated image.

Frame rates with shading are only achievable with 1394b (S800).

Note

The following table shows default Format_7 modes without Format_7 mode mapping.

For information on Format_7 mode mapping ...

- ... see Chapter Mapping of possible Format_7 modes to F7M1...F7M7 on page 148
- ... see Chapter Format_7 mode mapping on page 301

Format M	lode	Resolution	Color mode	Maxima	l S800 frame rates for Format_7 modes
7 0		1032 x 776	Mono8 Mono12 Mono16	31 fps 31 fps 31 fps	
		1032 x 776	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	31 fps 31 fps 31 fps 27 fps 31 fps	
1		516 x 776	Mono8 Mono12 Mono16	31 fps 31 fps 31 fps	2x H-binning 2x H-binning 2x H-binning
2		1032 x 388	Mono8 Mono12 Mono16	53 fps 53 fps 53 fps	2x V-binning 2x V-binning 2x V-binning
3		516 x 388	Mono8 Mono12 Mono16	53 fps 53 fps 53 fps	2x H+V binning 2x H+V binning 2x H+V binning
4		516 x 776	Mono8 Mono12 Mono16	31 fps 31 fps 31 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
		516 x 776	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	31 fps 31 fps 31 fps 31 fps 31 fps 31 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
5		1032 x 388	Mono8 Mono12 Mono16	39 fps 39 fps 39 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
		1032 x 388	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	39 fps 39 fps 39 fps 39 fps 39 fps 39 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
6		516 x 388	Mono8 Mono12 Mono16	39 fps 39 fps 39 fps	2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling
		516 x 388	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	39 fps 39 fps 39 fps 39 fps 39 fps 39 fps	2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling 2 out of 4 H+V-sub-sampling 2 out of 4 H+V sub-sampling

Table 82: Video Format_7 default modes Stingray F-080B / F-080C

Stingray Technical Manual V.4.5.0

Stingray F-125B / Stingray F-125C and board level F-125B BL / F-125C BL

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
0	0	160 x 120	YUV444								
	1	320 x 240	YUV422			X	X	x	x	X	X
	2	640 x 480	YUV411				X	x	x	X	X
	3	640 x 480	YUV422				X	x	x	X	X
	4	640 x 480	RGB8				X	x	x	X	X
	5	640 x 480	Mono8				x x*	x x*	x x*	x x*	x x*
	6	640 x 480	Mono16				x	x	x	x	x
1	0	800 x 600	YUV422				X	X	X	X	
	1	800 x 600	RGB8				X	X	X		
	2	800 x 600	Mono8				x x*	x x*	x x*		
	3	1024 x 768	YUV422				X	X	X	X	X
	4	1024 x 768	RGB8					x	X	X	X
	5	1024 x 768	Mono8				x x*	x x*	x x*	x x*	x x*
	6	800 x 600	Mono16				x	x	x	x	
	7	1024 x 768	Mono16				x	x	x	x	x
2	0	1280 x 960	YUV422					X	X	X	X
	1	1280 x 960	RGB8					x	x	X	X
	2	1280 x 960	Mono 8				x x*	x x*	x x*	x x*	x x*
	3	1600 x 1200	YUV422								
	4	1600 x 1200	RGB8								
	5	1600 x 1200	Mono8								
	6	1280 x 960	Mono16					x	x	x	x
	7	1600 x 1200	Mono16								

Table 83: Video fixed formats Stingray F-125B / F-125C

*: Color camera outputs Mono8 interpolated image.

Frame rates with shading are only achievable with 1394b (S800).

Note

The following table shows default Format_7 modes without Format_7 mode mapping.

- see Chapter Mapping of possible Format_7 modes to F7M1...F7M7 on page 148
- see Chapter Format_7 mode mapping on page 301

Format	Mode	Resolution	Color mode	Maximal S8	300 frame rates for Format_7 modes
7	0	1292 x 964 1292 x 964	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	30 fps 30 fps 26 fps 30 fps 26 fps 30 fps 17 fps 30 fps	
	1	644 x 964	Mono8 Mono12 Mono16	30 fps 30 fps 30 fps	2x H-binning 2x H-binning 2x H-binning
	2	1292 x 482	Mono8 Mono12 Mono16	53 fps 53 fps 52 fps	2x V-binning 2x V-binning 2x V-binning
	3	644 x 482	Mono8 Mono12 Mono16	53 fps 53 fps 53 fps	2x H+V binning 2x H+V binning 2x H+V binning
	4	644 x 964 644 x 964	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	30 fps 30 fps 30 fps 30 fps 30 fps 30 fps 30 fps 30 fps 30 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
	5#	1292 x 482 1292 x 482	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	30 fps 30 fps 30 fps 30 fps 30 fps 30 fps 30 fps 30 fps 30 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
	6#	644 x 964 644 x 482	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	30 fps 30 fps 30 fps 30 fps 30 fps 30 fps 30 fps 30 fps 30 fps	2 out of 4 H+V-sub-sampling 2 out of 4 H+V sub-sampling

Table 84: Video Format_7 default modes Stingray F-125B / F-125C

#: Vertical sub-sampling is done via digitally concealing certain lines, so the frame rate is not
frame rate = f (AOI height)
but

frame rate = f (2 x AOI height)

Stingray F-145B / Stingray F-145C and board level F-145B BL / F-145C BL

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
0	0	160 x 120	YUV444								
	1	320 x 240	YUV422				X	X	X	x	X
	2	640 x 480	YUV411					X	X	x	X
	3	640 x 480	YUV422					X	x	x	x
	4	640 x 480	RGB8					X	X	x	x
	5	640 x 480	Mono8					x x*	x x*	x x*	x x*
	6	640 x 480	Mono16					x	x	x	×
1	0	800 x 600	YUV422					X	X	X	
	1	800 x 600	RGB8					X	X		
	2	800 x 600	Mono8					x x*	x x*		
	3	1024 x 768	YUV422					X	x	X	X
	4	1024 x 768	RGB8					X	X	X	X
	5	1024 x 768	Mono8					x x*	x x*	x x*	x x*
	6	800 x 600	Mono16					x	x	x	
	7	1024 x 768	Mono16					x	x	x	x
2	0	1280 x 960	YUV422					X	X	X	X
	1	1280 x 960	RGB8					X	x	x	X
	2	1280 x 960	Mono 8					x x*	x x*	x x*	x x*
	3	1600 x 1200	YUV422								
	4	1600 x 1200	RGB8								
	5	1600 x 1200	Mono8		1	1					
	6	1280 x 960	Mono16		1			x	x	x	x
	7	1600 x 1200	Mono16								1

Table 85: Video fixed formats Stingray F-145B / F-145C

*: Color camera outputs Mono8 interpolated image.

Frame rates with shading are only achievable with 1394b (S800).

Note

The following table shows default Format_7 modes without Format_7 mode mapping.

- see Chapter Mapping of possible Format_7 modes to F7M1...F7M7 on page 148
- see Chapter Format_7 mode mapping on page 301

Format	Mode	Resolution	Color mode	Maximal S8	800 frame rates for Format_7 modes
7	0	1388 x 1038 1388 x 1038	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	16 fps 16 fps 16 fps 16 fps 16 fps 16 fps 15 fps 16 fps	
	1	692 x 1038	Mono8 Mono12 Mono16	16 fps 16 fps 16 fps	2x H-binning 2x H-binning 2x H-binning
	2	1388 x 518	Mono8 Mono12 Mono16	27 fps 27 fps 27 fps	2x V-binning 2x V-binning 2x V-binning
	3	692 x 518	Mono8 Mono12 Mono16	27 fps 27 fps 27 fps	2x H+V binning 2x H+V binning 2x H+V binning
	4	692 x 1038 692 x 1038	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	16 fps 16 fps 16 fps 16 fps 16 fps 16 fps 16 fps 16 fps 16 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
	5#	1388 x 518 1388 x 518	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	16 fps 16 fps 16 fps 16 fps 16 fps 16 fps 16 fps 16 fps 16 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
	6#	692 x 518 692 x 518	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	16 fps 16 fps 16 fps 16 fps 16 fps 16 fps 16 fps 16 fps 16 fps	2 out of 4 H+V-sub-sampling 2 out of 4 H+V sub-sampling

Table 86: Video Format_7 default modes Stingray F-145B / F-145C

#: Vertical sub-sampling is done via digitally concealing certain lines, so the frame rate is not
frame rate = f (AOI height)
but

frame rate = f (2 x AOI height)

Stingray F-146B / Stingray F-146C and board level F-146B BL / F-146C BL

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
0	0	160 x 120	YUV444								
	1	320 x 240	YUV422				X	X	X	X	X
	2	640 x 480	YUV411					X	X	X	X
	3	640 x 480	YUV422					X	X	x	X
	4	640 x 480	RGB8								
	5	640 x 480	Mono8					x x*	x x*	x x*	x x*
	6	640 x 480	Mono16					x	x	x	x
1	0	800 x 600	YUV422					X	X	X	
	1	800 x 600	RGB8								
	2	800 x 600	Mono8					x x*	x x*		
	3	1024 x 768	YUV422					X	X	X	X
	4	1024 x 768	RGB8								
	5	1024 x 768	Mono8					x x*	x x*	x x*	x x*
	6	800 x 600	Mono16					x	x	x	
	7	1024 x 768	Mono16					x	x	x	x
2	0	1280 x 960	YUV422					X	X	X	X
	1	1280 x 960	RGB8								
	2	1280 x 960	Mono 8					x x*	x x*	x x*	x x*
	3	1600 x 1200	YUV422								
	4	1600 x 1200	RGB8								
	5	1600 x 1200	Mono8								
	6	1280 x 960	Mono16					x	x	x	x
	7	1600 x 1200	Mono16								

Table 87: Video fixed formats Stingray F-146B / F-146C

*: Color camera outputs Mono8 interpolated image.

Frame rates with shading are only achievable with 1394b (S800).

Note

i

- The following table shows default Format_7 modes without Format_7 mode mapping.
 - see Chapter Mapping of possible Format_7 modes to F7M1...F7M7 on page 148
 - see Chapter Format_7 mode mapping on page 301

Format	Mode	Resolution	Color mode	Maximal S8	00 frame rates for Format_7 modes
7	0	1388 x 1038 1388 x 1038	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	15 fps 15 fps 15 fps 15 fps 15 fps 15 fps 15 fps 15 fps 15 fps	
	1	692 x 1038	Mono8 Mono12 Mono16	15 fps 15 fps 15 fps	2x H-binning 2x H-binning 2x H-binning
	2	1388 x 518	Mono8 Mono12 Mono16	26 fps 26 fps 26 fps	2x V-binning 2x V-binning 2x V-binning
	3	692 x 518	Mono8 Mono12 Mono16	26 fps 26 fps 26 fps	2x H+V binning 2x H+V binning 2x H+V binning
	4	692 x 1038 692 x 1038	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	15 fps 15 fps 15 fps 15 fps 15 fps 15 fps 15 fps 15 fps 15 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
	5#	1388 x 518 1388 x 518	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	15 fps 15 fps 15 fps 15 fps 15 fps 15 fps 15 fps 15 fps 15 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
	6#	692 x 518 692 x 518	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	15 fps 15 fps 15 fps 15 fps 15 fps 15 fps 15 fps 15 fps 15 fps	2 out of 4 H+V-sub-sampling 2 out of 4 H+V sub-sampling

Table 88: Video Format_7 default modes Stingray F-146B / F-146C

#: Vertical sub-sampling is done via digitally concealing certain lines, so the frame rate is not
frame rate = f (AOI height)
but

frame rate = f (2 x AOI height)

Stingray F-201B / Stingray F-201C and board level F-201B BL / F-201C BL

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
0	0	160 x 120	YUV444								
	1	320 x 240	YUV422				x	X	X	X	X
	2	640 x 480	YUV411				x	X	X	X	X
	3	640 x 480	YUV422				x	X	X	X	X
	4	640 x 480	RGB8								
	5	640 x 480	Mono 8				x x*	x x*	x x*	x x *	x x*
	6	640 x 480	Mono 16				x	x	x	x	x
1	0	800 x 600	YUV422					X	X	X	
	1	800 x 600	RGB8								
	2	800 x 600	Mono8					x x*	x x*		
	3	1024 x 768	YUV422					x	x	X	X
	4	1024 x 768	RGB8								
	5	1024 x 768	Mono 8					x x*	x x*	x x *	x x*
	6	800 x 600	Mono16					x	x	x	
	7	1024 x 768	Mono16					x	x	x	x
2	0	1280 x 960	YUV422						X	X	X
	1	1280 x 960	RGB8								
	2	1280 x 960	Mono 8					x x*	x x*	x x*	x x*
	3	1600 x 1200	YUV422						X	X	X
	4	1600 x 1200	RGB8								
	5	1600 x 1200	Mono8					x x*	x x*	x x*	x x*
	6	1280 x 960	Mono16					x	x	x	x
	7	1600 x 1200	Mono16					x	x	x	x

Table 89: Video fixed formats Stingray F-201B / F-201C

*: Color camera outputs Mono8 interpolated image.

Frame rates with shading are only achievable with 1394b (S800).

Note

The following table shows default Format_7 modes without Format_7 mode mapping.

- see Chapter Mapping of possible Format_7 modes to F7M1...F7M7 on page 148
- see Chapter Format_7 mode mapping on page 301

Format	Mode	Resolution	Color mode	Maximal S800 frame rates for Format_7 modes				
7	0	1624 x 1234 1624 x 1234	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	14 fps 14 fps 14 fps 14 fps 14 fps 14 fps 10 fps 14 fps				
	1	812 x 1234	Mono8 Mono12 Mono16	14 fps 14 fps 14 fps	2x H-binning 2x H-binning 2x H-binning			
		812 x 1234	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	14 fps 14 fps 14 fps 14 fps 14 fps 14 fps	2x H-binning 2x H-binning 2x H-binning 2x H-binning 2x H-binning			
	2	1624 x 616	Mono8 Mono12 Mono16	26 fps 26 fps 26 fps	2x V-binning 2x V-binning 2x V-binning			
		1624 x 614	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	26 fps 26 fps 26 fps 21 fps 26 fps	2x V-binning 2x V-binning 2x V-binning 2x V-binning 2x V-binning			
	3	812 x 616	Mono8 Mono12 Mono16	26 fps 26 fps 26 fps	2x H+V binning 2x H+V binning 2x H+V binning			
		812 x 614	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	26 fps 26 fps 26 fps 26 fps 26 fps 26 fps	2x H+V binning 2x H+V binning 2x H+V binning 2x H+V binning 2x H+V binning			
	4	812 x 1234	Mono8 Mono12 Mono16	14 fps 14 fps 14 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling			
		812 x 1234	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	14 fps 14 fps 14 fps 14 fps 14 fps 14 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling			

Table 90: Video Format_7 default modes Stingray F-201B / F-201C

Format	Mode	Resolution	Color mode	Maxima	l S800 frame rates for Format_7 modes
7	5 [#]	1624 x 616	Mono8	14 fps	2 out of 4 V-sub-sampling
			Mono12	14 fps	2 out of 4 V-sub-sampling
			Mono16	14 fps	2 out of 4 V-sub-sampling
		1624 x 616	YUV411	14 fps	2 out of 4 V-sub-sampling
			YUV422,Raw16	14 fps	2 out of 4 V-sub-sampling
			Mono8,Raw8	14 fps	2 out of 4 V-sub-sampling
			RGB8	14 fps	2 out of 4 V-sub-sampling
			Raw12	14 fps	2 out of 4 V-sub-sampling
	6 [#]	812 x 616	Mono8	14 fps	2 out of 4 H+V sub-sampling
	•		Mono12	14 fps	2 out of 4 H+V sub-sampling
			Mono16	14 fps	2 out of 4 H+V sub-sampling
		812 x 616	YUV411	14 fps	2 out of 4 H+V sub-sampling
			YUV422,Raw16	14 fps	2 out of 4 H+V sub-sampling
			Mono8,Raw8	14 fps	2 out of 4 H+V sub-sampling
			RGB8	14 fps	2 out of 4 H+V sub-sampling
			Raw12	14 fps	2 out of 4 H+V sub-sampling

Table 90: Video Format_7 default modes Stingray F-201B / F-201C

#: Vertical sub-sampling is done via digitally concealing certain lines, so the frame rate is not frame rate = f (AOI height) but

frame rate = f (2 x AOI height)

Stingray F-504B / Stingray F-504C and board level F-504B BL / F-504C BL

Format	Mode	Resolution	Color mode	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
-	0	160 x 120	YUV444								
	1	320 x 240	YUV422				x	X	x	x	X
	2	640 x 480	YUV411					X	X	X	X
	3	640 x 480	YUV422					X	x	x	X
	4	640 x 480	RGB8					X	x	x	X
	5	640 x 480	Mono8					x x*	x x*	x x*	x x*
	6	640 x 480	Mono16					x	x	x	x
1	0	800 x 600	YUV422					X	X	X	
	1	800 x 600	RGB8					X	x		
	2	800 x 600	Mono8					x x*	x x*		
	3	1024 x 768	YUV422					X	X	X	X
	4	1024 x 768	RGB8					X	X	X	X
	5	1024 x 768	Mono8					x x*	x x*	x	x x*
	6	800 x 600	Mono16					x	x	x	
	7	1024 x 768	Mono16					x	x	x	x
2	0	1280 x 960	YUV422					X	X	X	X
	1	1280 x 960	RGB8					x	x	x	X
	2	1280 x 960	Mono8					x x*	x x*	x x*	x x*
	3	1600 x 1200	YUV422						X	x	X
	4	1600 x 1200	RGB8						x	x	X
	5	1600 x 1200	Mono8						x x*	x x*	x x*
	6	1280 x 960	Mono16					x	x	x	x
	7	1600 x 1200	Mono16						x	x	x

Table 91: Video fixed formats Stingray F-504B / F-504C

*: Color camera outputs Mono8 interpolated image.

Frame rates with shading are only achievable with 1394b (S800).

Note

i

- The following table shows default Format_7 modes without Format_7 mode mapping.
 - see Chapter Mapping of possible Format_7 modes to F7M1...F7M7 on page 148
 - see Chapter Format_7 mode mapping on page 301

Stingray Technical Manual V.4.5.0

Format	Mode	Resolution	Color mode	Maxima	l S800 frame rates for Format_7 modes
7	0	2452 x 2056 2452 x 2056	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	9 fps 8 fps 6 fps 8 fps 6 fps 9 fps 4 fps 8 fps	
	1	1224 x 2056	Mono8 Mono12 Mono16	9 fps 9 fps 9 fps	2x H-binning 2x H-binning 2x H-binning
	2	2452 x 1028	Mono8 Mono12 Mono16	15 fps 15 fps 12 fps	2x V-binning 2x V-binning 2x V-binning
	3	1224 x 1028	Mono8 Mono12 Mono16	15 fps 15 fps 15 fps	2x H+V binning 2x H+V binning 2x H+V binning
	4	1224 x 2056	Mono8 Mono12 Mono16	9 fps 9 fps 9 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
		1224 x 2056	YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	9 fps 9 fps 9 fps 8 fps 9 fps	2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling 2 out of 4 H-sub-sampling
7	5#	2452 x 1028 2452 x 1028	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	9 fps 9 fps 9 fps 9 fps 9 fps 9 fps 8 fps 9 fps	2 out of 4 V-sub-sampling 2 out of 4 V-sub-sampling
	6#	1224 x 1028 1224 x 1028	Mono8 Mono12 Mono16 YUV411 YUV422,Raw16 Mono8,Raw8 RGB8 Raw12	9 fps 9 fps 9 fps 9 fps 9 fps 9 fps 9 fps 9 fps	2 out of 4 H+V sub-sampling 2 out of 4 H+V sub-sampling

Table 92: Video Format_7 default modes Stingray F-504B / F-504C

#: Vertical sub-sampling is done via digitally concealing certain lines, so the frame rate is not
frame rate = f (AOI height)
but
frame rate = f (2 x AOI height)

Video formats, modes and bandwidth

Area of interest (AOI)

The camera's image sensor has a defined resolution. This indicates the maximum number of lines and pixels per line that the recorded image may have.

However, often only a certain section of the entire image is of interest. The amount of data to be transferred can be decreased by limiting the image to a section when reading it out from the camera. At a lower vertical resolution, the sensor can be read out faster. Thus, the frame rate is increased.

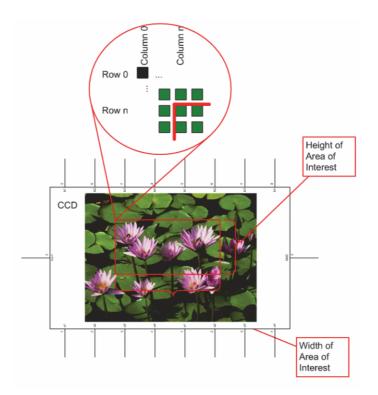
Note

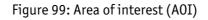
The setting of AOIs is supported only in video Format_7.

(i)

For most other video formats, the size of the image read out and modes is fixed by the IIDC specification, thereby determining the highest possible frame rate. In Format_7 mode the user can set the **upper left corner**, as well as **width and height** of the section (area of interest = AOI) to determine the size and thus the highest possible frame rate.

Setting the AOI is done in the IMAGE_POSITION and IMAGE_SIZE registers.

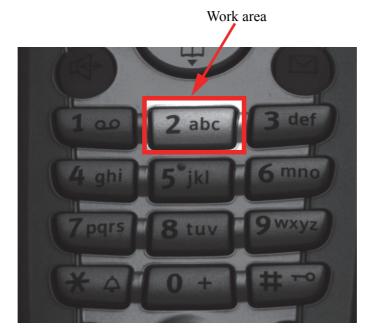

Pay attention to the increments entering in the UNIT_-SIZE_INQ and UNIT_POSITION_INQ registers when configuring IMAGE_POSITION and IMAGE_SIZE.


AF_AREA_POSITION and AF_AREA_SIZE contain in the respective bits values for column and line of the upper left corner and values for the width and height.

Note For more information see Table 126: on page 266.

- The left position + width and the upper position + height may not exceed the maximum resolution of the sensor.
- **(i)**
- The coordinates for width and height must be divisible by 4.

In addition to the area of interest (AOI), some other parameters have an effect on the maximum frame rate:


- •The time for reading the image from the sensor and transporting it into the FRAME_BUFFER
- •The time for transferring the image over the FireWire $\tilde{\mathsf{N}}^{\texttt{t}}$ bus
- •The length of the exposure time

Autofunction AOI

Feature to select the image area (work area) for the following auto functions:

- Auto shutter
- Auto gain
- Auto white balance

The following screenshot shows an example of the auto function AOI:

Figure 100: Example of autofunction AOI (Show work area is on)

Autofunction AOI is independent from Format_7 AOI settings.

If you switch off auto function AOI, work area position and work area size follow the current active image size.

To switch off auto functions, carry out following actions in the order shown:

1. Uncheck Show AOI check box (SmartView Ctrl2 tab).

2. Uncheck **Enable** check box (SmartView **Ctrl2** tab). Switch off Auto mode (e.g., **Shutter** and/or **Gain**) (SmartView Ctrl2 tab).

It uses a grid of up to 65534 sample points equally spread over the AOI as a reference. Note

Configuration

To configure this feature in an advanced register see Chapter Autofunction AOI on page 292.

Frame rates

The IEEE 1394b bus has bandwidth of at least 62.5 MByte/s for transferring (isochronously) image data. Therefore, up to 8192 bytes per cycle (or around 2000 quadlets = 4 bytes@ 800 Mbit/s) can be transmitted.

Depending on the video format settings and the configured frame rate, the camera requires a certain percentage of maximum available bandwidth. Clearly, the bigger the image and the higher the frame rate, the more data is to be transmitted.

The following tables indicate the volume of data in various formats and modes to be sent within one cycle (125 μ s) at 800 Mbit/s of bandwidth.

The tables are divided into three formats:

Format	Resolution	Max. video format
Format_0	up to VGA	640 x 480
Format_1	up to XGA	1024 x 768
Format_2	up to UXGA	1600 x 1200

Table 93: Overview fixed formats

The bandwidth is determined by the required image resolution and by the number of cameras that have be operated independently on a bus in a certain mode.

Abbreviations (used according IIDC 1394-based Digital Camera Specification):

- H: line/packet
- p: pixel/packet
- q: quadlet/packet

Format	: Mode	Resolution	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps
0	0	160 x 120 YUV (4:4:4) 24 bit/pixel	4H 640p 480q	2H 320p 240q	1H 160p 120q	1/2H 80p 60q	1/4H 40p 30q	1/8H 20p 15q	
	1	320 x 240 YUV (4:2:2) 16 bit/pixel	8H 2560p 1280q	4H 1280p 640q	2H 640p 320q	1H 320p 160q	1/2H 160p 80q	1/4H 80p 40q	1/8H 40p 20q
	2	640 x 480 YUV (4:1:1) 12 bit/pixel		8H 5120p 1920q	4H 2560p 960q	2H 1280p 480q	1H 640p 240q	1/2H 320p 120q	1/4H 160p 60q
	3	640 x 480 YUV (4:2:2) 16 bit/pixel			4H 2560p 1280q	2H 1280p 640q	1H 640p 320q	1/2H 320p 160q	1/4H 160p 80q
	4 640 x 480 RGB 24 bit/pixel				4H 2560p 1280q	2H 1280p 960q	1H 640p 480q	1/2H 320p 240q	1/4H 160p 120q
	5	640 x 480 (Mono8) 8 bit/pixel		8H 5120p 1280q	4H 2560p 640q	2H 1280p 320q	1H 640p 160q	1/2H 320p 80q	1/4H 160 p40q
	6	640 x 480 Y (Mono16) 16 Bit/pixel			4H 2560p 1280q	2H 1280p 640q	1H 640p 320q	1/2H 320p 160q	1/4H 160p 80q
	7	Reserved							

Table 94: Format_0

As an example, VGA Mono8 @ 60 fps requires four lines (640 x 4 = 2560 pixels/ byte) to transmit every 125 μ s: this is a consequence of the sensor's line time of about 30 μ s: therefore, no data needs to be stored temporarily.

It takes 120 cycles ($120 \times 125 \mu s = 15 ms$) to transmit one frame, which arrives every 16.6 ms from the camera. Again, no data need to be stored temporarily.

Thus, around 64% of the available bandwidth (at S400) is used. Consequently, one camera can be connected to the bus at S400.

The same camera, run at S800 would require only 32% of the available bandwidth. Thus, up to three cameras can be connected to the bus at S800.

Format	Mode	Resolution	240 fps	120 fps	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
1	0	800 x 600 YUV (4:2:2) 16 bit/pixel			5H 4000p 2000q	5/2H 2000p 1000q	5/4H 1000p 500q	5/8H 500p 250q	6/16H 250p 125q	
	1	800 x 600 RGB 24 bit/pixel			20004	5/2H 2000p 1500q	5/4H 1000p 750q	5/8H 500p 375q	1239	
	2	800 x 600 Y (Mono8) 8 bit/pixel		10H 8000p 2000q	5H 4000p 1000q	5/2H 2000p 500q	5/4H 1000p 250q	5/8H 500p 125q		
	3	1024 x 768 YUV (4:2:2) 16 bit/pixel				3H 3072p 1536q	3/2H 1536p 768q	3/4H 768p 384q	3/8H 384p 192q	3/16H 192p 96q
	4	1024 x 768 RGB 24 bit/pixel					3/2H 1536p 384q	3/4H 768p 576q	3/8H 384p 288q	3/16H 192p 144q
	5	1024 x 768 Y (Mono) 8 bit/pixel			6H 6144p 1536q	3H 3072p 768q	3/2H 1536p 384q	3/4H 768p 192q	3/8H 384p 96q	3/16H 192p 48q
	6	800 x 600 (Mono16) 16 bit/pixel			5H 4000p 2000q	5/2H 2000p 1000q	5/4H 1000p 500q	5/8H 500p 250q	5/16H 250p 125q	
	7	1024 x 768 Y (Mono16) 16 bit/pixel				3H 3072p 1536q	3/2H 1536p 768q	3/4H 768p 384q	3/8H 384p 192q	3/16H 192p 96q

Table 95: Format_1

Format	Mode	Resolution	60	fps 3	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
2	0	1280 x 960 YUV (4:2:2)				2H	1H	1/2H	1/4H
		16 bit/pixel				2560p 1280q	1280p 640q	640p 320q	320p 160q
	1	1280 x 960 RGB				2H	1H	1/2H	1/4H
		24 bit/pixel				2560p 1920q	1280p 960q	640p 480q	320p 240q
	2	1280 x 960 Y (Mono8)			ιH	2H	1H	1/2H	1/4H
	8	8 bit/pixel			5120p 280q	2560p 640q	1280p 320q	640p 160q	320p 80q
	3	1600 x 1200 YUV(4:2:2)				5/2H	5/4H	5/8H	5/16H
		16 bit/pixel				4000p 2000q	2000p 1000q	1000p 500q	500p 250q
	4	1600 x 1200 RGB					5/4H	5/8H	5/16
		24 bit/pixel					2000p 1500q	1000p 750q	500p 375q
	5	1600 x 1200 Y (Mono) 8			δH	5/2H	5/4H	5/8H	5/16H
		bit/pixel			8000p 2000q	4000p 1000q	2000p 500q	1000p 250q	500p 125q
	6	1280 x 960 Y (Mono16)				2H	1H	1/2H	1/4H
		16 bit/pixel				2560p 1280q	1280p 640q	640p 320q	320p 160q
	7	1600 x 1200Y(Mono16)				5/2H	5/4H	5/8H	5/16H
		16 bit/pixel				4000p 2000q	2000p 1000q	1000p 500q	500p 250q

Table 96: Format_2

As already mentioned, the recommended limit for transferring isochronous image data is 2000q (quadlets) per cycle or 8192 bytes (with 800 Mbit/s of bandwidth).

Note

- If the cameras are operated with an external trigger the maximum trigger frequency may not exceed the highest continuous frame rate, thus, preventing frames from being dropped or corrupted.
- IEEE 1394 adapter cards with PCILynxTM chipsets (predecessor of OHCI) have a limit of 4000 bytes per cycle.

The frame rates in video modes 0 to 2 are specified and set fixed by IIDC V1.31.

Frame rates Format_7

•

In video Format_7 frame rates are no longer fixed.

Note

- Different values apply for the different sensors.
 - Frame rates may be further limited by longer shutter times and/or bandwidth limitation from the IEEE 1394 bus.

Details are described in the next chapters:

- Max. frame rate of CCD (theoretical formula)
- Graphs of frame rates as function of AOI by constant width: the curves describe RAW8, RAW12/YUV411, RAW16/YUV422, RGB8 and max. frame rate of CCD
- Table with max. frame rates as function of AOI by constant width

Video formats, modes and bandwidth

Stingray F-033/F-033 BL: AOI frame rates

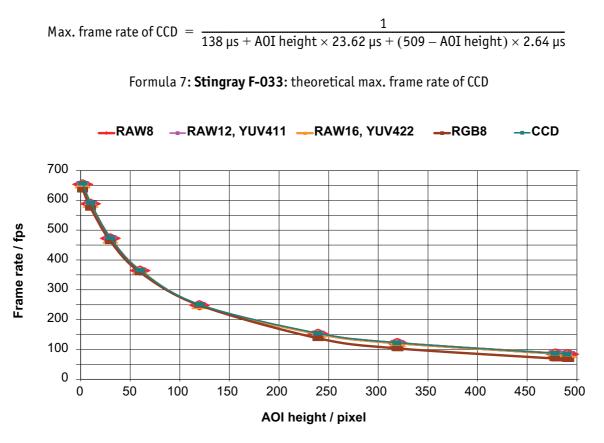
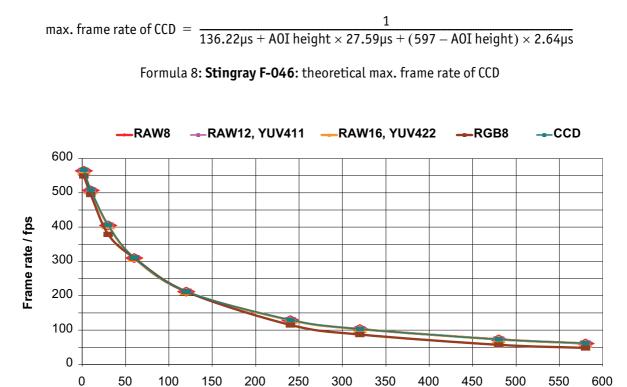


Figure 101: Frame rates Stingray F-033 as function of AOI height [width=656]

AOI height	CCD*	Raw8	Raw12	Raw16	YUV411	YUV422	RGB8
492	84.72	84	84	84	84	84	67/84**
480	86.56	86	86	86	86	86	68/86**
320	122.02	121	121	121	121	121	103/121**
240	153.45	153	153	153	152	152	137/152**
120	250.04	249	249	249	242	247	246
60	364.89	363	363	363	358	358	358
30	473.67	468	468	471	462	462	462
10	591.17	588	588	588	574	574	574
2	656.29	653	653	653	635	635	635


Table 97: Frame rates (fps) of **Stingray F-033** as function of AOI height (pixel) [width=656]

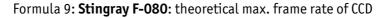
* CCD = theoretical max. frame rate (in fps) of CCD according to given formula

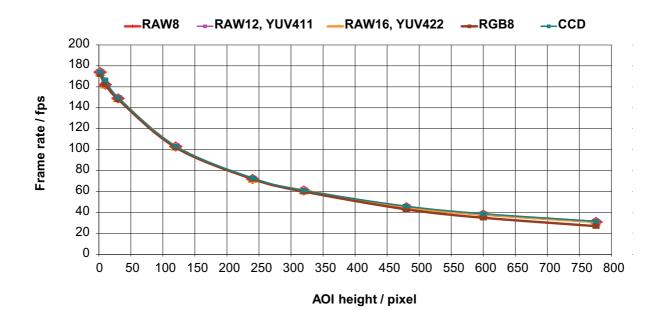
**only with max BPP=1100; see Chapter Maximum ISO packet size on page 297

Stingray F-046/F-046 BL: AOI frame rates

AOI height / pixel

Figure 102: Frame rates Stingray F-046 as function of AOI height [width=780]


AOI height	CCD*	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
580	61.79	61	61	61	61	61	48
480	73.06	73	73	73	73	73	57
320	103.13	103	103	103	103	103	87
240	129.87	129	129	129	129	129	115
120	212.48	212	212	212	210	210	210
60	311.59	310	310	310	306	306	306
30	406.37	405	405	405	379	379	379
10	509.74	507	507	507	495	495	495
2	567.47	564	564	564	549	549	549


Table 98: Frame rates (fps) of Stingray F-046 as function of AOI height (pixel) [width=780]

Stingray F-080/F-080 BL: AOI frame rates

max. frame rate of CCD = $\frac{1}{222\mu s + A0I \text{ height} \times 40.50\mu s + (778 - A0I \text{ height}) \times 7.00\mu s}$

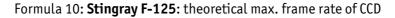

AOI height	CCD*	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
776	31.56	31	31	31	31	31	27
600	38.81	38	38	38	38	38	35
480	45.98	45	45	45	45	45	43
320	61.02	61	61	61	60	60	60
240	72.95	72	72	72	72	72	72
120	103.22	103	103	103	102	102	102
30	149.86	149	149	149	148	148	148
10	166.58	162	162	162	162	162	162
2	174.37	174	174	174	172	172	172

Table 99: Frame rates (fps) of **Stingray F-080** as function of AOI height (pixel) [width=1032]

Stingray F-125/F-125 BL: AOI frame rates

max. frame rate of CCD = $\frac{1}{189.28\mu s + (977 - A0I \text{ height}) \times 5.03\mu s + A0I \text{ height} \times 33.19\mu s}$

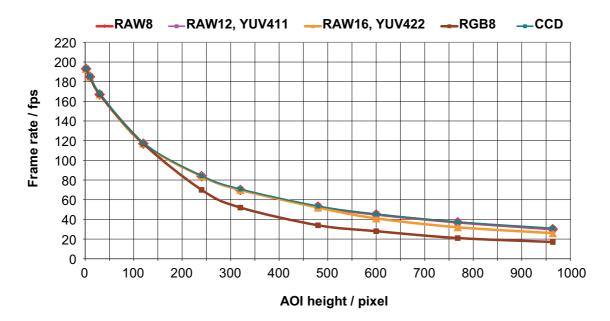


Figure 104: Frame rates Stingray F-125 as function of AOI height [width=1292]

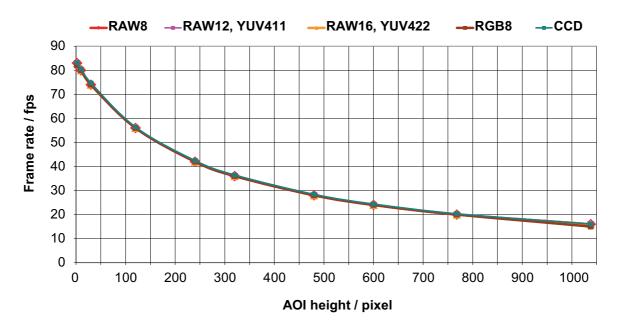
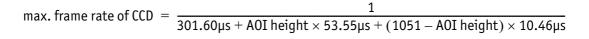

AOI height	CCD*	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
964	31.01	30	30	26	30	26	17
768	37.41	37	37	32	37	32	21
600	45.46	45	45	41	45	41	28
480	53.70	53	53	52	53	52	34
320	70.85	70	70	70	70	70	52
240	84.30	84	84	84	84	84	70
120	117.89	117	117	117	117	117	117
30	168.37	167	167	167	167	167	167
10	185.69	185	185	185	185	185	185
2	193.80	193	193	193	193	193	193

Table 100: Frame rates (fps) Stingray F-125 as function of AOI height (pixel) [width=1292]

Stingray F-145/F-145 BL: AOI frame rates

max. frame rate of CCD = $\frac{1}{450.00\mu s + AOI \text{ height} \times 59.36\mu s + (1051 - AOI \text{ height}) \times 10.92\mu s}$

Formula 11: Stingray F-145: theoretical max. frame rate of CCD


Figure 105: Frame rates **Stingray F-145** as function of AOI height [width=1388]

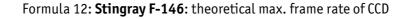

A0I height	CCD*	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
1038	16.08	16	16	16	16	16	15
768	20.35	20	20	20	20	20	20
600	24.40	24	24	24	24	24	24
480	28.43	28	28	28	28	28	28
320	36.46	36	36	36	36	36	36
240	42.46	42	42	42	42	42	42
120	56.37	56	56	56	56	56	56
30	74.74	74	74	74	74	74	74
10	80.57	80	80	80	80	80	80
2	83.17	83	83	83	82	82	82

Table 101: Frame rates (fps) Stingray F-145 as function of AOI height (pixel) [width=1388]

Stingray F-146/F-146 BL: AOI frame rates

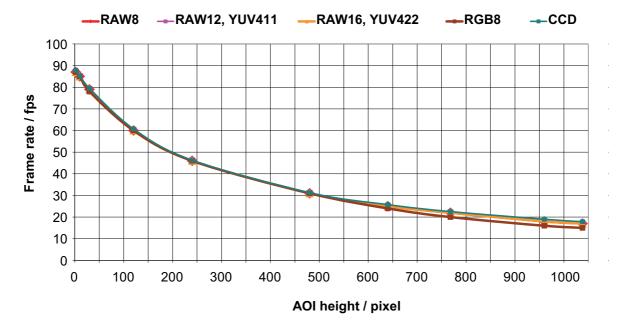


Figure 106: Frame rates Stingray F-146 as function of AOI height [width=1388]

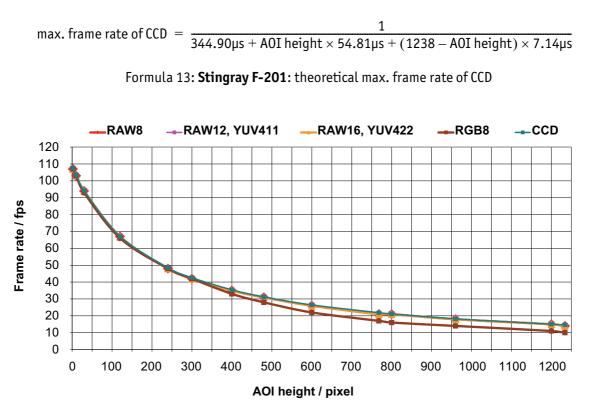

A0I height	CCD*	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
1038	17.85	17	17	17	17	17	15
960	18.99	18	18	18	18	18	16
768	22.53	22	22	22	22	22	20
640	25.73	25	25	25	25	25	24
480	31.27	31	31	31	31	31	31
240	46.22	46	46	46	46	46	46
120	60.73	60	60	60	60	60	60
30	79.44	79	79	79	78	78	78
10	85.28	85	85	85	85	85	85
2	87.86	87	87	87	87	87	87

Table 102: Frame rates (fps) of Stingray F-146 as function of AOI height (pixel) [width=1388]

* CCD = theoretical max. frame rate (in fps) of CCD according to given formula

Stingray F-201/F-201 BL: AOI frame rates

Formula 14: Frame rates **Stingray F-201** as function of AOI height [width=1624]

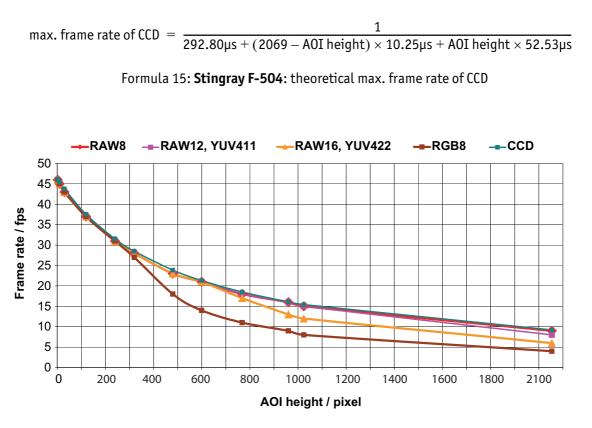

AOI height	CCD*	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
1234	14.70	14	14	14	14	14	10
1200	15.06	15	15	15	15	15	11
960	18.20	18	18	18	18	18	14
800	21.13	21	21	21	21	21	16
768	21.84	21	21	21	21	21	17
600	26.46	26	26	26	26	26	22
480	31.19	31	31	31	31	31	28
400	35.40	35	35	35	35	35	33
300	42.58	42	42	42	42	42	42
240	48.48	48	48	48	48	48	48
120	67.09	67	67	67	67	67	66
30	94.21	94	94	94	94	94	93
10	103.51	103	103	103	103	103	103
2	107.76	107	107	107	107	107	107

Table 103: Frame rates of Stingray F-201 as function of AOI height [width=1624]

* CCD = theoretical max. frame rate (in fps) of CCD according to given formula

Stingray F-504/F-504 BL: AOI frame rates

Formula 16: Frame rates **Stingray F-504** as function of AOI height [width=2452]

AOI height	CCD*	RAW8	RAW12	RAW16	YUV411	YUV422	RGB8
2054	9.22	9	8	6	8	6	4
1024	15.41	15	15	12	15	12	8
960	16.08	16	16	13	16	13	9
768	18.50	18	18	17	18	17	11
600	21.30	21	21	21	21	21	14
480	23.88	23	23	23	23	23	18
320	28.48	28	28	28	28	28	27
240	31.51	31	31	31	31	31	31
120	37.51	37	37	37	37	37	37
30	43.76	43	43	43	43	43	43
10	45.44	45	45	45	45	45	45
2	46.15	46	46	46	46	46	46

Table 104: Frame rates of **Stingray F-504** as function of AOI height [width=2452]

* CCD = theoretical max. frame rate (in fps) of CCD according to given formula

How does bandwidth affect the frame rate?

In some modes, the IEEE 1394b bus limits the attainable frame rate. According to the 1394b specification on isochronous transfer, the largest data payload size of 8192 bytes per 125 μ s cycle is possible with bandwidth of 800 Mbit/s. In addition, there is a limitation: only a maximum number of 65535 (2¹⁶-1) packets per frame are allowed.

Note

Using **FirePackage**, certain cameras may offer higher packet sizes, depending on their settings.

Should you need detailed support to use this feature, please contact support@alliedvision.com.

The following formula establishes the relationship between the required Byte_Per_Packet size and certain variables for the image. It is valid only for Format_7.

 $BYTE_PER_PACKET = frame \ rate \times AOI_WIDTH \times AOI_HEIGHT \times ByteDepth \times 125 \mu s$

Formula 17: Byte_per_Packet calculation (only Format_7)

If the value for **BYTE_PER_PACKET** is greater than 8192 (the maximum data payload), the desired frame rate cannot be attained.

The attainable frame rate can be calculated using this formula:

(Provision: BYTE_PER_PACKET is divisible by 4):

frame rate $\approx \frac{BYTE_PER_PACKET}{AOI_WIDTH \times AOI_HEIGHT \times ByteDepth \times 125 \mu s}$

Formula 18: Maximum frame rate calculation

ByteDepth is based on the following values:

Mode	bit/pixel	byte per pixel
Mono8, Raw8	8	1
Mono12, Raw12	12	1.5
Mono16, Raw16	14	2
Mono16, Raw16 (High SNR mode)	16	2
YUV4:2:2	16	2
YUV4:1:1	12	1.5
RGB8	24	3

Table 105: ByteDepth

Example formula for the b/w camera

Mono16, 1392 x 1040, 30 fps desired

 $BYTE_PER_PACKET = 30 \times 1392 \times 1040 \times 2 \times 125 \mu s = 10856 > 8192$

 $\Rightarrow \text{ frame rate}_{\text{reachable}} \approx \frac{8192}{1392 \times 1040 \times 2 \times 125 \mu s} = 22.64 \times \frac{1}{s}$

Formula 19: Example maximum frame rate calculation

Test images

Loading test images

FirePackage	Fire4Linux
1. Start SmartView.	1. Start cc1394 viewer.
2. Click the Edit settings button.	 In Adjustments menu click on Picture Control.
3. Click Adv1 tab.	3. Click Main tab.
4. In combo box Test images choose	4. Activate Test image check box on .
Image 1 or another test image.	5. In combo box Test images choose Image 1 or another test image.

Table 106: Loading test images in different viewers

Test images for b/w cameras

Stingray b/w cameras have two test images that look the same. Both images show a gray bar running diagonally.

- Image 1 is static.
- **Image 2** moves upwards by 1 pixel/frame.



Figure 107: Gray bar test image

Test images for color cameras

The color cameras have 1 test image:

YUV4:2:2 mode

Figure 108: Color test image

Mono8 (raw data)

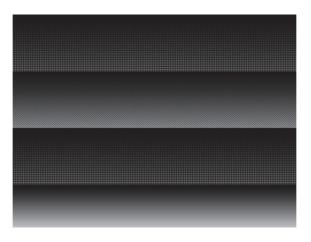


Figure 109: Bayer-coded test image

The color camera outputs Bayer-coded raw data in Mono8 instead of (as described in IIDC V1.31) a real Y signal.

The first pixel of the image is always the red pixel from the sensor. (Mirror must be switched of)

Configuration of the camera

All camera settings are made by writing specific values into the corresponding registers.

This applies to:

- Values for general operating states such as video formats and modes, exposure times, etc.
- Extended features of the camera that are turned on and off and controlled via corresponding registers (so-called advanced registers).

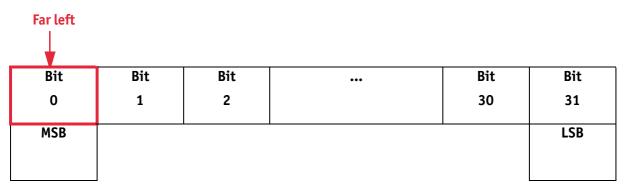
Camera_Status_Register

The interoperability of cameras from different manufacturers is ensured by IIDC, formerly DCAM (Digital Camera Specification), published by the IEEE 1394 Trade Association.

IIDC is primarily concerned with setting memory addresses (e.g. CSR: Camera_Status_Register) and their meaning.

In principle, all addresses in IEEE 1394 networks are 64 bits long.

The first 10 bits describe the Bus_Id, the next 6 bits the Node_Id.


Of the subsequent 48 bit, the first 16 bit are always FFFFh; leaving the description for the Camera_Status_Register in the last 32 bit.


For example: If the CSR address is FOF00600h, this stands for:

Bus_Id, Node_Id, FFFF F0F00600h

Writing and reading to and from the register can be done with programs such as **FireView** or by other programs developed using an API library (e.g. **FirePackage**).

Every register is 32 bit (big endian) and implemented as follows (MSB = Most Significant Bit; LSB = Least Significant Bit):

Example

This requires, for example, that to enable **ISO_Enabled mode** (see Chapter ISO_Enable / free-run on page 185), (bit 0 in register 614h), the value 80000000 h must be written in the corresponding register.

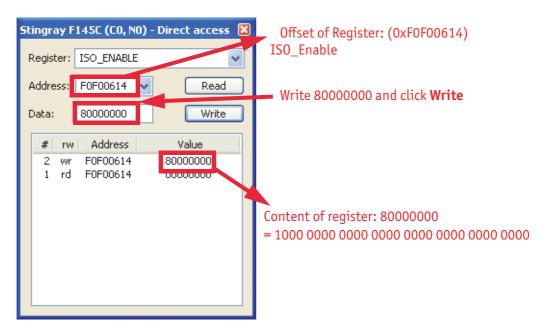


Figure 110: Enabling ISO_Enable

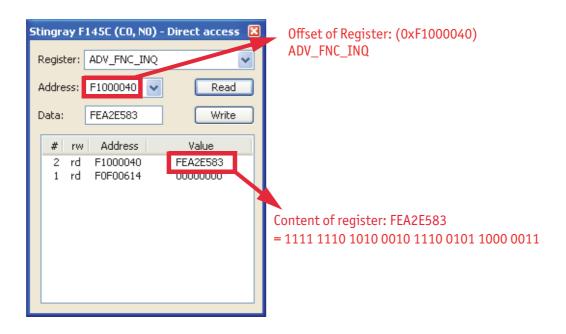


Table 108: Configuring the camera (Stingray F-145C)

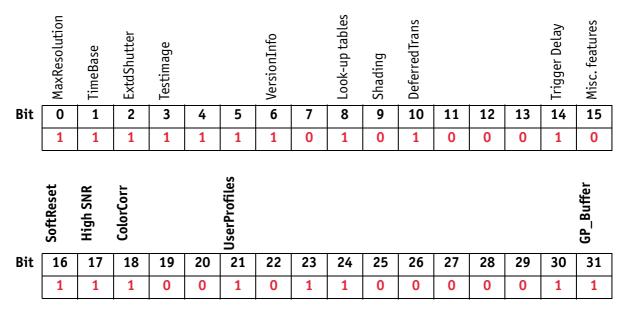


Table 109: Configuring the camera: registers

Sample program

The following sample code in C/C++ shows how the register is set for video mode/format, trigger mode, etc., using the **FireGrab** and **FireStack API**.

Example FireGrab

```
// Set Videoformat
if (Result==FCE_NOERROR)
Result= Camera.SetParameter(FGP_IMAGEFORMAT,MAKEIMAGEFORMAT(RES_640_480,
CM_Y8, FR_15));
// Set external Trigger
if (Result==FCE_NOERROR)
Result= Camera.SetParameter(FGP_TRIGGER,MAKETRIGGER(1,0,0,0,0));
// Start DMA logic
if (Result==FCE_NOERROR)
Result=Camera.OpenCapture();
// Start image device
if (Result==FCE_NOERROR)
Result=Camera.StartDevice();
...
```


Example FireStack API

// Set framerate

Result=WriteQuad(HIGHOFFSET,m_Props.CmdRegBase+CCR_FRAMERATE,(UINT32)m_Parms.Fr
ameRate<<29);</pre>

// Set mode
if(Result)


Result=WriteQuad(HIGHOFFSET,m_Props.CmdRegBase+CCR_VMODE,(UINT32)m_Parms.VideoM
ode<<29);</pre>

// Set format
if(Result)

...

Result=WriteQuad(HIGHOFFSET,m_Props.CmdRegBase+CCR_VFORMAT,(UINT32)m_Parms.Vide
oFormat<<29);</pre>

```
// Set trigger
if(Result)
{
    Mode=0;
    if(m_Parms.TriggerMode==TM_EXTERN)
    Mode=0x82000000;
    if(m_Parms.TriggerMode==TM_MODE15)
    Mode=0x820F0000;
    WriteQuad(HIGHOFFSET,m_Props.CmdRegBase+CCR_TRGMODE,Mode);
}
// Start continous ISO if not oneshot triggermode
if(Result && m_Parms.TriggerMode!=TM_ONESHOT)
    Result=WriteQuad(HIGHOFFSET,m_Props.CmdRegBase+CCR_ISOENABLE,0x8000000);
```


Configuration ROM

The information in the **configuration ROM** is needed to identify the node, its capabilities, and the required drivers.

The base address for the **configuration ROM** for all registers is FFFF F0000000h.

Note

If you want to use the SmartView program to read or write to a register, enter the following value in the Address field:

F0F00000h + Offset

The **configuration ROM** is divided into the following:

- Bus info block: providing critical information about the bus-related capabilities
- Root directory: specifying the rest of the content and organization, such as:
 - Node unique ID leaf
 - Unit directory
 - Unit dependant info

The base address of the camera control register is calculated as follows based on the camera-specific base address:

Bus info block	Offset	0-7	8-15	16-23	24-31	
	400h	04	29	00	CO	
	404h	31	33	39	34	ASCII for 1394
	408h	20	00	B2	03	Bus capabilities
	40Ch	00	OA	47	01	<pre> Node_Vendor_Id, Chip_id_hi</pre>
	410h		Serial	number		Chip_id_lo
Root directory	414h	00	04	B7	85	According to IEEE1212, the root directo
	418h	03	00	OA	47	may have another length. The keys (e.g. 8D) point to the offset factors rather tha
	41Ch	00	00	83	CO	the offset (e.g. 420h) itsel
	420h	8D	00	00	02	
	424h	D1	00	00	04	

Table 110: Configuration ROM

The entry with key 8D in the root directory (420h in this case) provides the offset for the Node unique ID leaf.

To compute	To compute the effective start address of the node unique ID leaf				
currAddr	= node unique ID leaf address				
destAddr	= address of directory entry				
addr0ffset	= value of directory entry				
destAddr	= currAddr + (4 x addrOffset)				
	= 420h + (4 x 000002h)				
	= 428h				

Table 111: Computing effective start address

destAdr, calculated from the example in the table above: 420h + 000002h x 4 = 428h

	Offset	0-7	8-15	16-23	24-31	
>	428h	00	02	5E	9E	CRC
Node unique ID leaf	42Ch	00	0A	47	01	Node_Vendor_Id,Chip_id_hi
	430h	00	00	Serial nu	mber	

Table 112: Configuration ROM

The entry with key D1 in the root directory (424h in this case) provides the offset for the unit directory as follows:

424h + 000004 x 4 = 434h

	Offset	0-7	8-15	16-23	24-31
	434h	00	03	93	7D
Unit directory	438h	12	00	AO	2D
	43Ch	13	00	01	02
	440h	D4	00	00	01

Table 113: Configuration ROM

The entry with key D4 in the unit directory (440h in this case) provides the offset for unit dependent info:

440h + 0000xx * 4 = 444h

	Offset	0-7	8-15	16-23	24-31	
>	444h	00	OB	A9	6E	unit_dep_info_length, CRC
Unit dependent info	448h	40	3C	00	00	command_regs_base
	44Ch	81	00	00	02	vender_name_leaf
	450h	82	00	00	06	model_name_leaf
	454h	38	00	00	10	unit_sub_sw_version
	458h	39	00	00	00	Reserved
	45Ch	3A	00	00	00	Reserved
	460h	3B	00	00	00	Reserved
	464h	3C	00	01	00	vendor_unique_info_0
	468h	3D	00	92	00	vendor_unique_info_1
	46Ch	3E	00	00	65	vendor_unique_info_2
	470h	3F	00	00	00	vendor_unique_info_3

Table 114: Configuration ROM

Finally, the entry with key 40 (448h in this case) provides the offset for the camera control register:

FFFF F0000000h + 3C0000h x 4 = FFFF F0F00000h

The base address of the camera control register is thus:

FFFF F0F00000h

The offset entered in the table always refers to the base address of F0F00000h.

Implemented registers (IIDC V1.31)

The following tables show how standard registers from IIDC V1.31 are implemented in the camera:

- Base address is F0F00000h
- Differences and explanations can be found in the **Description** column.

Camera initialize register

Offset	Name	Description
000h	INITIALIZE	Assert MSB = 1 for Init.

Table 115: Camera initialize register

Inquiry register for video format

Offset	Name	Field	Bit	Description
100h	V_FORMAT_INQ	Format_0	[0]	Up to VGA (non compressed)
		Format_1	[1]	SVGA to XGA
		Format_2	[2]	SXGA to UXGA
		Format_3	[35]	Reserved
		Format_6	[6]	Still Image Format
		Format_7	[7]	Partial Image Format
			[831]	Reserved

Table 116: Format inquiry register

Inquiry register for video mode

Offset	Name	Field	Bit	Description	Color mode
180h	V_MODE_INQ	Mode_0	[0]	160 x 120	YUV 4:4:4
	(Format_0)	Mode_1	[1]	320 x 240	YUV 4:2:2
		Mode_2	[2]	640 x 480	YUV 4:1:1
		Mode_3	[3]	640 x 480	YUV 4:2:2
		Mode_4	[4]	640 x 480	RGB
		Mode_5	[5]	640 x 480	M0N08
		Mode_6	[6]	640 x 480	M0N016
		Mode_X	[7]	Reserved	
			[831]	Reserved (zero)	
184h	V_MODE_INQ	Mode_0	[0]	800 x 600	YUV 4:2:2
	(Format_1)	Mode_1	[1]	800 x 600	RGB
		Mode_2	[2]	800 x 600	M0N08
		Mode_3	[3]	1024 x 768	YUV 4:2:2
		Mode_4	[4]	1024 x 768	RGB
		Mode_5	[5]	1024 x 768	M0N08
		Mode_6	[6]	800 x 600	M0N016
		Mode_7	[7]	1024 x 768	M0N016
			[831]	Reserved (zero)	
188h	V_MODE_INQ	Mode_0	[0]	1280 x 960	YUV 4:2:2
	(Format_2)	Mode_1	[1]	1280 x 960	RGB
		Mode_2	[2]	1280 x 960	MON08
		Mode_3	[3]	1600 x 1200	YUV 4:2:2
		Mode_4	[4]	1600 x 1200	RGB
		Mode_5	[5]	1600 x 1200	MON08
		Mode_6	[6]	1280 x 960	M0N016
		Mode_7	[7]	1600 x 1200	M0N016
			[831]	Reserved (zero)	
18Ch	Reserved for other	V_MODE_INQ_x for F	ormat_x.	Always 0	-
197h					
198h	V_MODE_INQ_6 (Format	6)		Always 0	

Table 117: Video mode inquiry register

Offset	Name	Field	Bit	Description	Color mode
19Ch	V_MODE_INQ	Mode_0	[0]	Format_7 Mode_0	
	(Format_7)	Mode_1	[1]	Format_7 Mode_1	
		Mode_2	[2]	Format_7 Mode_2	
		Mode_3	[3]	Format_7 Mode_3	
		Mode_4	[4]	Format_7 Mode_4	
		Mode_5	[5]	Format_7 Mode_5	
		Mode_6	[6]	Format_7 Mode_6	
		Mode_7	[7]	Format_7 Mode_7	
			[831]	Reserved (zero)	

Table 117: Video mode inquiry register (Forts.)

Inquiry register for video frame rate and base address

Offset	Name	Field	Bit	Description
200h	V_RATE_INQ	FrameRate_0	[0]	Reserved
	(Format_0, Mode_0)	FrameRate_1	[1]	Reserved
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
204h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_1)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)

Table 118: Frame rate inquiry register

Offset	Name	Field	Bit	Description
208h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_2)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
20Ch	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_3)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
210h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_4)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)

214hV_RATE_INQFrameRate_0[0]1.875 fps(Format_0, Mode_5)FrameRate_1[1]3.75 fpsFrameRate_2[2]7.5 fpsFrameRate_3[3]15 fpsFrameRate_4[4]30 fpsFrameRate_5[5]60 fpsFrameRate_6[6]120 fps (V1.31)FrameRate_7[7]240 fps (V1.31)[831]Reserved (zero)218hV_RATE_INQ(Format_0, Mode_6)[0]1.875 fpsFrameRate_1[1]3.75 fpsFrameRate_2[2]7.5 fpsFrameRate_1[1]3.75 fpsFrameRate_1[1]3.75 fpsFrameRate_1[1]3.75 fpsFrameRate_2[2]7.5 fpsFrameRate_3[3]15 fpsFrameRate_3[3]15 fpsFrameRate_4[4]30 fpsFrameRate_5[5]60 fpsFrameRate_6[6]120 fps (V1.31)[831]Reserved (zero)210h[831]220hV_RATE_INQ(Format_1, Mode_0)FrameRate_0[0]FrameRate_3[3]15 fpsFrameRate_3[3]15 fpsFrameRate_1[1]3.75 fps[831]220hV_RATE_INQFrameRate_0(Format_1, Mode_0)FrameRate_3[3]FrameRate_3[3]15 fpsFrameRate_3	Offset	Name	Field	Bit	Description
FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps FrameRate_5 [5] 60 fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) [8.31] Reserved (zero) 218h V_RATE_INQ (Format_0, Mode_6) [0] 1.875 fps FrameRate_0 [7] 7.5 fps [7] FrameRate_0 [6] 120 fps (V1.31) FrameRate_1 [1] 3.75 fps FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps FrameRate_5 [5] 60 fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) FrameRate_7 [6] 120 fps (V1.31) F	214h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps FrameRate_5 [5] 60 fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) [831] Reserved (zero) 218h V_RATE_INQ (Format_0, Mode_6) [0] 1.875 fps FrameRate_0 [0] 1.875 fps [1] 3.75 fps FrameRate_1 [1] 3.75 fps [1] [1] FrameRate_2 [2] 7.5 fps [1] [1] [1] [1] 15 fps FrameRate_3 [3] 15 fps [1] [(Format_0, Mode_5)	FrameRate_1	[1]	3.75 fps
FrameRate_4 [4] 30 fps FrameRate_5 [5] 60 fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) [831] Reserved (zero) 218h V_RATE_INQ (Format_0, Mode_6) [0] 1.875 fps FrameRate_0 [0] 1.875 fps [7] FrameRate_1 [1] 3.75 fps [8] FrameRate_2 [2] 7.5 fps [8] FrameRate_3 [3] 15 fps [8] FrameRate_4 [4] 30 fps [8] FrameRate_5 [5] 60 fps [8] FrameRate_6 [6] 120 fps (V1.31) [8] FrameRate_7 [7] 240 fps (V1.31) [8] FrameRate_7 [7] 240 fps (V1.31) [8] FrameRate_7 [7] 240 fps (V1.31) [8] Image and the set of the mode_x of Format_1 (T) [8] [8] [8] 21Ch Reserved (Zero) <t< td=""><td></td><td></td><td>FrameRate_2</td><td>[2]</td><td>7.5 fps</td></t<>			FrameRate_2	[2]	7.5 fps
PrameRate_5 [5] 60 fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) [831] Reserved (zero) 218h V_RATE_INQ (Format_0, Mode_6) [0] 1.875 fps FrameRate_2 [2] 7.5 fps FrameRate_2 [2] FrameRate_3 [3] 15 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps FrameRate_5 [5] 60 fps FrameRate_5 [5] 60 fps FrameRate_6 [6] 120 fps (V1.31) [8].31] 15 fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) [8].31] Reserved (zero) FrameRate_7 [7] 240 fps (V1.31) [8].31] Reserved (zero) FrameRate_7 [7] 240 fps (V1.31) [8].31] Reserved (zero) FrameRate_7			FrameRate_3	[3]	15 fps
PrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) [831] Reserved (zero) 218h V_RATE_INQ (Format_0, Mode_6) [0] 1.875 fps FrameRate_1 [1] 3.75 fps FrameRate_1 [1] FrameRate_2 [2] 7.5 fps FrameRate_1 FrameRate_3 FrameRate_3 [3] 15 fps FrameRate_5 Fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_6 FrameRate_7 [7] 240 fps (V1.31) FrameRate_6 FrameRate_6 [6] 120 fps (V1.31) FrameRate_6 FrameRate_7 [7] 240 fps (V1.31) FrameRate_6 FrameRate_7 [7] 240 fps (V1.31) FrameRate_6 FrameRate_7 [7] 240 fps (V1.31) FrameRate_6 21Ch Reserved V_RATE_INQ_O_x (for other Mode_x of Format_0) Always O 220h V_RATE_INQ FrameRate_1 [1] 3.75 fps FrameRate_2			FrameRate_4	[4]	30 fps
218h V_RATE_INQ (Format_0, Mode_6) [0] 1.875 fps 218h V_RATE_INQ (Format_0, Mode_6) [0] 1.875 fps FrameRate_0 [2] 7.5 fps FrameRate_1 [1] 3.75 fps FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_5 [5] 60 fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) [831] Reserved (zero) 21Ch Reserved V_RATE_INQ_0_x (for other Mode_x of For- mat_0) Always 0 220h V_RATE_INQ FrameRate_0 [0] Reserved [Format_1, Mode_0) FrameRate_2 [2] <td< td=""><td></td><td></td><td>FrameRate_5</td><td>[5]</td><td>60 fps</td></td<>			FrameRate_5	[5]	60 fps
Image: Second			FrameRate_6	[6]	120 fps (V1.31)
218h V_RATE_INQ (Format_0, Mode_6) [0] 1.875 fps FrameRate_0 FrameRate_0 FrameRate_1 [1] 3.75 fps FrameRate_1 [1] 3.75 fps FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps FrameRate_5 [5] 60 fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) 21Ch Reserved V_RATE_INQ_O_x (for other Mode_x of Format_0) Reserved (zero) Reserved (zero) 21Fh 220h V_RATE_INQ FrameRate_0 [0] Reserved 220h V_RATE_INQ FrameRate_1 [1] 3.75 fps FrameRate_1 [1] 3.75 fps FrameRate_2 [2] 220h V_RATE_INQ FrameRate_1 [1] 3.75 fps FrameRate_2 [2] 7.5 fps FrameRate_2 [2] FrameRate_3 [3] 15 fps FrameRate_3			FrameRate_7	[7]	240 fps (V1.31)
Mode_6) FrameRate_0 FrameRate_0 FrameRate_0 FrameRate_1 [1] 3.75 fps FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps FrameRate_5 [5] 60 fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) [831] Reserved (zero) 21Ch Reserved V_RATE_INQ_O_x (for other Mode_x of Format_0) Always 0 220h V_RATE_INQ FrameRate_0 [0] Reserved (Format_1, Mode_0) FrameRate_1 [1] 3.75 fps FrameRate_3 [3] 15 fps FrameRate_3 [3] 15 fps FrameRate_3 [4] 30 fps				[831]	Reserved (zero)
Image: space of the system Image: space of the system <td< td=""><td>218h</td><td>V_RATE_INQ</td><td>•</td><td>[0]</td><td>1.875 fps</td></td<>	218h	V_RATE_INQ	•	[0]	1.875 fps
FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps FrameRate_5 [5] 60 fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) [831] Reserved (zero) 21Ch Reserved V_RATE_INQ_O_x (for other Mode_x of Format_0) Always 0 21Fh FrameRate_0 [0] 220h V_RATE_INQ FrameRate_0 [0] (Format_1, Mode_0) FrameRate_1 [1] 3.75 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps			FrameRate_0		
k FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps FrameRate_5 [5] 60 fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) [831] Reserved (zero) 21Ch Reserved V_RATE_INQ_0_x (for other Mode_x of For- mat_0) Always 0 21Fh FrameRate_1 [1] 220h V_RATE_INQ FrameRate_0 [0] Reserved [Format_1, Mode_0) FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps			FrameRate_1	[1]	3.75 fps
FrameRate_4 [4] 30 fps FrameRate_5 [5] 60 fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) [831] Reserved (zero) 21Ch Reserved V_RATE_INQ_O_x (for other Mode_x of Format_0) Always 0 21Fh V_RATE_INQ FrameRate_0 [0] Reserved 220h V_RATE_INQ FrameRate_1 [1] 3.75 fps (Format_1, Mode_0) FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps			FrameRate_2	[2]	7.5 fps
FrameRate_5 [5] 60 fps FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) [831] Reserved (zero) 21Ch Reserved V_RATE_INQ_0_x (for other Mode_x of For- mat_0) Always 0 21Fh V_RATE_INQ FrameRate_0 [0] 220h V_RATE_INQ FrameRate_0 [0] (Format_1, Mode_0) FrameRate_1 [1] 3.75 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps			FrameRate_3	[3]	15 fps
FrameRate_6 [6] 120 fps (V1.31) FrameRate_7 [7] 240 fps (V1.31) [831] Reserved (zero) 21Ch Reserved V_RATE_INQ_O_x (for other Mode_x of For- mat_0) Always 0 21Fh [0] 220h V_RATE_INQ FrameRate_0 [0] (Format_1, Mode_0) FrameRate_1 [1] 3.75 fps FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps			FrameRate_4	[4]	30 fps
FrameRate_7 [7] 240 fps (V1.31) [831] Reserved (zero) 21Ch Reserved V_RATE_INQ_0_x (for other Mode_x of Format_0) Always 0 21Fh [0] Reserved 220h V_RATE_INQ FrameRate_0 [0] Reserved (Format_1, Mode_0) FrameRate_1 [1] 3.75 fps FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps			FrameRate_5	[5]	60 fps
Image: Second			FrameRate_6	[6]	120 fps (V1.31)
21Ch 21FhReserved V_RATE_INQ_0_x (for other Mode_x of For- mat_0)Always 021Fh220hV_RATE_INQ (Format_1, Mode_0)FrameRate_0[0]ReservedFrameRate_1[1]3.75 fpsFrameRate_2[2]7.5 fpsFrameRate_3[3]15 fpsFrameRate_4[4]30 fps			FrameRate_7	[7]	240 fps (V1.31)
 21Fhmat_0)220hV_RATE_INQ (Format_1, Mode_0)FrameRate_0[0]ReservedFrameRate_1[1]3.75 fpsFrameRate_2[2]7.5 fpsFrameRate_3[3]15 fpsFrameRate_4[4]30 fps				[831]	Reserved (zero)
21Fh 220h V_RATE_INQ FrameRate_0 [0] Reserved (Format_1, Mode_0) FrameRate_1 [1] 3.75 fps FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps	21Ch	Reserved V_RATE_IN	Q_0_x (for other Mo	de_x of For-	Always 0
220hV_RATE_INQ (Format_1, Mode_0)FrameRate_0[0]ReservedFrameRate_1[1]3.75 fpsFrameRate_2[2]7.5 fpsFrameRate_3[3]15 fpsFrameRate_4[4]30 fps			mat_0)		
(Format_1, Mode_0) FrameRate_1 [1] 3.75 fps FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps	21Fh				
FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps	220h	V_RATE_INQ	FrameRate_0	[0]	Reserved
FrameRate_2 [2] 7.5 fps FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps		(Format_1, Mode_0)	FrameRate_1	[1]	3.75 fps
FrameRate_3 [3] 15 fps FrameRate_4 [4] 30 fps			FrameRate_2	[2]	7.5 fps
			FrameRate_3		15 fps
			FrameRate_4	[4]	30 fps
			FrameRate_5		60 fps
FrameRate_6 [6] 120 fps (V1.31)			FrameRate_6		120 fps (V1.31)
FrameRate_7 [7] 240 fps (V1.31)			FrameRate_7		240 fps (V1.31)
[831] Reserved (zero)					Reserved (zero)

Offset	Name	Field	Bit	Description
224h	V_RATE_INQ	FrameRate_0	[0]	Reserved
	(Format_1, Mode_1)	FrameRate_1	[1]	Reserved
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
228h	V_RATE_INQ	FrameRate_0	[0]	Reserved
	(Format_1, Mode_2)	FrameRate_1	[1]	Reserved
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
22Ch	V_RATE_INQ (Format_1,	FrameRate_0	[0]	1.875 fps
	Mode_3)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
230h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_1, Mode_4)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
234h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_1, Mode_5)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)
238h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_1, Mode_6)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	240 fps (V1.31)
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
23Ch	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_1, Mode_7)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)
240h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_0)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)
244h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_1)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
248h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_2)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	120 fps (V1.31)
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)
24Ch	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_3)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)
250h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_4)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	Reserved
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
254h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_5)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)
258h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_6)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved (zero)
25Ch	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_7)	FrameRate_1	[1]	3.75 fps
		FrameRate_2	[2]	7.5 fps
		FrameRate_3	[3]	15 fps
		FrameRate_4	[4]	30 fps
		FrameRate_5	[5]	60 fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[831]	Reserved
260h	Reserved V_RATE_INQ_	y_x (for other Forma	nt_y, Mode_x)	
2BFh				
2C0h	V_REV_INQ_6_0 (Format_6, Mode0)			Always 0
2C4h	Reserved V_REV_INQ_6_x (for other Mode_x of For-			Always O
	mat_6)			
2DFh				

Table 118: Frame rate inquiry register (Forts.)

Offset	Name Fie	ld Bit	Description
2E0h	V-CSR_INQ_7_	_ 0 [031]	CSR_quadlet offset for Format_7 Mode_0
2E4h	V-CSR_INQ_7_	1 [031]	CSR_quadlet offset for Format_7 Mode_1
2E8h	V-CSR_INQ_7_	_2 [031]	CSR_quadlet offset for Format_7 Mode_2
2ECh	V-CSR_INQ_7_	_ 3 [031]	CSR_quadlet offset for Format_7 Mode_3
2F0h	V-CSR_INQ_7_	_4 [031]	CSR_quadlet offset for Format_7 Mode_4
2F4h	V-CSR_INQ_7_	_5 [031]	CSR_quadlet offset for Format_7 Mode_5
2F8h	V-CSR_INQ_7_	_6 [031]	CSR_quadlet offset for Format_7 Mode_6
2FCh	V-CSR_INQ_7_	7 [031]	CSR_quadlet offset for Format_7 Mode_7

Table 118: Frame rate inquiry register (Forts.)

Inquiry	register	for	basic	function
---------	----------	-----	-------	----------

Offset	Name	Field	Bit	Description
400h	BASIC_FUNC_INQ	Advanced_Feature_Inq	[0]	Inquiry for advanced features (Vendor unique Features)
		Vmode_Error_Status_Inq	[1]	Inquiry for existence of Vmode_Error_Status register
		Feature_Control_Error_Status_Inq	[2]	Inquiry for existence of Fea- ture_Control_Error_Status
		Opt_Func_CSR_Inq	[3]	Inquiry for Opt_Func_CSR
			[47]	Reserved
		1394b_mode_Capability	[8]	Inquiry for 1394b_mode_Ca- pability
			[915]	Reserved
		Cam_Power_Cntl	[16]	Camera process power ON/OFF capability
			[1718]	Reserved
		One_Shot_Inq	[19]	One-shot transmission capa- bility
		Multi_Shot_Inq	[20]	Multi-shot transmission capa- bility
			[2127]	Reserved
		Memory_Channel	[2831]	Maximum memory channel number (N) If 0000, no user memory avail- able

Table 119: Basic function inquiry register

Offset	Name	Field	Bit	Description
404h	FEATURE_HI_INQ	Brightness	[0]	Brightness control
		Auto_Exposure	[1]	Auto_Exposure control
		Sharpness	[2]	Sharpness control
		White_Balance	[3]	White balance control
		Hue	[4]	Hue control
		Saturation	[5]	Saturation control
		Gamma	[6]	Gamma control
		Shutter	[7]	Shutter control
		Gain	[8]	Gain control
		Iris	[9]	Iris control
		Focus	[10]	Focus control
		Temperature	[11]	Temperature control
		Trigger	[12]	Trigger control
		Trigger_Delay	[13]	Trigger_Delay control
		White_Shading	[14]	White_Shading control
		Frame_Rate	[15]	Frame_Rate control
			[1631]	Reserved
408h	FEATURE_LO_INQ	Zoom	[0]	Zoom control
		Pan	[1]	Pan control
		Tilt	[2]	Tilt control
		Optical_Filter	[3]	Optical_Filter control
			[415]	Reserved
		Capture_Size	[16]	Capture_Size for Format_6
		Capture_Quality	[17]	Capture_Quality for Format_6
			[1631]	Reserved
40Ch	OPT_FUNCTION_INQ		[0]	Reserved
		PIO	[1]	Parallel Input/Output control
		SIO	[2]	Serial Input/Output control
		Strobe_out	[431]	Strobe signal output
410h	1	Reserved		Address error on access
47Fh				

Table 120: Feature presence inquiry register

Offset	Name	Field	Bit	Description
480h	Advanced_Feature_Inq	Advanced_Feature_Quadlet_Offset	[031]	Quadlet offset of the advanced feature CSR's from the base address of initial reg- ister space (vendor unique)
				This register is the offset for the Access_Control_Register and thus the base address for Advanced Features.
				Access_Control_Register does not prevent access to advanced features. In some programs it should still always be activated first. Advanced Feature Set Unique Value is 7ACh and CompanyID is A47h.
484h	PIO_Control_CSR_Inq	PIO_Control_Quadlet_Offset	[031]	Quadlet offset of the PIO Control CSR's from the base address of initial register space (Vendor unique)
488h	SIO_Control_CSR_Inq	SIO_Control_Quadlet_Offset	[031]	Quadlet offset of the SIO Control CSR's from the base address of initial register space (vendor unique)
48Ch	Strobe_Output_CSR_Inq	Strobe_Output_Quadlet_Offset	[031]	Quadlet offset of the Strobe_Output signal CSR's from the base address of ini- tial register space (vendor unique)

Table 120: **Feature presence** inquiry register (Forts.)

Inquiry register for feature elements

Register	Name	Field	Bit	Description
0xF0F00500	BRIGHTNESS_INQUIRY	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Abs_Control_Inq	[1]	Capability of control with absolute value
			[2]	Reserved
		One_Push_Inq	[3]	One-push auto mode (con- trolled automatically by the camera once)
		Readout_Inq	[4]	Capability of reading out the value of this feature
		ON_OFF	[5]	Capability of switching this feature ON and OFF
		Auto_Inq	[6]	Auto Mode (Controlled auto- matically by the camera)
		Manual_Inq	[7]	Manual Mode (Controlled by user)
		Min_Value	[819]	Minimum value for this fea- ture
		Max_Value	[2031]	Maximum value for this fea- ture
504h	AUTO_EXPOSURE_INQ	Same det	finition as B	rightness_inq.
508h	SHARPNESS_INQ	Same det	finition as B	rightness_inq.
50Ch	WHITE_BAL_INQ	Same det	finition as B	rightness_inq.
510h	HUE_INQ	Same det	finition as B	rightness_inq.
514h	SATURATION_INQ	Same det	finition as B	rightness_inq.
518h	GAMMA_INQ	Same det	finition as B	rightness_inq.
51Ch	SHUTTER_INQ	Same definition as Brightness_inq.		
520h	GAIN_INQ	Same definition as Brightness_inq.		
524h	IRIS_INQ	Always O		
528h	FOCUS_INQ	Always 0		
52Ch	TEMPERATURE_INQ	Same det	finition as B	rightness_inq.

Table 121: Feature elements inquiry register

Register	Name	Field	Bit	Description
530h	TRIGGER_INQ	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Abs_Control_Inq	[1]	Capability of control with absolute value
			[23	Reserved
		Readout_Inq	[4]	Capability of reading out the value of this feature
		ON_OFF	[5]	Capability of switching this feature ON and OFF
		Polarity_Inq	[6]	Capability of changing the polarity of the trigger input
		Value_Read_Inq	[7]	Capability of reading raw trigger input
				Reads if trigger is active. In case of external trigger, a combined signal is read.
		Trigger_SourceO_Inq	[8]	Presence of Trigger Source 0 ID=0
				Indicates usage of standard inputs.
			[915]	Reserved
		Software_Trigger_Inq	[15]	Presence of Software Trigger ID=7
		Trigger_Mode0_Inq	[16]	Presence of Trigger_Mode 0
		Trigger_Mode1_Inq	[17]	Presence of Trigger_Mode 1
		Trigger_Mode2_Inq	[18]	Presence of Trigger_Mode 2
		Trigger_Mode3_Inq	[19]	Presence of Trigger_Mode 3
			[2031	Reserved

Table 121: Feature elements inquiry register (Forts.)

Register	Name	Field	Bit	Description
534h	TRIGGER_DELAY_INQUIRY	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Abs_Control_Inq	[1]	Capability of control with absolute value
			[2]	Reserved
		One_Push_Inq	[3]	One Push auto mode Con- trolled automatically by the camera once)
		Readout_Inq	[4]	Capability of reading out the value of this feature
		ON_OFF	[5]	Capability of switching this feature ON and OFF
		Auto_Inq	[6]	Auto Mode (Controlled auto- matically by the camera)
		Manual_Inq	[7]	Manual Mode (Controlled by user)
		Min_Value	[819]	Minimum value for this fea- ture
		Max_Value	[2031]	Maximum value for this fea- ture
53857Ch		Reserved for other	FEATURE_HI_	INQ
580h	ZOOM_INQ		Always	s 0
584h	PAN_INQ		Always	s 0
588h	TILT_INQ		Always	s 0
58Ch	OPTICAL_FILTER_INQ		Always	5 0
590 	Reserved for other FEA- TURE_LO_INQ		Always	s 0
5BCh				
5C0h	CAPTURE_SIZE_INQ		Always	s 0
5C4h	CAPTURE_QUALITY_INQ	Always O		
5C8h	Reserved for other FEA-		Always	5 0
••	TURE_LO_INQ			
5FCh				

Table 121: Feature elements inquiry register (Forts.)

Status and control registers for camera

Register	Name	Field Bit Description		
600h	CUR-V-Frm_RATE/Revision	Bit [02] for the frame rate		
604h	CUR-V-MODE	Bit [02] for the current video mode		
608h	CUR-V-FORMAT	Bit [02] for the current video format		
60Ch	ISO-Channel	Bit [03] for channel, [67] for ISO speed		
610h	Camera_Power	Always 0		
614h	ISO_EN/Continuous_Shot	Bit 0: 1 for start continuous shot; 0 for stop continuos shot		
618h	Memory_Save	Always 0		
61Ch	One_Shot, Multi_Shot,	See Chapter One-shot on page 182		
	Count Number	See Chapter Multi-shot on page 185		
620h	Mem_Save_Ch	Always 0		
624	Cur_Mem_Ch	Always 0		
628h	Vmode_Error_Status	Error in combination of Format/Mode/ISO Speed:		
		Bit(0): No error; Bit(0)=1: error		
62Ch	Software_Trigger	Software trigger		
		Write: 0: Reset software trigger 1: Set software trigger (self cleared, when using edge mode; must be set back to 0 manually, when using level mode)		
		Read: O: Ready (meaning: it's possible to set a software trigger) 1: Busy (meaning: no trigger possible)		

Table 122: Status and control registers for camera

Inquiry register for absolute value CSR offset address

Offset	Name	Description
700h	ABS_CSR_HI_INQ_0	Always O
704h	ABS_CSR_HI_INQ_1	Always O
708h	ABS_CSR_HI_INQ_2	Always 0
70Ch	ABS_CSR_HI_INQ_3	Always O
710h	ABS_CSR_HI_INQ_4	Always 0
714h	ABS_CSR_HI_INQ_5	Always 0
718h	ABS_CSR_HI_INQ_6	Always O
71Ch	ABS_CSR_HI_INQ_7	Always 0
720h	ABS_CSR_HI_INQ_8	Always 0
724h	ABS_CSR_HI_INQ_9	Always 0
728h	ABS_CSR_HI_INQ_10	Always O
72Ch	ABS_CSR_HI_INQ_11	Always O
730h	ABS_CSR_HI_INQ_12	Always O
734	Reserved	Always O
77Fh		
780h	ABS_CSR_LO_INQ_0	Always O
784h	ABS_CSR_LO_INQ_1	Always O
788h	ABS_CSR_L0_INQ_2	Always O
78Ch	ABS_CSR_LO_INQ_3	Always O
790h	Reserved	Always O
7BFh		
7C0h	ABS_CSR_L0_INQ_16	Always 0
7C4h	ABS_CSR_LO_INQ_17	Always 0
7C8h	Reserved	Always 0
7FFh		

Table 123: Absolute value inquiry register

Status and control register for one-push

The **OnePush** feature, WHITE_BALANCE, is currently implemented. If this flag is set, the feature becomes immediately active, even if no images are being input (see Chapter One-push white balance on page 111).

Offset	Name	Field	Bit	Description
800h	BRIGHTNESS	Presence_Inq	[0]	Presence of this feature
				0: N/A
				1: Available
		Abs_Control	[1]	Absolute value control
				0: Control with value in the Value field
				1: Control with value in the Absolute value CSR
				If this bit = 1, value in the Value field is ignored
			[2-4]	Reserved
		One_Push	[5]	Write 1: begin to work (Self cleared after operation)
				Read: Value=1 in operation
				Value=0 not in operation
				If A_M_Mode =1, this bit is ignored
		ON_OFF	[6]	Write: ON or OFF this feature
				Read: read a status
				0: 0FF, 1: 0N
				If this bit =0, other fields will be read only
		A_M_Mode	[7]	Write: set the mode
				Read: read a current mode
				0: Manual
				1: Auto
			[8-19]	Reserved
		Value	[20-31]	Value.
				Write the value in Auto mode, this field is ignored
				If ReadOut capability is not available,
				read value has no meaning
804h	AUTO-EXPOSURE			See above
				Note: Target grey level parameter in SmartView corresponds to Auto_exposure register 0xF0F00804 (IIDC)
808h	SHARPNESS			See above
L	L			

Table 124: Feature control register

Stingray Technical Manual V.4.5.0

Offset	Name	Field	Bit	Description
80Ch	WHITE-BALANCE	Presence_Inq	[0]	Presence of this feature
				0: N/A
				1: Available
				Always 0 for Mono
		Abs_Control	[1]	Absolute value control
				0: Control with value in the Value field 1: Control with value in the Absolute value CSR
				If this bit = 1, value in the Value field is ignored
			[2-4]	Reserved
		One_Push	[5]	Write 1: begin to work (Self cleared after operation)
				Read: Value=1 in operation
				Value=0 not in operation
				If A_M_Mode =1, this bit is ignored
		ON_OFF	[6]	Write: ON or OFF this feature,
				Read: read a status
				0: OFF 1: ON
				If this bit =0, other fields will be read only
		A_M_Mode	[7]	Write: set the mode
				Read: read a current mode
				0: Manual
				1: Auto
		U_Value /	[8-19]	U value / B value
		B_Value		Write the value in AUTO mode, this field is ignored
				If ReadOut capability is not available, read value has no meaning
		V_Value /	[20-31]	V value / R value
		R_Value		Write the value in AUTO mode, this field is ignored
				If ReadOut capability is not available, read value has no meaning
810h	HUE			See above
				Always 0 for Mono
814h	SATURATION			See above
1				Always 0 for Mono

Table 124: Feature control register (Forts.)

Offset	Name	Field	Bit	Description
818h	GAMMA			See above
81Ch	SHUTTER			See Advanced Feature time base:
				• see Chapter Exposure time (shutter)
				and offset on page 180see Chapter Time base on page 277
				See Table 42: on page 114
820h	GAIN			See above
824h	IRIS			Always 0
828h	FOCUS			Always 0
82Ch	TEMPERATURE			See Table 127: on page 268
830h	TRIGGER_MODE			Can be effected via advanced feature IO_INP_CTRLx
834h 	Reserved for other FEATURE_HI			Always O
87Ch				
880h	Zoom			Always 0
884h	PAN			Always 0
888h	TILT			Always 0
88Ch	OPTICAL_FILTER			Always 0
890h	Reserved for other			Always O
	FEATURE_LO			
8BCh				
8C0h	CAPTURE-SIZE			Always 0
8C4h	CAPTURE-QUALITY			Always 0
8C8h	Reserved for other			Always 0
	FEATURE_LO			
8FCh				

Table 124: **Feature** control register (Forts.)

Feature control error status register

Offset	Name	Description
640h	Feature_Control_Error_Status_HI	Always 0
644h	Feature_Control_Error_Status_L0	Always 0

Table 125: Feature control error register

Video mode control and status registers for Format_7

Quadlet offset Format_7 Mode_0

The quadlet offset to the base address for **Format_7 Mode_0**, which can be read out at F0F002E0h (according to Table 118: on page 246) gives 003C2000h.

4 x 3C2000h = F08000h so that the base address for the latter (Table 126: on page 266) equals

F0000000h + F08000h = F0F08000h.

Quadlet offset Format_7 Mode_1

The quadlet offset to the base address for **Format_7 Mode_1**, which can be read out at F0F002E4h (according to Table 118: on page 246) gives 003C2400h.

4 x 003C2400h = F09000h so that the base address for the latter (Table 126: on page 266) equals

F0000000h + F09000h = F0F09000h.

Format_7 control and status register (CSR)

Offset	Name	Description
000h	MAX_IMAGE_SIZE_INQ According to IIDC V1.31	
004h	UNIT_SIZE_INQ According to IIDC V1.31	
008h	IMAGE_POSITION	According to IIDC V1.31
00Ch	IMAGE_SIZE	According to IIDC V1.31
010h	COLOR_CODING_ID	See note
014h	COLOR_CODING_INQ	According to IIDC V1.31
024h	COLOR_CODING_INQ	Vendor Unique Color_Coding 0-127 (ID=128-255) ID=132 ECCID MON012
033h		ID=136 ECCID_RAW12
		ID=133 Reserved ID=134 Reserved ID=135 Reserved
		See Chapter Packed 12-Bit Mode on page 154.
034h	PIXEL_NUMER_INQ According to IIDC V1.31	
038h	TOTAL_BYTES_HI_INQ According to IIDC V1.31	
03Ch	TOTAL_BYTES_LO_INQ	According to IIDC V1.31

Table 126: Format_7 control and status register

Offset	Name	Description
040h	PACKET_PARA_INQ	See note
044h	BYTE_PER_PACKET	According to IIDC V1.31

Table 126: Format_7 control and status register (Forts.)

Note

- For all modes in Format_7, **ErrorFlag_1** and **ErrorFlag_2** are refreshed on each access to the Format_7 register.
- Contrary to IIDC V1.31, registers relevant to Format_7 are refreshed on each access. The **Setting_1** bit is automatically cleared after each access.
- When **ErrorFlag_1** or **ErrorFlag_2** are set and Format_7 is configured, no image capture is started.
- Contrary to IIDC V1.31, COLOR_CODING_ID is set to a default value after an INITIALIZE or **reset**.
- Contrary to IIDC V1.31, the **UnitBytePerPacket** field is already filled in with a fixed value in the PACK-ET_PARA_INQ register.

Temperature register

The temperature is implemented with Presence_Inq=1 (available) and ON_OFF [6] always ON according to IIDC V1.31:

Register	Name	Field	Bit	Description
0xF0F0082C	TEMPERATURE	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the value field 1: Control with value in the absolute value CSR If this bit=1 the value in the value field has to be ignored.
			[25]	Reserved
		ON_OFF	[6]	Write: ON or OFF this feature
				Always 1
				0: OFF 1: ON
			[719]	Reserved
		Value	[2031]	Temperature at the present time (read only)
				Read out temperature value and divide by 10: this is the temperature at sensor in degree Celsius. Info: 50 °C at sensor is approximately 45 °C at camera housing. So never run the camera with more than 50 °C at sensor.
				 Min. displayed temperature: -55 °C Max. displayed temperature: 150 °C Increment: 0.25 °C/step

Table 127: CSR: **Temperature**

From -10 °C to +65 °C the temperature accuracy is: +1.5 °C / -2.0 °C

Advanced features (Allied Vision-specific)

The camera has a variety of extended features going beyond the possibilities described in IIDC V1.31. The following chapter summarizes all available (Allied Vision-specific) advanced features in ascending register order.

Note

This chapter is a reference guide for advanced registers and does not explain the advanced features itself.

For detailed description of the theoretical background see

- Chapter Description of the data path on page 108
- Links given in the table below

Advanced registers summary

The following table gives an overview of **all available advanced registers**:

Register	Register name	Description
0xF1000010	VERSION_INF01	See Table 129: on page 272
0xF1000014	VERSION_INF01_EX	
0xF1000018	VERSION_INF03	
0xF100001C	VERSION_INF03_EX	
0xF1000040	ADV_INQ_1	See Table 131: on page 274
0xF1000044	ADV_INQ_2	In ADV_INQ_3 there is a new field F7MODE_MAP-
0xF1000048	ADV_INQ_3	PING [3]
0xF100004C	ADV_INQ_4	Low Noise Binning [9]
0xF1000100	CAMERA_STATUS	See Table 132: on page 276
0xF1000200	MAX_RESOLUTION	See Table 133: on page 277
0xF1000208	TIMEBASE	See Table 134: on page 277
0xF100020C	EXTD_SHUTTER	See Table 136: on page 279
0xF1000210	TEST_IMAGE	See Table 137: on page 280
0xF1000220	SEQUENCE_CTRL	See Table 74: on page 189
0xF1000224	SEQUENCE_PARAM	
0xF1000228	SEQUENCE_STEP	
0xF1000240	LUT_CTRL	See Table 138: on page 281
0xF1000244	LUT_MEM_CTRL	
0xF1000248	LUT_INFO	

Table 128: Advanced registers summary

Register	Register name	Description
0xF1000250	SHDG_CTRL	See Table 139: on page 283
0xF1000254	SHDG_MEM_CTRL	-
0xF1000258	SHDG_INFO	-
0xF1000260	DEFERRED_TRANS	See Table 141: on page 286
0xF1000270	FRAMEINFO	See Table 142: on page 286
0xF1000274	FRAMECOUNTER	
0xF1000298	DPC_CTRL	See Table 143: on page 287
0xF100029C	DPC_MEM	-
0xF10002A0	DPC_INFO	
0xF1000300	IO_INP_CTRL1	Stingray housing and board level cameras
0xF1000304	IO_INP_CTRL2	See Table 22: on page 91
0xF1000320	IO_OUTP_CTRL1	Stingray housing and board level cameras
0xF1000324	IO_OUTP_CTRL2	See Table 28: on page 96
0xF1000328	IO_OUTP_CTRL3	-
0xF100032C	IO_OUTP_CTRL4	-
0xF1000340	IO_INTENA_DELAY	See Table 144: on page 289
0xF1000360	AUTOSHUTTER_CTRL	See Table 145: on page 290
0xF1000364	AUTOSHUTTER_LO	
0xF1000368	AUTOSHUTTER_HI	
0xF1000370	AUTOGAIN_CTRL	See Table 146: on page 291
0xF1000390	AUTOFNC_AOI	See Table 147: on page 292
0xF1000394	AF_AREA_POSITION	
0xF1000398	AF_AREA_SIZE	
0xF10003A0	COLOR_CORR	Stingray color cameras only
		See Table 148: on page 293
0xF10003A4	COLOR_CORR_COEFFIC11 = Crr	Stingray color cameras only
0xF10003A8	COLOR_CORR_COEFFIC12 = Cgr	See Table 148: on page 293
0xF10003AC	COLOR_CORR_COEFFIC13 = Cbr	7
0xF10003B0	COLOR_CORR_COEFFIC21 = Crg	7
0xF10003B4	COLOR_CORR_COEFFIC22 = Cgg	7
0xF10003B8	COLOR_CORR_COEFFIC23 = Cbg	7
0xF10003BC	COLOR_CORR_COEFFIC31 = Crb	7
0xF10003C0	COLOR_CORR_COEFFIC32 = Cgb	7
0xF10003C4	COLOR_CORR_COEFFIC33 = Cbb	

Table 128: Advanced registers summary (Forts.)

Register	Register name	Description
0xF1000400	TRIGGER_DELAY	See Table 149: on page 294
0xF1000410	MIRROR_IMAGE	See Table 150: on page 294
0xF1000510	SOFT_RESET	See Table 151: on page 295
0xF1000520	HIGH_SNR	See Table 152: on page 296
0xF1000550	USER PROFILES	See Table 167: on page 309
0xF1000570	PARAMUPD_TIMING	See Table 155: on page 299
0xF1000580	F7MODE_MAPPING	See Table 158: on page 301
0xF1000610	FRMCNT_STAMP	See Table 163: on page 305
0xF1000620	TRIGGER_COUNTER	See Table 164: on page 306
0xF1000630	SIS	See Table 160: on page 303
0xF1000640	SWFEATURE_CTRL	See Table 166: on page 308
0xF1000800	IO_OUTP_PWM1	Stingray housing and board level cameras:
0xF1000804		See Table 30: on page 99
0xF1000808 0xF100080C	IO_OUTP_PWM2	
0xF1000810 0xF1000814	IO_OUTP_PWM3	
0xF1000818 0xF100081C	IO_OUTP_PWM4	
0xF1000840	IO_INP_DEBOUNCE_1	See Table 66: on page 179
0xF1000850	IO_INP_DEBOUNCE_2	
0xF1000860	IO_INP_DEBOUNCE_3	
0xF1000870	IO_INP_DEBOUNCE_4	
0xF1000FFC	GPDATA_INFO	See Table 170: on page 313
0xF1001000	GPDATA_BUFFER	
 0xF100nnnn		
0xF1100000	PARRAMLIST_INFO	See Table 156: on page 300
0xF1101000	PARAMLIST_BUFFER	

Table 128: Advanced registers summary (Forts.)

Note

- Advanced features should always be activated before accessing them.
- **()**
- Currently, all registers can be written without being activated. This makes it easier to operate the camera using **Directcontrol**.

Extended version information register

The presence of each of the following features can be queried by the **0** bit of the corresponding register.

Register	Name	Field	Bit	Description
0xF1000010	VERSION_INF01	μC type ID	[015]	Always 0
		μC version	[1631]	Bcd-coded version number
0xF1000014	VERSION_INF01_EX	µC version	[031]	Bcd-coded version number
0xF1000018	VERSION_INF03	Camera type ID	[015]	See Table 130: on page 273.
		FPGA version	[1631]	Bcd-coded version number
0xF100001C	VERSION_INF03_EX	FPGA version	[031]	Bcd-coded version number
0xF1000020			[031]	Reserved
0xF1000024			[031]	Reserved
0xF1000028			[031]	Reserved
0xF100002C			[031]	Reserved
0xF1000030		OrderIDHigh	[031]	8 Byte ASCII Order ID
0xF1000034		OrderIDLow	[031]	

Table 129: Advanced register: Extended version information

The micro controller version and FPGA firmware version numbers are bcd-coded, which means that firmware version 0.85 is read as 0x0085 and version 1.10 is read as 0x0110.

The newly added **VERSION_INFOx_EX** registers contain extended bcd-coded version information formatted as *special.major.minor.patch*.

So reading the value **0x00223344** is decoded as:

- Special: 0 (decimal)
- Major: 22 (decimal)
- Minor: 33 (decimal)
- Patch: 44 (decimal)

This is decoded to the human readable version **22.33.44** (leading zeros are omitted).

Note

If a camera returns the register set to all zero, that particular camera does not support the extended version information.

The FPGA type ID (= camera type ID) identifies the camera type with the help of the following list (BL = board level):

ID	Camera type
401	Stingray F-033B (BL)
402	Stingray F-033C (BL)
403	
404	
405	Stingray F-046B (BL)
406	Stingray F-046C (BL)
407	Stingray F-080B (BL)
408	Stingray F-080C (BL)
409	Stingray F-125B (BL)
410	Stingray F-125C (BL)
413	Stingray F-145B (BL)
414	Stingray F-145C (BL)
415	Stingray F-146B (BL)
416	Stingray F-146C (BL)
417	Stingray F-201B (BL)
418	Stingray F-201C (BL)
419	
420	
423	Stingray F-504B (BL)
424	Stingray F-504C (BL)

Table 130: Camera type ID list

Stingray Technical Manual V.4.5.0

Advanced feature inquiry

This register indicates with a named bit if a feature is present or not. If a feature is marked as not present the associated register space might not be available and read/write errors may occur.

Note

Ignore unnamed bits in the following table: these bits might be set or not.

Register	Name	Field	Bit	Description
0xF1000040	ADV_INQ_1	MaxResolution	[0]	
		TimeBase	[1]	
		ExtdShutter	[2]	
		TestImage	[3]	
		FrameInfo	[4]	
		Sequences	[5]	
		VersionInfo	[6]	
			[7]	Reserved
		Look-up tables	[8]	
		Shading	[9]	
		DeferredTrans	[10]	
		HDR mode	[11]	
			[12]	Reserved
			[13]	Reserved
		TriggerDelay	[14]	
		Mirror image	[15]	
		Soft Reset	[16]	
		High SNR	[17]	
		Color correction	[18]	
			[1920]	Reserved
		User Sets	[21]	
			[2229]	Reserved
		Paramlist_Info	[30]	
		GP_Buffer	[31]	

Table 131: Advanced register: Advanced feature inquiry

Register	Name	Field	Bit	Description
0xF1000044	ADV_INQ_2	Input_1	[0]	
		Input_2	[1]	
			[27]	Reserved
		Output_1	[8]	
		Output_2	[9]	
		Output_3	[10]	
		Output_4	[11]	
			[1215]	Reserved
		IntEnaDelay	[16]	
			[1723]	Reserved
		Output 1 PWM	[24]	Stingray housing and board
		Output 2 PWM	[25]	level cameras
		Output 3 PWM	[26]	_
		Output 4 PWM	[27]	
			[2831]	Reserved
0xF1000048	ADV_INQ_3	Camera Status	[0]	
		Max IsoSize	[1]	
		Paramupd_Timing	[2]	
		F7 mode mapping	[3]	
		Auto Shutter	[4]	
		Auto Gain	[5]	
		Auto FNC AOI	[6]	
			[731]	Reserved
0xF100004C	ADV_INQ_4		[0]	
			[1]	
			[2]	
			[1831]	Reserved

Table 131: Advanced register: Advanced feature inquiry (Forts.)

Camera status

This register allows to determine the current status of the camera. The most important flag is the **Idle** flag.

If the **Idle** flag is set, the camera does not capture and send any images, though images might be present in the image FIFO.

The **ExSyncArmed** flag indicates that the camera is set up for external triggering. Even if the camera is waiting for an external trigger event the **Idle** flag might get set.

Other bits in this register might be set or toggled: just ignore these bits.

- Excessive polling of this register may slow down the operation of the camera. Therefore, the time between two polls of the status register should not be less than 5 milliseconds. If the time between two read accesses is lower than 5 milliseconds, the response will be delayed.
- Depending on shutter and isochronous settings the status flags might be set for a very short time. In that case, the status flags will not be recognized by your application.

Register	Name	Field	Bit	Description
0xF1000100	CAMERA_STATUS	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[123]	Reserved
		ID	[2431]	Implementation ID = 0x01
0xF1000104			[014]	Reserved
		ExSyncArmed	[15]	External trigger enabled
			[1627]	Reserved
		ISO	[28]	Isochronous transmission
			[2930]	Reserved
		Idle	[31]	Camera idle

Table 132: Advanced register: Camera status

Maximum resolution

This register indicates the highest resolution for the sensor and is read-only.

This register normally outputs the MAX_IMAGE_SIZE_INQ Format_7 Mode_0 value.

This is the value given in the specifications tables under Picture size (max.) in Chapter Specifications on page 40.

Register	Name	Field	Bit	Description
0xF1000200	MAX_RESOLUTION	MaxWidth	[015]	Sensor width (read only)
		MaxHeight	[1631]	Sensor height (read only)

Table 133: Advanced register: Maximum resolution inquiry

Time base

Corresponding to IIDC, exposure time is set via a 12-bit value in the corresponding register (SHUTTER_INQ [51Ch] and SHUTTER [81Ch]).

This means that you can enter a value in the range of 1 to 4095.

Stingray cameras use a time base that is multiplied by the shutter register value. This multiplier is configured as the time base via the TIMEBASE register.

Register	Name	Field	Bit	Description
0xF1000208	TIMEBASE	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[17]	Reserved
		ExpOffset	[819]	Exposure offset in µs
			[2027]	Reserved
		Timebase_ID	[2831]	See Table 135: on page 278.

Table 134: Advanced register: Time base

The time base IDs 0-9 are in bit [28] to [31]. See Table 135: on page 278. Refer to the following table for code.

Default time base is 20 μs : This means that the integration time can be changed in 20 μs increments with the shutter control.

Note

Time base can only be changed when the camera is in idle state and becomes active only after setting the shutter value.

The **ExpOffset** field specifies the camera specific exposure time offset in μ s. This time should be equivalent to Table 67: on page 180 and must be added to the exposure time to compute the real exposure time, set by any shutter register.

The **ExpOffset** field might be zero for some cameras: this has to be assumed as an unknown exposure time offset (according to former software versions).

ID	Time base in µs	
0	1	
1	2	
2	5	
3	10	
4	20	Default value
5	50	
5	50 100	
_		
6	100	

Table 135: Time base ID

The ABSOLUTE VALUE CSR register, introduced in IIDC V1.3, is not implemented.

Extended shutter

The exposure time for long-term integration of up to 67 s can be entered with μs precision via the EXTENDED_SHUTTER register.

Register	Name	Field	Bit	Description
0xF100020C	EXTD_SHUTTER	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[15]	Reserved
		ExpTime	[631]	Exposure time in µs

Table 136: Advanced register: Extended shutter

The minimum allowed exposure time depends on the camera model. To determine this value write **1** to the **ExpTime** field and read back the minimum allowed exposure time.

The longest exposure time, 3FFFFFh, corresponds to 67.11 s.

```
Note
```

- **(i)**
- Exposure times entered via the 81Ch register are mirrored in the extended register, but not vice versa.
- Changes in this register have immediate effect, even when camera is transmitting.
- Extended shutter becomes inactive after writing to a format / mode / frame rate register.
- Extended shutter setting will thus be overwritten by the normal time base/shutter setting after Stop/Start of FireView or FireDemo.

Test images

Bit [8] to [14] indicate which test images are saved. Setting bit [28] to [31] activates or deactivates existing test images.

By activating any test image the following auto features are automatically disabled:

- Auto gain
- Auto shutter
- Auto white balance

Register	Name	Field	Bit	Description
0xF1000210	TEST_IMAGE	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[17]	Reserved
			[8]	Presence of test image 1 0: N/A 1: Available
		Image_Inq_2	[9]	Presence of test image 2 0: N/A 1: Available
		Image_Inq_3	[10]	Presence of test image 3 0: N/A 1: Available
		Image_Inq_4	[11]	Presence of test image 4 0: N/A 1: Available
		Image_Inq_5	[12]	Presence of test image 5 0: N/A 1: Available
		Image_Inq_6	[13]	Presence of test image 6 0: N/A 1: Available
		Image_Inq_7	[14]	Presence of test image 7 0: N/A 1: Available
			[1527]	Reserved
		TestImage_ID	[2831]	0: No test image active 1: Image 1 active 2: Image 2 active

Table 137: Advanced register: Test images

Look-up tables (LUT)

The LUT to be used in the camera are chosen via the LutNo field. The LUTs are activated via the LUT_CTRL register.

The LUT_INFO register indicates how many LUTs the camera can store and shows the maximum size of the individual LUTs.

The possible values for **LutNo** are 0..n-1; whereas, n can be determined by reading the field **NumOfLuts** of the LUT_INFO register.

Register	Name	Field	Bit	Description
0xF1000240	LUT_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[15]	Reserved
		ON_OFF	[6]	Enable/disable this feature
			[725]	Reserved
		LutNo	[2631]	Use LUTwith LutNo number
0xF1000244	LUT_MEM_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[14]	Reserved
		EnableMemWR	[5]	Enable write access
			[67]	Reserved
		AccessLutNo	[815]	
		AddrOffset	[1631]	byte
0xF1000248	LUT_INF0	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[12]	Reserved
		BitsPerValue	[37]	Bits used per table item
		NumOfLuts	[815]	Maximum number of look-up tables
		MaxLutSize	[1631]	Maximum LUTsize (bytes)

Table 138: Advanced register: LUT

Note

The **BitsPerValue** field indicates how many bits are read from the LUT for any gray-value read from the sensor. To determine the number of bytes occupied for each gray-value round-up the **BitsPerValue** field to the next byte boundary.

Examples:

- BitsPerValue = $8 \rightarrow 1$ byte per gray-value
- BitsPerValue = $14 \rightarrow 2$ byte per gray-value

Divide **MaxLutSize** by the number of bytes per gray-value in order to get the number of LUT entries (gray levels): that is 2^n with n=number of bits read from sensor.

Note

Stingray cameras have the gamma feature implemented via a built-in LUT. Therefore, gamma and LUT cannot be used at the same time. As a solution, a gamma LUT may be combined with other LUTs.

Note

When using the LUT feature and the gamma feature, pay attention to the following:

- Gamma ON \rightarrow LUTis switched ON
- Gamma OFF \rightarrow LUTis switched OFF
- LUT OFF → Gamma is switched OFF
- LUT ON → Gamma is switched OFF

Loading a LUTinto the camera

Loading a LUT into the camera is done through the GPDATA_BUFFER. The size of the GPDATA_BUFFER is smaller than a complete LUT; therefore the data must be written in multiple steps.

To load a lookup table into the camera:

- 1. Query the limits and ranges by reading LUT_INFO and GPDATA_INFO.
- 2. Set **EnableMemWR** to true (1).
- 3. Set AccessLutNo to the desired number.
- 4. Set **AddrOffset** to 0.
- 5. Write n lookup table data bytes to GPDATA_BUFFER (n might be lower than the size of the GPDATA_BUFFER; AddrOffset is automatically adjusted inside the camera).
- 6. Repeat step 5 until all data is written into the camera.
- 7. Set EnableMemWR to false (0).

Shading correction

Owing to technical circumstances, the interaction of recorded objects with one another, optical effects, and lighting non-homogeneities may occur in the images.

Normally, these effects are not desired. They should be eliminated as far as possible in subsequent image editing. The camera has automatic shading correction to do this.

Provided a shading image is present in the camera, the **on/off** bit can be used to enable shading correction.

The **on/off** and **ShowImage** bits must be set for saved shading images to be displayed.

Note

- Ensure that the shading image is saved at the highest resolution of the camera. If a lower resolution is chosen and **ShowImage** is set to **true**, the image will not be displayed correctly.
- The shading image is computed using the current video settings. On fixed video modes the selected frame rate also affects the computation time.

Register	Name	Field	Bit	Description
0xF1000250	SHDG_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
		BuildError	[1]	Could not built shading image
			[23]	Reserved
		ShowImage	[4]	Show shading data as image
		BuildImage	[5]	Build a new shading image
		ON_OFF	[6]	Shading on/off
		Busy	[7]	Build in progress
			[815]	Reserved
		MemChannelError	[1619]	Indicates memory channel error. See Table 140: on page 285
		MemoryChannel	[2023]	Set memory channel number for save and load operations
		GrabCount	[2431]	Number of images

Table 139: Advanced register: Shading

Register	Name	Field	Bit	Description
0xF1000254	SHDG_MEM_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[14]	Reserved
		EnableMemWR	[5]	Enable write access
		EnableMemRD	[6]	Enable read access
			[7]	Reserved
		AddrOffset	[831]	In bytes
0xF1000258	SHDG_INFO	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[13]	Reserved
		MaxMemChannel	[47]	Maximum number of available memory channels to store shading images
		MaxImageSize	[831]	Maximum shading image size (in bytes)

Table 139: Advanced register: Shading (Forts.)

Reading or writing shading image from/into the camera

Accessing the shading image inside the camera is done through the GPDATA_BUFFER. Data must be written in multiple steps, because the size of the GPDATA_BUFFER is smaller than a whole shading image.

To read or write a shading image:

- 1. Query the limits and ranges by reading SHDG_INFO and GPDATA_INFO.
- 2. Set **EnableMemWR** or **EnableMemRD** to true (1).
- 3. Set **AddrOffset** to 0.
- 4. Write n shading data bytes to GPDATA_BUFFER (n might be lower than the size of the GPDATA_BUFFER; AddrOffset is automatically adjusted inside the camera).
- 5. Repeat step 4 until all data is written into the camera.
- 6. Set EnableMemWR and EnableMemRD to false.

Automatic generation of a shading image

Shading image data may also be generated by the camera. To use this feature make sure all settings affecting an image are set properly. The camera uses the current active resolution to generate the shading image.

To generate a shading image:

- 1. Set **GrabCount** to the number of the images to be averaged before the correction factors are calculated.
- 2. Set **BuildImage** to true.

3. Poll the SHDG_CTRL register until the **Busy** and **BuildImage** flags are reset automatically.

The maximum value of GrabCount depends on the camera type and the number of available image buffers. GrabCount is automatically adjusted to a power of two.

SHDG_CTRL register should not be polled too often, while automatic generation is in progress. Each poll delays the process of generating the shading image. An optimal poll interval time is 500 ms.

Memory channel error codes

ID	Error description
0x00	No error
0x01	Memory detection error
0x02	Memory size error
0x03	Memory erase error
0x04	Memory write error
0x05	Memory header write error
0x0F	Memory channel out of range

Table 140: Memory channel error description

Deferred image transport

Using this register, the sequence of recording and the transfer of the images can be paused. Setting **HoldImg** prevents transfer of the image. The images are stored in **ImageFIFO**.

The images indicated by NumOfImages are sent by setting the SendImage bit.

When **FastCapture** is set (in Format_7 only), images are recorded at the highest possible frame rate.

Register	Name	Field	Bit	Description
0xF1000260 DEFERRED_TRANS		Presence_Inq	[0]	Indicates presence of this feature (read only)
			[14]	Reserved
		SendImage	[5]	Send NumOfImages now (auto reset)
		HoldImg	[6]	Enable/Disable deferred transport mode
			[7]	Enable/disable fast capture mode
			[815]	Reserved
		FiFoSize	[1623]	Size of FIFO in number of images (read only)
		NumOfImages	[2431]	Write: Number of images to send
				Read: Number of images in buffer

Table 141: Advanced register: Deferred image transport

Frame information

This register is used to double-check the number of images received by the host computer against the number of images that were transmitted by the camera. The camera increments this counter with every FrameValid signal. This is a mirror of the frame counter information found at 0xF1000610.

Register	Name	Field	Bit	Description
0xF1000270	FRAMEINFO	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
		ResetFrameCnt	[1]	Reset frame counter
			[231]	Reserved
0xF1000274	FRAMECOUNTER	FrameCounter	[031]	Number of captured frames since last reset

Table 142: Advanced register: Frame information

The **FrameCounter** is incremented when an image is read out of the sensor.

The **FrameCounter** does not indicate whether an image was sent over the IEEE 1394 bus or not.

Stingray Technical Manual V.4.5.0

Defect pixel correction

•

Definition The defect pixel correction mode allows to correct an image with defect pixels. Threshold defines the defect pixels in an image. Defect pixel correction is done in the FPGA. Defect pixel data can be stored inside the camera's EEPROM.

DPC = defect pixel correction

WR = write

RD = read

MEM, Mem = memory

Note

- Defect pixel correction is always done in Format_7 Mode O. When using defect pixel correction with binning and
- sub-sampling: first switch to binning/sub-sampling modus and then apply defect pixel correction.

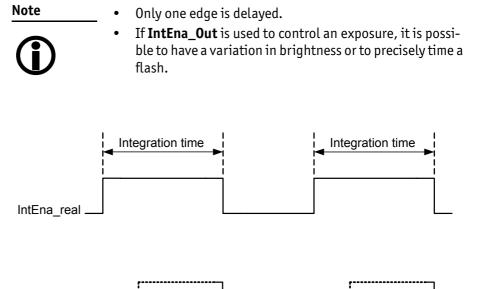
Register	Name	Field	Bit	Description
0xF1000298	DPC_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
		BuildError	[1]	Build defect pixel data that reports an error, e.g. more than 256 defect pixels, see DPDataSize
			[24]	Reserved
		BuildDPData	[5]	Build defect pixel data now
		ON_OFF	[6]	Enable/disable this feature
		Busy	[7]	Build defect pixel data in progress
		MemSave	[8]	Save defect pixel data to stor- age
		MemLoad	[9]	Load defect pixel data from storage
		ZeroDPData	[10]	Zero defect pixel data
			[1117]	Reserved
		Mean	[1824]	Calculated mean value (7 bit)
		Threshold	[2531]	Threshold for defect pixel cor- rection

Table 143: Advanced register: Defect pixel correction

Register	Name	Field	Bit	Description
0xF100029C	DPC_MEM	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[1]	Reserved
		EnaMemWR	[2]	Enable write access from host to RAM
		EnaMemRD	[3]	Enable read access from RAM to host
		DPDataSize	[417]	Size of defect pixel data to read from RAM to host.
				A maximum of 256 defect pix- els can be stored. In case of more than 256 defect pixels, DPDataSize is set to 257 and BuildError flag is set to 1.
				Defect pixel correction data is done with first 256 defect pix- els only.
		AddrOffset	[1831]	Address offset to selected defect pixel data
0xF10002A0	DPC_INFO	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[13]	Reserved
		MinThreshold	[410]	Minimum value for threshold
		MaxThreshold	[1117]	Maximum value for threshold
		MaxSize	[1831]	Maximum size of defect pixel data

Table 143: Advanced register: Defect pixel correction (Forts.)

Input/output pin control


Note

- See Chapter Input/output pin control on page 91
- See Chapter IO_INP_CTRL 1-2 on page 91
- See Chapter IO_OUTP_CTRL 1-4 on page 95
- See Chapter Output modes on page 97

Delayed Integration Enable (IntEna)

A delay time between initiating exposure on the sensor and the activation edge of the **IntEna** signal can be set using this register. The **on/off** flag activates/ deactivates integration delay. The time can be set in μ s in **DelayTime**.

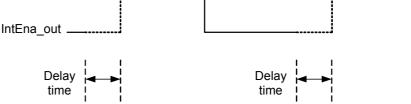


Figure 111: Delayed integration timing

Register	Name	Field	Bit	Description
0xF1000340	IO_INTENA_DELAY	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
	ON_OFF	[6]	Enable/disable integration enable delay	
			[711]	Reserved
		DELAY_TIME	[1231]	Delay time in µs

Table 144: Advanced register: Delayed Integration Enable (IntEna)

Auto shutter control

The table below illustrates the advanced register for **auto shutter control**. The purpose of this register is to limit the range within which auto shutter operates.

Register	Name	Field	Bit	Description
0xF1000360	AUTOSHUTTER_CTRL	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[1-31]	Reserved
0xF1000364	AUTOSHUTTER_LO		[0-5]	Reserved
		MinValue	[6-31]	Minimum auto shutter value lowest possible value: 10 µs
0xF1000368	AUTOSHUTTER_HI		[0-5]	Reserved
		MaxValue	[6-31]	Maximum auto shutter value

Table 145: Advanced register: Auto shutter control

- Values can only be changed within the limits of shutter CSR.
- Changes in auto exposure register only have an effect when auto shutter is enabled.
- Auto exposure limits are: 50–205 (SmartView→Ctrl1 tab: Target grey level)

When both **auto shutter** and **auto gain** are enabled, priority is given to increasing shutter when brightness decreases. This is done to achieve the best image quality with lowest noise.

For increasing brightness, priority is given to lowering gain first for the same purpose.

MinValue and **MaxValue** limits the range the auto shutter feature is allowed to use for the regulation process. Both values are initialized with the minimum and maximum value defined in the standard SHUTTER_INQ register (multiplied by the current active timebase).

If you change the **MinValue** and/or **MaxValue** and the new range exceeds the range defined by the SHUTTER_INQ register, the standard SHUTTER register will not show correct shutter values. In this case, read the EXTENDED_SHUTTER register for the current active shutter time.

Changing the auto shutter range might not affect the regulation, if the regulation is in a stable condition and no other condition affecting the image brightness is changed.

If both **auto gain** and **auto shutter** are enabled and if the shutter is at its upper boundary and gain regulation is in progress, increasing the upper auto shutter boundary has no effect on auto gain/shutter regulation as long as auto gain regulation is active.

As with the Extended Shutter the value of **MinValue** and **MaxValue** must not be set to a lower value than the minimum shutter time.

Auto gain control

The table below illustrates the advanced register for **auto gain control**.

Register	Name	Field	Bit	Description
0xF1000370	AUTOGAIN_CTRL	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[13]	Reserved
		MaxValue	[415]	Maximum auto gain value
			[1619]	Reserved
		MinValue	[2031]	Minimum auto gain value

Table 146: Advanced register: Auto gain control

MinValue and **MaxValue** limits the range the auto gain feature is allowed to use for the regulation process. Both values are initialized with the minimum and maximum value defined in the standard GAIN_INQ register.

Changing the **auto gain range** might not affect the regulation, if the regulation is in a stable condition and no other condition affecting the image brightness is changed.

If both **auto gain** and **auto shutter** are enabled and if the gain is at its lower boundary and shutter regulation is in progress, decreasing the lower auto gain boundary has no effect on auto gain/shutter regulation as long as auto shutter regulation is active.

Both values can only be changed within the range defined by the standard GAIN_INQ register.

Autofunction AOI

The table below illustrates the advanced register for **autofunction AOI**.

Register	Name	Field	Bit	Description
0xF1000390	AUTOFNC_AOI	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[13]	Reserved
		ShowWorkArea	[4]	Show work area
			[5]	Reserved
		ON_OFF	[6]	Enable/disable AOI (see note above)
			[7]	Reserved
		YUNITS	[819]	Y units of work area/pos. beginning with 0 (read only)
		XUNITS	[2031]	X units of work area/pos. beginning with 0 (read only)
0xF1000394	AF_AREA_POSITION	Left	[015]	Work area position (left coordinate)
		Тор	[1631]	Work area position (top coordinate)
0xF1000398	AF_AREA_SIZE	Width	[015]	Width of work area size
		Height	[1631]	Height of work area size

Table 147: Advanced register: Autofunction AOI

The possible increment of the work area position and size is defined by the YUNITS and XUNITS fields. The camera automatically adjusts your settings to permitted values.

Note

If the adjustment fails and the work area size and/or work area position becomes invalid, then this feature is automatically switched of

Read back the ON_OFF flag, if this feature does not work as expected.

Color correction

To switch off color correction in YUV mode: see bit [6]

Register	Name	Field	Bit	Description
0xF10003A0	COLOR_CORR	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Color correction on/off
				default: on
				Write: 02000000h to switch color correction OFF
				Write: 00000000h to switch color correction ON
		Reset	[7]	Reset to defaults
			[831]	Reserved
0xF10003A4	COLOR_CORR_COEFFIC11 = Crr		[031]	A number of 1000 equals a
0xF10003A8	COLOR_CORR_COEFFIC12 = Cgr		[031]	color correction coefficient of 1.
0xF10003AC	COLOR_CORR_COEFFIC13 = Cbr		[031]	
0xF10003B0	COLOR_CORR_COEFFIC21 = Crg		[031]	Color correction values range -1000+2000 and are
0xF10003B4	COLOR_CORR_COEFFIC22 = Cgg		[031]	signed 32 bit.
0xF10003B8	COLOR_CORR_COEFFIC23 = Cbg		[031]	In order for white balance to
0xF10003BC	COLOR_CORR_COEFFIC31 = Crb		[031]	work properly ensure that
0xF10003C0	COLOR_CORR_COEFFIC32 = Cgb		[031]	the row sum equals to 1000.
0xF10003C4	COLOR_CORR_COEFFIC33 = Cbb		[031]	The maximum row sum is lim- ited to 2000.
0xF10003A4				Reserved for testing purposes
 0xF10003FC				Don't touch!

Table 148: Advanced register: Color correction

For an explanation of the color correction matrix and for further information read Chapter Color correction on page 164.

Trigger delay

Register	Name	Field	Bit	Description
0xF1000400	TRIGGER_DELAY	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Trigger delay on/off
			[710]	Reserved
		DelayTime	[1131]	Delay time in µs

Table 149: Advanced register: Trigger delay

The advanced register allows start of the integration to be delayed via **DelayTime** by max. 2^{21} µs, which is max. 2.1 s after a trigger edge was detected.

Note Trigger delay works with external trigger modes only.

Mirror image

The table below illustrates the advanced register for Mirror image.

Register	Name	Field	Bit	Description
0xF1000410	MIRROR_IMAGE	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Mirror image on/off
				1: on 0: off
				Default: off
			[731]	Reserved

Table 150: Advanced register: Mirror

Soft reset

Register	Name	Field	Bit	Description
0xF1000510	SOFT_RESET	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		Reset	[6]	Initiate reset
			[719]	Reserved
		Delay	[2031]	Delay reset in 10 ms steps

Table 151: Advanced register: Soft reset

The **soft reset** feature is similar to the INITIALIZE register, with the following differences:

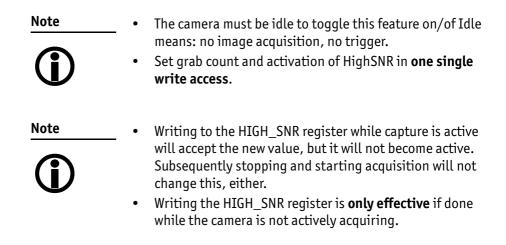
- 1 or more bus resets will occur
- The FPGA will be rebooted

The reset can be delayed by setting the **Delay** to a value unequal to 0.

The delay is defined in 10 ms steps.

Note

When SOFT_RESET has been defined, the camera will respond to further read or write requests but will not process them.



High SNR mode (High Signal Noise Ratio)

With **High SNR** mode enabled the camera internally grabs **GrabCount** images and outputs a single averaged image.

Register	Name	Field	Bit	Description
0xF1000520	HIGH_SNR	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	High SNR mode on/off
				High SNR mode on requires a minimum GrabCount value of 2 .
				Set grab count and activation of HighSNR in one single write access.
			[722]	Reserved
		GrabCount	[2331]	Enter number of images
				Permissible values are:
				2, 4, 8, 16, 32, 64, 128, 256
				If you enter a non-expected value, the firmware will round down to the first permitted value.
				Example: Enter 255, firmware will write 128 to the register.

Table 152: Advanced register: High Signal Noise Ratio (HSNR)

Maximum ISO packet size

Use this feature to increase the MaxBytePerPacket value of Format_7 modes. This overrides the maximum allowed isochronous packet size specified by IIDC V1.31.

Register	Name	Field	Bit	Description
0xF1000560	ISOSIZE_S400	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Enable/Disable S400 settings
		Set2Max	[7]	Set to maximum supported packet size
			[815]	Reserved
		MaxIsoSize	[1631]	Maximum ISO packet size for S400
0xF1000564	ISOSIZE_S800	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Enable/Disable S800 settings
		Set2Max	[7]	Set to maximum supported packet size
			[815]	Reserved
		MaxIsoSize	[1631]	Maximum ISO packet size for S800

Example For isochronous packets at a speed of S800 the maximum allowed packet size (IIDC V1.31) is 8192 byte. This feature allows you to extend the size of an isochronous packet up to 11,000 byte at S800. Thus, the isochronous bandwidth is increased from 64 MByte/s to approximately 84 MByte/s. You need either PCI Express or PCI-X (64 bit).

The Maximum ISO packet size feature ...

- ... reduces the asynchronous bandwidth available for controlling cameras by approximately 75%
- ... may lead to slower responses on commands
- ... is not covered by the IEEE1394 specification
- ... may not work with all available 1394 host adapters

Note

We strongly recommend to use **PCI-X (64 bit)** or **PCI Express** adapter.

Restrictions	Note the restrictions in the following table. When using software with an
	Isochronous Resource Manager (IRM): deactivate it.

Software	Restrictions
FireGrab	Deactivate Isochronous Resource Manager: SetParameter (FGP_USEIRMFORBW, 0)
FireStack/FireClass	No restrictions
SDKs using Microsoft driver (Active FirePackage, Direct FirePackage,)	n/a
Linux: libdc1394_1.x	No restrictions
Linux: libdc1394_2.x	Deactivate Isochronous Resource Manager: Set DC1394_CAPTURE_FLAGS_BANDWIDTH_ALLOC flag to 0
Third Party Software	Deactivate Isochronous Resource Manager

Table 154: Restrictions for feature: Maximum ISO packet size

Operation The maximum allowed isochronous packet size can be set separately for the ISO speeds S400 and S800. Check the associated **Presence_Inq** flag to see for which ISO speed this feature is available.

Setting the **Set2Max** flag to 1 sets the **MaxIsoSize** field to the maximum supported isochronous packet size. Use this flag to query the maximum supported size (may depend on the camera model).

Enable this feature by setting the **ON_OFF** flag to 1 and the **MaxIsoSize** field to a value greater than the default packet size.

The camera ensures:

- that the value of the MaxIsoSize field is a multiple of 4.
- that the value isn't lower than the value specified by the IEEE1394 specification.

The settings are stored in the user sets.

Note

Enabling this feature will not change the **MaxBytePerPacket** value automatically. The camera may not use the new isochronous packet size for the **MaxBytePerPacket** value until a write access to the desired Format_7 mode has been issued.

Quick parameter change timing modes

You can choose between the following update timing modes:

- **Standard Parameter Update Timing** (slightly modified from previous Stingray cameras)
- Quick Format Change Mode

Note

For a detailed description see Chapter Quick parameter change timing modes on page 149.

Register	Name	Field	Bit	Description
0xF1000570	PARAMUPD_TIMING	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		UpdActive	[6]	Update active
				see Chapter Encapsulated Update (begin/end) on page 151
				0: (default); reset to 0 means Encapsulated Update end
				1: set to 1 means Encapsulated Update begin
			[723]	Reserved
		UpdTiming	[2431]	Update timing mode
				If set to 0: Standard Parameter Update Timing is active
				If set to 2: Quick Format Change Mode is active

Table 155: Advanced register: Update timing modes

Standard Parameter Update Timing

The camera behaves like older firmware versions without this feature. The UpdActive flag has no meaning.

Quick Format Change Mode

This mode behaves like Standard Parameter Update Timing mode with the following exception:

An already started image transport to the host will not be interrupted, but an already started integration will be interrupted.

To switch on **Quick Format Change Mode** do the following:

- 1. Set UpdTiming to 2.
- 2. Set UpdActive to 1.
- 3. Be aware that all parameter values have to be set within 10 seconds.

Automatic reset of the UpdActive flag

Quick Format Change Mode clears the **UpdActive** flag after all desired parameters have been set. Every time the **PARAMUPD_TIMING** register is written to with the **UpdActive** flag set to 1 a 10 second time-out is started/restarted. If the time-out passes before the **UpdActive** flag is cleared, the **UpdActive** flag is cleared automatically and all parameter changes since setting the **UpdActive** flag to 1 become active automatically.

Parameter-List Update

The parameter list is an array of address/data pairs which can be sent to the camera in a single bus cycle.

Register	Name	Field	Bit	Description
0xF1100000	PARAMLIST_INFO	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[115]	Reserved
		BufferSize	[1631]	Size of parameter list buffer in bytes
0xF1101000 0xF1101nnn	PARAMLIST_BUFFER			

Table 156: Advanced register: **Parameter-List Update**: parameter list

Dependant on the parameter update mode the address/data pairs may become active one by one or after the processing of the complete parameter list. A parameter list may look like follows (the description is for your convenience):

Address offset	Data quadlet	Description
0xF0F00608	0×E0000000	Set video format 7
0xF0F00604	0x0000000	Set video mode 0
0xF0F08008	0x0000000	Set image position
0×F0F0800C	0x028001E0	Set image size
0xF0F08044	0x04840484	Set BytePerPacket value
0xF0F0080C	0x80000100	Set shutter to 0x100
0xF0F00820	0x80000080	Set gain to 0x80

Table 157: Example: parameter list

- The PARAMLIST_BUFFER shares the memory with the GPDATA_BUFFER. Therefore, it is not possible to use both features at the same time.
- Not all CSRs or features of a particular camera model can be used with the parameter list feature.

Stingray Technical Manual V.4.5.0

Format_7 mode mapping

With Format_7 mode mapping it is possible to map special binning and sub-sampling modes to F7M1..F7M7 (see Figure 82: on page 148).

Register	Name	Field	Bit	Description
0xF1000580	F7MODE_MAPPING	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[131]	Reserved
0xF1000584	F7MODE_MAP_INQ	F7MODE_00_INQ	[0]	Format_7 Mode_0 presence
		F7MODE_01_INQ	[1]	Format_7 Mode_1 presence
		F7MODE_31_INQ	[31]	Format_7 Mode_31 presence
0xF1000588	Reserved			
0xF100058C	Reserved			
0xF1000590	F7MODE_0	Format_ID	[031]	Format ID (read only)
0xF1000594	F7MODE_1	Format_ID	[031]	Format ID for Format_7 Mode_1
0xF1000598	F7MODE_2	Format_ID	[031]	Format ID for Format_7 Mode_2
0xF100059C	F7MODE_3	Format_ID	[031]	Format ID for Format_7 Mode_3
0xF10005A0	F7MODE_4	Format_ID	[031]	Format ID for Format_7 Mode_4
0xF10005A4	F7MODE_5	Format_ID	[031]	Format ID for Format_7 Mode_5
0xF10005A8	F7MODE_6	Format_ID	[031]	Format ID for Format_7 Mode_6
0xF10005AC	F7MODE_7	Format_ID	[031]	Format ID for Format_7 Mode_7

Table 158: Advanced register: Format_7 mode mapping

Additional Format_7

modes Firmware 3.x adds additional Format_7 modes. Now you can add some special Format_7 modes that are notcovered by the IIDC standard. These special modes implement **binning** and **sub-sampling**.

To stay as close as possible to the IIDC standard the Format_7 modes can be mapped into the register space of the standard Format_7 modes.

There are visible Format_7 modes and internal Format_7 modes:

- At any time only 8 Format_7 modes can be accessed by a host computer.
- Visible Format_7 modes are numbered from 0 to 7.
- Internal Format_7 modes are numbered from 0 to 27.

Format_7 Mode_0 represents the **mode with the maximum resolution** of the camera: this visible mode cannot be mapped to any other internal mode.

The remaining visible Format_7 Mode_1 ... Mode_7 can be mapped to any internal Format_7 mode.

Example

To map the internal Format_7 Mode_19 to the visible Format_7 Mode_1, write the decimal number 19 to the above listed F7MODE_1 register.

Note

For available Format_7 modes see .

- Setting the F7MODE_x register to:
- -1 forces the camera to use the factory defined mode
- -2 disables the respective Format_7 mode (no mapping is applied)

After setup of personal Format_7 mode mappings you have to reset the camera. The mapping is performed during the camera startup only.

Low noise binning mode (2 x and 4 x binning)

This register enables/disables low noise binning mode.

An average (and not a sum) of the luminance values is calculated within the FPGA.

The image is darker than with the usual binning mode but the signal to noise ratio is better (approximately a factor of $\sqrt{2}$).

Offset	Name	Field	Bit	Description
0xF10005B0	LOW_NOISE_BINNING	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Low noise binning mode on/off
			[731]	Reserved

Table 159: Advanced register: Low noise binning mode

Secure image signature (SIS)

Definition Secure image signature (SIS) is the synonym for data, that is inserted into an image to improve or check image integrity.

All Stingray models can, for example, insert into a selectable line position within the image:

- Cycle time (1394 bus cycle time at the beginning of integration)
- Frame counter (frames read out of the sensor)
- Trigger counter (external trigger seen only)

Frame counter and **trigger counter** are available as advanced registers to be read out directly.

Advanced register: SIS

The **SIS** feature is controlled by the following advanced feature register:

This register is **different** to the Marlin **time stamp** (600) register!

Register	Name	Field	Bit	Description
0xF1000630	SIS	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	SIS mode on/off
			[7 15]	Reserved
		LineNo	[1631]	SIS data position inside an image
0xF1000634		UserValue	[031]	User provided value for sequence mode to be placed into the SIS area of an image

Table 160: Advanced register: secure image signature (SIS)

Enabling this feature, SIS data will be inserted into any captured image. The size of SIS data depends on the selected SIS format.

The LineNo field indicates at which line the SIS data will be inserted.

SIS: Position in the image

Enter a

- **positive value** from 0...HeightOfImage to specify a position relative to the top of the image. LinePos=0 specifies the very first image line.
- **negative value** from -1...-HeightOfImage to specify a position relative to the bottom of the image. LinePos=-1 specifies the very last image line.

SIS **UserValue** can be written into the camera's image. In sequence mode for every sequence entry an own SIS **UserValue** can be written.

SIS outside the visible image area:

For certain Format_7 modes the image frame transported may contain padding (filling) data at the end of the transported frame. Setting LinePos = HeightOfImage places SIS in this padding data area, outside the visible area (invisible SIS).

If the transported image frame does not contain any padding data the camera will not relocate the SIS to the visible area automatically (no SIS).

Take in mind that the accuracy of SIS might be affected by asynchronous traffic – mainly if image settings are changed.

Note

Note

- The IEEE 1394 cycle time will be inserted into the very first 4 bytes of a line.
 Cycle time is a structure and not really a counter in its
- **Cycle time** is a structure as first meaning.
 - Cycle time has the three components:
 - Cycle offset
 - Cycles
 - Seconds
 - Cycle time is a nested counter: see table below.

Feature	Cycle offset	Cycles	Seconds
Bit depth	12 bit	13 bit	7 bit
Range	03071 cycle offsets	0 7999 cycles	0 127 seconds
Frequency	24.576 MHz ⇔ 40.69 ns	8000 Hz ⇔ 125 µs	1 Hz ⇒ 1 s

Table 161: Structure of cycle time

Examples: cycle time

The following three examples allow you:

- A: to access cycle time either via UniAPI or via byte array
- B: to extract cycle offset, cycles and seconds
- C: to combine cycle offset/cycles/seconds to a valid time

Example	Example code and description				
А	nCycleTime can be accessed:				
	• using the SIS structure S_SIS_DATA of the UniAPI:				
	nCycleTime = * (UINT32 *) &Sis[0];				
	• using byte array: If you can access the image buffer as an array of bytes you can assemble the first four bytes of the image buffer (assuming that the SIS is in the first row):				
	<pre>nCycleTime = data[0] + (data[1]<<8) +</pre>				
В	This Cycle time can be devided into its components:				
	nCtSeconds = ((nCycleTime & 0xFE000000) >> 25;				
	<pre>nCtCycles = ((nCycleTime & 0x01FFF000) >> 12;</pre>				
	nCtOffset = nCycleTime & 0x00000FFF;				
С	These values can be combined				
	dTime = nCtSeconds +				
	nCtCycles / 8000 +				
	nCtOffset / 24576000;				

Table 162: Examples: cycle time

Advanced register: frame counter

Note	

Different to Marlin SIS:

Register 610 is only to be used to reset the frame counter.

The **frame counter** feature is controlled by the following advanced feature register:

Register	Name	Field	Bit	Description
0xF1000610	FRMCNT_STAMP	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Reset	[1]	Reset frame counter
			[231]	Reserved
0xF1000614	FRMCNT		[031]	Frame counter

Table 163: Advanced register: Frame counter

Having this feature enabled, the current **frame counter** value (images read out of the sensor, equivalent to # FrameValid) will be inserted as a 32-bit integer value into any captured image.

Setting the **Reset** flag to 1 resets the frame counter to 0: the **Reset** flag is self-cleared.

Note

The 4 bytes of the **frame counter** value will be inserted as the **5th to 8th byte of a line**.

Additionally, there is a register for direct read out of the frame counter value.

Advanced register: trigger counter

The **trigger counter** feature is controlled by the following advanced feature register:

Register	Name	Field	Bit	Description
0xF1000620	TRIGGER_COUNTER	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Reset	[1]	Reset trigger counter
			[231]	Reserved
0xF1000624	TRGCNT	TriggerCounter	[031]	Trigger counter

Table 164: Advanced register: Trigger counter

Having this feature enabled, the current **trigger counter** value (external trigger seen by hardware) will be inserted as a 32-bit integer value into any captured image.

Setting the **Reset** flag to 1 resets the **trigger counter** to 0: the **Reset** flag is selfcleared.

The **ON_OFF** and **LinePos** fields are simply mirrors of the SIS feature. Settings of these fields are applied to all SIS features.

Note

The 4 bytes of the **trigger counter** value will be inserted as the **9th to 12th byte of a line**.

Additionally, there is a register for direct read out of the **trigger counter** value.

Where to find cycle time, frame counter and trigger counter in the image

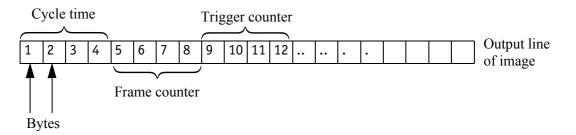


Figure 112: SIS in the image: cycle time, frame counter, trigger counter

Where to find all SIS values in the image

The following table presents the position of all SIS values (byte for byte) including the endianness of SIS values. (Here SIS has 48 bytes.)

Cycle time [70]	Cycle time [158]	Cycle time [2316]	Cycle time [3124]
Byte 1	Byte 2	Byte 3	Byte 4
Frame counter [70]	Frame counter [158]	Frame counter [2316]	Frame counter [3124]
Byte 5	Byte 6	Byte 7	Byte 8
Trigger counter [70]	Trigger counter [158]	Trigger counter [2316]	Trigger counter [3124]
Byte 9	Byte 10	Byte 11	Byte 12
A0I left [70]	AOI left [158]	A0I top [70]	AOI top [158]
Byte 13	Byte 14	Byte 15	Byte 16
AOI width [70]	A0I width [158]	AOI height [70]	AOI height [158]
Byte 17	Byte 18	Byte 19	Byte 20
Shutter [70]	Shutter [158]	Shutter [2316]	Shutter [3124]
Byte 21	Byte 22	Byte 23	Byte 24
Gain [70]	Gain [158]	Reserved [NULL]	Reserved [NULL]
Byte 25	Byte 26	Byte 27	Byte 28
Output State_1 [70]	Output State_2 [70]	Output State_3 [70]	Output State_4 [70]
Byte 29	Byte 30	Byte 31	Byte 32
Input State_1 [70]	Input State_2 [70]	Reserved [NULL]	Reserved [NULL]
Byte 33	Byte 34	Byte 35	Byte 36
SequenceIndex [70]	Reserved [NULL]	ColorCoding [NULL]	Reserved [NULL]
Byte 37	Byte 38	Byte 39	Byte 40
Serial number [70]	Serial number [158]	Serial number [2316]	Serial number [3124]
Byte 41	Byte 42	Byte 43	Byte 44
SIS user value [70]	SIS user value [158]	SIS user value [2316]	SIS user value [3124]
Byte45	Byte46	Byte47	Byte48

Table 165: All SIS values (increasing order of transmitted pixels)

Software feature control (disable LEDs)

The software feature control register allows to enable/disable some features of the camera (e.g. disable LEDs). The settings are stored permanently within the camera and do not depend on any user set.

Register	Name	Field	Bit	Description
0xF1000640 SV	SWFEATURE_CTRL	Presence_Inq	[0]	Indicates presence of this feature (read only)
		BlankLED_Inq	[1]	Indicates presence of <i>Disable LEDs</i> feature
			[215]	Reserved
		[16]	Reserved	
		BlankLED	[17]	0: Behavior as described in Chapter Status LEDs on page 88 et seq.
				1: Disable LEDs. (The LEDs will still show error codes.)
			[1831]	Reserved

Table 166: Advanced register: Software feature control (disable LEDs)

Disable LEDs

- To disable LEDs set bit [17] to 1.
- To disable LEDs in SmartView: Adv3 tab, activate *Disable LED functionality* check box.

The camera does not show any more the status indicators during normal operation:

Examples:

- Power on is not shown
- Isochronous traffic is not shown
- Asynchronous traffic is not shown

Note

During the startup of the camera and if an error condition is present, the LEDs behave as described in Chapter Status LEDs on page 88.

User profiles

Definition Within the IIDC specification **user profiles** are called **memory channels**, known as **user sets**. These are different expressions for the following: storing camera settings into a non-volatile memory inside the camera.

User profiles can be programmed with the following advanced feature register:

Offset	Name	Field	Bit	Description
0xF1000550 l	USER_PROFILE	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Error	[1]	An error occurred
			[26]	Reserved
		Busy	[7]	Save/Load in progress
		Save	[8]	Save settings to profile
		Load	[9]	Load settings from profile
		SetDefaultID	[10]	Set Profile ID as default
			[1119]	Reserved
		ErrorCode	[2023]	Error code
				See Table 168: on page 310.
			[2427]	Reserved
		ProfileID	[2831]	ProfileID (memory channel)

Table 167: Advanced register: User profiles

In general, this advanced register is a wrapper around the standard memory channel registers with some extensions. In order to query the number of available user profiles please check the **Memory_Channel** field of the **BASIC_-FUNC_INQ** register at offset **0x400** (see IIDC V1.31 for details).

The **ProfileID** is equivalent to the memory channel number and specifies the profile number to store settings to or to restore settings from. In any case profile #0 is the hard-coded factory profile and cannot be overwritten.

After an initialization command, startup or reset of the camera, the **ProfileID** also indicates which profile was loaded on startup, reset, or initialization.

- The default profile is the profile that is loaded on powerup or an INITIALIZE command.
- A save or load operation delays the response of the camera until the operation is completed. At a time only one operation can be performed.

Store To store the current camera settings into a profile:

1. Write the desired **ProfileID** with the **SaveProfile** flag set.

2. Read back the register and check the **ErrorCode** field.

Restore To restore the settings from a previous stored profile:

- 1. Write the desired **ProfileID** with the **RestoreProfile** flag set.
- 2. Read back the register and check the **ErrorCode** field.

Set default To set the default profile to be loaded on startup, reset or initialization:

- 1. Write the desired **ProfileID** with the **SetDefaultID** flag set.
- 2. Read back the register and check the **ErrorCode** field.

Error codes

ErrorCode #	Description
0x00	No error
0x01	Profile data corrupted
0x02	Camera not idle during restore operation
0x03	Feature not available (feature not present)
0x04	Profile does not exist
0x05	ProfileID out of range
0x06	Restoring the default profile failed
0x07	Loading LUT data failed
0x08	Storing LUT data failed

Table 168: User profiles: Error codes

Reset of error codes

The **ErrorCode** field is set to zero on the next write access.

Other ways to reset the ErrorCode:

- Writing to the USER_PROFILE register with the SaveProfile, RestoreProfile and SetDefaultID flag not set.
- Writing 0000000h to the **USER_PROFILE** register.

Stored settings

The following table shows the settings stored inside a profile:

Standard registers	Standard registers (Format_7)	Advanced registers
Cur_V_Frm_Rate Cur_V_Mode Cur_V_Format ISO_Channel ISO_Speed BRIGHTNESS AUTO_EXPOSURE (Target grey level) SHARPNESS WHITE_BALANCE (+ auto on/off) HUE (+ hue on) SATURATION (+ saturation on) GAMMA (+ gamma on) SHUTTER (+ auto on/off) GAIN TRIGGER_MODE TRIGGER_POLARITY TRIGGER_DELAY	IMAGE_POSITION (AOI) IMAGE_SIZE (AOI) COLOR_CODING_ID BYTES_PER_PACKET	TIMEBASE EXTD_SHUTTER IO_INP_CTRL IO_OUTP_CTRL IO_INTENA_DELAY AUTOSHUTTER_CTRL AUTOSHUTTER_LO AUTOSHUTTER_HI AUTOGAIN_CTRL AUTOFNC_AOI (+ on/off) COLOR_CORR (on/off + color correction coefficients) TRIGGER_DELAY MIRROR_IMAGE HIGH_SNR LUT_CTRL (on/off + LUT + LutNo) SHDG_CTRL (on/off + ShowImage)
ABS_GAIN		DEFERRED_TRANS (HoldImg + NumOfImages)

Table 169: User profile: stored settings

The user can specify which user profile will be loaded upon startup of the camera.

This frees the user software from having to restore camera settings, that differ from default, after every startup. This can be helpful if third party software is used which may not give easy access to certain advanced features or may not provide efficient commands for quick writing of data blocks into the camera.

- A profile save operation automatically disables capturing of images.
- **i**
- A profile save or restore operation is an uninterruptable (atomic) operation. The write response (of the asynchronous write cycle) will be sent after completion of the operation.
- Restoring a profile will not overwrite other settings than listed above.
- If a restore operation fails or the specified profile does not exist, all registers will be overwritten with the hardcoded factory defaults (profile #0).
- Data written to this register will not be reflected in the standard memory channel registers.

Pulse-width modulation (PWM): Stingray housing and board level cameras

Note See Table 30: on page 99.

GPDATA_BUFFER

GPDATA_BUFFER is a general purpose register that regulates the exchange of data between camera and host for:

- writing look-up tables (LUTs) into the camera
- uploading/downloading of the shading image

GPDATA_INFO Buffer size query

GPDATA_BUFFER indicates the actual storage range

Register	Name	Field	Bit	Description
0xF1000FFC	GPDATA_INFO		[015]	Reserved
		BufferSize	[1631]	Size of GPDATA_BUFFER (byte)
0xF1001000	GPDATA_BUFFER			
0xF10017FC				

Table 170: Advanced register: GPData buffer

- Read the BufferSize before using.
 - GPDATA_BUFFER can be used by only one function at a time.

Little endian vs. big endian byte order

- To read or write more than 4 byte data, Read/WriteBlock accesses to GPDATA_BUFFER are recommended. This increases the transfer speed compared to accessing every single quadlet.
- Each quadlet of the local buffer, containing the LUT data or shading image for instance, has to be swapped bytewise from little endian byte order to big endian byte order before writing on the bus. The reason for this is the difference between the big endian byte order and the little endian byte order of the 1394 bus on common operating systems (Intel PC).

Bit depth	little endian ⇒ big endi	an Description
8 bit	L0 L1 L2 L3 ⇒ L3 L2 L1	L0 L: low byte
16 bit	L0 H0 L1 H1 ⇒ H1 L1 H0	DLO H: high byte

Table 171: Swapped first quadlet at address offset 0

Firmware update

Firmware updates can be carried out via FireWire cable without opening the camera.

Note

Should you need detailed support to use this feature, please contact support@alliedvision.com.

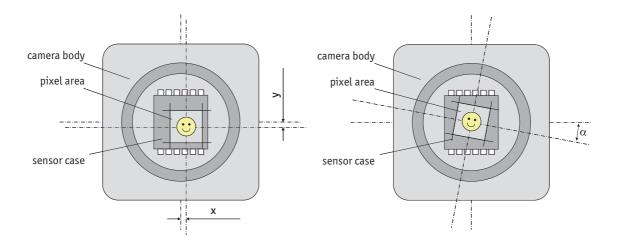
Extended version number (FPGA/µC)

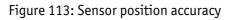
The new extended version number for microcontroller and FPGA firmware has the following format (4 parts separated by periods; each part consists of two digits):

Special.Major.Minor.Bugfix

or

xx.xx.xx.xx


Digit	Description
1st part: Special	Omitted if zero
	Indicates customer specific versions (OEM variants). Each customer has its own number.
2nd part: Major	Indicates big changes
	Old: represented the number before the dot
3rd part: Minor	Indicates small changes
	Old: represented the number after the dot
4th part: Bugfix	Indicates bugfixing only (no changes of a feature) or build number


Table 172: New version number (microcontroller and FPGA)

Appendix

Sensor position accuracy of Stingray cameras

Criteria	Subject	Properties
Method of Positioning		Optical alignment of the photo sensitive sensor area into the camera front module (lens mount front flange)
Reference Points	Sensor	Center of the pixel area (photo sensitive cells)
	Camera	Center of the lens mount
Accuracy	x/y	+/- 0.1 mm (sensor shift)
	Z	+0/-50 μm (optical back focal length)
	α	+/-0.5° (center rotation as the deviation from the parallel to the camera bottom)

Table 173: Criteria of Allied Vision sensor position accuracy

x/y tolerances between C-Mount hole and pixel area may be higher.

Index

Numbers

0xF1000010 (version info)	272
0xF1000040 (advanced feature inquiry)	274
0xF1000100 (camera status)	
0xF1000200 (max. resolution)	277
0xF1000208 (time base)	277
0xF100020C (extended shutter)	279
0xF1000210 (test image)	280
0xF1000220 (sequence mode)	189
0xF1000240 (LUT)	281
0xF1000250 (shading)	283
0xF1000260 (deferred image transport)	
0xF1000270 (frame info)	286
0xF1000274 (frame counter)	286
0xF1000298 (DPC_CTRL)	
0xF1000300 (input control)	
0xF1000340 (Delayed IntEna)	289
0xF1000360 (auto shutter control)	290
0xF1000370 (auto gain control)	291
0xF1000390 (autofunction AOI)	292
0xF10003A0 (color correction)	293
0xF1000400 (trigger delay)	
0xF1000410 (mirror image)	294
0xF1000510 (soft reset)	295
0xF1000520 (High SNR)	296
0xF1000550 (user profiles/memory channel	els/
user sets)	
0xF1000560 (Max. ISO size S400)	
0xF1000564 (Max. ISO size S800)	
0xF1000570 (update timing modes)	
0xF10005B0 (low noise binning mode)	
0xF1000610 (frame counter)	
0xF1000620 (trigger counter)	306
0xF1000630 (SIS)	303
0xF1000640 (software feature control)	
	308
0xF1000840 (debounce)	
0xF1000FFC (GPData buffer)	
0xF1100000 (Parameter-List Update)	
1394a data transmission	. 31
1394b	
bandwidths	
1394b data transmission	. 32
2 out of 4 H+V sub-sampling (b/w)	

drawing14	45
2 out of 4 H+V sub-sampling (color)	
drawing14	46
2 out of 8 H+V sub-sampling (b/w)	
drawing14	45
2 out of 8 H+V sub-sampling (color)	
drawing14	46
2 x full binning	
drawing	40
2 x horizontal binning	
drawing1	39
2 x vertical binning	
drawing1	37
64 MByte FIFO	
Stingray F-50453, 1	56
66201	
h2	
Sensor position accuracy of Stingra	av
cameras315	5
8 x full binning	
drawing14	41
8 x horizontal binning	
drawing1	30
uruming	~

A

Abs_Control (Field) 110, 114, 116, 117, 119, 2	
Abs_Control_Inq (Field)	92
access	
binning and sub-sampling1	47
AccessLutNo (Field)2	281
Access_Control_Register2	257
accuracy	
sensor position3	315
AddrOffset (Field)281, 2	
Advanced feature inquiry2	274
Advanced feature inquiry (advanced register)2	274
Advanced features2	269
activate2	271
base address2	257
inquiry2	255
advanced register	
Advanced feature inquiry2	274
Auto gain control2	
Auto shutter control2	

Autofunction AOI		292
Camera status		
Color correction		
defect pixel correction		
Deferred image transport		
Delayed Integration Enable (IntEna)		
Extended shutter		
Extended version		
Format_7 mode mapping		
frame counter		
Frame information		
GPData buffer		
High SNR		
Input control		
Low noise binning mode		
low noise binning mode		
LUT		
Max. ISO packet		
Max. resolution		
Mirror		
Mirror image		
Output control		
Parameter-List Update		
Sequence mode		
Shading Soft reset		
Test images		
Time base		
Trigger counter		
Trigger delay		
Update timing modes		
User profiles	••••	.309
algorithm		400
correction data		
A0I		
correction data		
appendix		
area of interest (A0I)		
asynchronous broadcast	•••••	185
auto exposure		
limits		
target grey level		
Auto Exposure (CSR register)		
auto gain		
Auto gain control (advanced register)		
auto shutter 113, 2		
Auto shutter control (advanced register)		
auto white balance		
external trigger	•••••	112

AUTOFNC_AOI
AUTOFNC_AOI positioning113 Autofunction AOI (advanced register)292
AUTOGAIN_CTRL
automatic generation
correction data123
AUTOSHUTTER_CTRL290
AUTOSHUTTER_HI290
AUTOSHUTTER_LO290
AUTO_EXPOSURE117
Auto_Inq 92
A_M_MODE (Field)110, 114, 116, 117, 119

В

bandwidth	199
affect frame rate	233
available	221
deferred image transport	156
FastCapture	159
RGB8 format	166
save in RAW-mode	160
BAYER demosaicing	160, 164
BAYER mosaic	160
BAYER to RGB	
color interpretation	160
binning	136
access	147
full	140
horizontal	139
only Stingray b/w	136
vertical	137
BitsPerValue	281
black level	118
black value	118
black/white camera	
block diagram	108
block diagram	
b/w camera	108
color camera	109
block diagrams	
cameras	108
BRIGHTNESS	119, 263
Brightness	
inquiry register	256
brightness	
auto shutter	114
average	115
decrease	290

descending	194
effects	
IIDC register	118
increase	118, 290
level	122, 125
LUT	128
nonlinear	128
reference	114, 115
setting	118
sub-sampling	141
variation	289
Brightness Control	256
Brightness (CSR register)	119
BRIGHTNESS_INQUIRY	258
Brightness_inq	258
buffer	
LUT	129
BuildDPData flag	133
advanced register	287
bulk trigger	172, 173
bulk trigger (Trigger_Mode_15)	173
busy signal	
Bus_Id	237

С

camera dimensions 63
1394b, 1 x GOF, 1 x copper65
2 x 1394b copper 64
camera interfaces 84
camera lenses 82
Camera status (advanced register)276
cameras
block diagram108
CAMERA_STATUS276
Camera_Status_Register237
CE 29
channel102
color camera
block diagram109
color coding154
color codings154
color correction 160, 164, 165
Allied Vision cameras164
formula164
why?164
Color correction (advanced register)293
Color correction (Field)274
color information160

Color_Coding154
COLOR_CODING_INQ154
common GND
inputs 86
common vcc
outputs 86
consequence
BAYER demosaicing161
continuous
using Trigger_Mode_15175
controlling
image capture172
correction
color160
correction data
algorithm123
A0I124
automatic generation123
requirements123
shading121
CSR
shutter
CSR register
Auto Exposure117
Brightness119
GAIN
Temperature268
cycle time
examples
structure
cycle time (SIS) 197, 302, 304

D

daisy chain	
data block packet format	
description	
data exchange buffer	
LUT	129
data packets	102
data path	
data payload size	
data_length	
DCAM	
debounce time	
for input ports	
debounce time for trigger	
debounce (advanced registers summary	
declaration of conformity	29
-	

default sequence mode191
defect pixel correction
advanced register287
build and store132
building defect pixel data133
calculated mean value287
data storing mechanism135
max. 2000 defect pixels288
mechanisms130
defect pixel correction (advanced register)287
defect pixel correction (DPC)287
deferred image transport156, 286
Deferred image transport (advanced register)
286
deferred transport194
Delayed Integration Enable (IntEna) (advanced
register)
DelayTime289
Digital Camera Specification (DCAM)237
digital video information102
digitizer128
direct fiber technology 28
disable
LEDs
disable LEDs
software feature control
document history 12
DPC data
storing mechanism135
DPC (defect pixel correction)287
DPC_CTRL287
DPC_INF0288
DPC_MEM288
DPDataSize
defect pixel data size (max. 2000)288

Е

edge mode (Trigger_Mode_0)	94, 172
effective min. exp. time	
EnableMemWR (Field)	281
Encapsulated Update (begin/end)	151, 152
End of exposure	184
error code	
user profiles	
error codes	
LED	89
example (parameter list)	
examples	
•	

cycle time	305
ExpOffset	278
Exposure time	
(Field)	
exposure time	
81 Ch register	
example	
extended shutter	279
FIF0	192
formula	180
longest	181
long-term integration	
minimum	
Exposure time offset	
ExpTime (Field)	
EXTD_SHUTTER	279
extended shutter	
FireDemo	279
FireView	279
inactive	181, 279
register	279
trigger mode	172
Extended shutter (advanced register)	181, 279
Extended version (advanced register)	272
EXTENDED_SHUTTER	181
External GND	86
external signal (SeqMode)	191
external trigger	

F

Fast Parameter Update Timing 152, 153
FastCapture
bandwidth159
deferred image transport286
false159
only Format_7159
FastCapture (Field)286
FCC Class B 29
fiber technology 28
FIFO
Stingray F-504 with 64 MByte53, 156
FireDemo
extended shutter279
FirePackage
OHCI API software 26
Firepackage
additional checks image integrity198
Firetool program194

319

FireView
extended shutter279
FireWire
connecting capabilities
definition 30
serial bus 31
FireWire 400 33
FireWire 800 33
firmware update314
focal length 82
Format_7 mode mapping (advanced register)301
Format_7 modes
mapping148
FORMAT_7_ERROR_1
FORMAT_7_ERROR_2 89
formula
color correction164
FOV120
FPGA boot error 89
frame counter 197, 305
frame counter (advanced register)305
frame counter (SIS)302
Frame information (advanced register)286
frame rates199
bus speed200
Format_7224
maximum199
tables220
video mode 0223
video mode 2223
Frame valid94
FrameCounter
free-run
full binning140
Fval
Fval signal94

G

qain	
auto	115
auto exposure CSR	115
AUTOFNC_AOI	
manual	118
manual gain range	111, 118
ranges	118
gain CSR	118
GAIN (CSR register)	116
GAIN (name)	116

GAIN (register)111 gamma function128
CCD models124
gamma LUT128
global pipelined shutter172
global shutter172
GND for RS232
GOF camera
LED (asynchronous traffic)
LED (GOF signal detect)
GPData buffer (advanced register)313
GPDATA_BUFFER 126, 127, 129
GRAB_COUNT123

Η

hardware trigger	93, 177
HDR mode	
high level (SeqMode)	
High Signal Noise Ratio (HSNR)	
High SNR mode	
High SNR (advanced register)	
HoldImg	
field	
flag	
mode	
set	
HoldImg (Field)	
horizontal binning	
horizontal mirror function	
horizontal sub-sampling (b/w)	
drawing	1/2
horizontal sub-sampling (color)	
,	1/0
drawing	
HSNR	
hue	
offset	163

I

ID

color coding	154
IEEE 1394	27
IEEE 1394 standards	30
IEEE 1394 Trade Association	237
IEEE 1394b connector	84
IIDC 27, 10	04, 199, 237
data structure	106, 107
isochronous data block packet fo	rmat 102

320

pixel data102
trigger delay 92
video data format103
YUV 4:1:1 103, 104, 105
YUV 4:2:2 103, 104, 105
IIDC V1.31
IIDC V1.31 camera control standards
image capture
controlling172
ImageRepeat
IMAGE_POSITION217
IMAGE_SIZE217
incrementing list pointer188
input
block diagram90
signals
Input control (advanced register)
input mode
InputMode (Field)
inputs
common GND
general
in detail
triggers
input/output pin control288
inquiry
software trigger259
trigger source 0259
Inquiry register
basic function255
Integration Enable signal
IntEna
IntEna signal
IntEna_Delay
IntEna_Out
internal trigger
interpolation
BAYER demosaicing
BAYER to RGB160
color160
IO_INP_CTRL1
IO_INP_CTRL291
IO_INP_DEBOUNCE271
IO_OUTP_CTRL1
IO_OUTP_CTRL2
IO_OUTP_CTRL3
IO_OUTP_CTRL4
isochronous blocks102
isochronous channel number102

isochronous data block packet format	102
isochronous data packets	102
Isochronous Resource Manager (IRM)	298
IsoEnable	194
white balance	
ISO_Enable	185
ISO_Enable mode	185
multi-shot	185
one-shot	182
I/O controlled sequence pointer reset	193
I/O controlled sequence stepping mode	193

J

jitter 184,	186
at exposure start	.187

L

latching connectors	. 84
asynchronous traffic (GOF)	. 89
error codes	
GOF signal detect	. 89
indication	
status	. 88
LEDs	
disable	308
Legal notice	2
level mode (Trigger_Mode_1)	.172
look-up table (LUT)128,	281
user-defined	128
Low noise binning mode (advanced register)	302
low noise binning mode (advanced register).	302
LUT	281
data exchange buffer	129
example	
gamma	128
general	128
loading into camera	129
volatile	128
LUT (advanced register)	
LutNo	281
LutNo (Field)	281
LUT_CTRL	281
LUT_INFO	281
LUT_MEM_CTRL	281

Μ

Manual_Inq	92
Maximum resolution (Register)	277
MaxLutSize (Field)	
MaxResolution (Field)	
MaxSize (Field)	
MaxValue	
MAX_RESOLUTION	
Max Value	
Max. ISO packet (advanced register)	297
Max. resolution (advanced register)	
Mean	
defect pixel mean value	287
Memory channel	
error codes	285
memory channels	309
memory channels (user profiles)	309
Minimum exposure time	180
MinValue	291
Min_Value	92
Min. exp. time + offset	180
mirror function	
horizontal	120
Mirror image (advanced register)	294
Mirror (advanced register)	294
MSB aligned	102
multi-shot	185, 194
external trigger	185
using Trigger_Mode_15	175

Ν

No DCAM object	89
No FLASH object	
Node_Id	237
non-uniform illumination	122
NumOfLuts	281
NumOfLuts (Field)	281

0

OFFSET	
automatic white balance	111
offset	
800h	118
CCD	118
configuration ROM	241
factors	241
hue	163

initialize register	244
inquiry register video format	244
inquiry register video mode	
saturation	
setting brightness	
setting gain	118
OHCI API	
FirePackage	26
one-push white balance111	
one-shot	182
Trigger_Mode_15	
using Trigger_Mode_15	
values	
one-shot bit	
one-shot mode	
One_Push (Field)110, 114, 116, 117	
One_Push_Ing	
ON_OFF	
ON_OFF (Field)	
optocoupler	
output	
block diagram	95
signals	
Output control	
Output control (advanced register)	
output impulse diagram	
WaitingForTrigger	98
output mode	
ID	
Output mode (Field)	
output pin control	
outputs	
common vcc	
general	
registers	
set by software	
OutVCC	

Ρ

Packed 12-Bit Mode	154
Packed 12-Bit MONO	154
Packed 12-Bit RAW	154
packet format	102
parameter list	
example	152
parameter list (example)	300
Parameter-List Update 151, †	152, 153
Parameter-List Update (advanced registe	er)300

322

PI controller	115
pin control	288
PinState flag	95
PinState (Field)	91
pixel data	102
plus integral controller	115
pointer reset	
Polarity (Field)	91,96
Power	
IEEE 1394b	84
power	
GND	86
presence	
software trigger	
trigger source 0	259
Presence_Inq	
Presence_Inq (Field)	92, 110
programmable mode (Trigger_Mode_15) . pulse-width modulation	
signal	
PulseWidthMod signal	94

Q

QFCM	150
Quick Format Change Mode	
(QFCM)150,	152, 153
Quick parameter change timing modes.	149

R

read value	
trigger input	259
Readout_Inq	92
Register mapping (error code)	89
repeat counter	
Requirements	
correction data	123
RGB to YUV	
formula	166
RGB8 format	166
rising edge (SeqMode)	
RoHS (2011/65/EU)	29
RS232	86
RxD_RS232	86

S

saturation16	53
offset16	53

secure image signature (SIS)
definition197
scenarios197
Sensor position accuracy315
Sensor position accuracy of Stingray cameras 315
SeqLength194
SegMode
description191
sequence
deferred mode158
important notes194
modified registers
of images
one-push white balance112
OneShot
sequence mode
cancel
changes to registers196
default
example of settings
features
flow diagram
frame rate
image size
implemented
pointer reset
repeat counter
Sequence mode (advanced register)
Sequence Reset
Sequence Step
sequence step mode
SEQUENCE_CTRL
SEQUENCE_PARAM
SEQUENCE_STEP
Seq_Length
shading
correction data121
shading correction
shading image
automatic generation123
delay
Format_7124
generation
load into camera
load out of camera
shading images
shading reference image
Shading (advanced register)
sharpness162

SHDG_CTRL124,	283
SHDG_INFO	284
SHDG_MEM_CTRL	
SHUTTER	
Shutter CSR	114
shutter time	
formula	
SHUTTER_MODES	172
signal-to noise ratio (SNR)	
vertical binning	138
signal-to-noise ratio (SNR)	
signal-to-noise separation	
single-shot mode	194
SIS	
advanced register	
cycle time 197, 302,	304
definition	197
frame counter	302
scenarios197,	
trigger counter 197,	
SmartView	
SNR	
Soft reset (advanced register)	295
software feature control	
disable LEDs	308
disable LEDs	308
disable LEDs software trigger	
disable LEDs software trigger inquiry	259
disable LEDs software trigger inquiry write,read	259 261
disable LEDs software trigger inquiry write, read Software_Trigger (inquiry register)	259 261 261
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq	259 261 261 259
disable LEDs software trigger inquiry write, read Software_Trigger (inquiry register) Software_Trigger_Inq specifications	259 261 261 259
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity	259 261 261 259 . 40
disable LEDs software trigger inquiry write, read Software_Trigger (inquiry register) Software_Trigger_Inq specifications	259 261 261 259 . 40
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B	259 261 261 259 . 40
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C	259 261 259 . 40 . 55 . 55
disable LEDs software trigger inquiry write, read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B	259 261 259 . 40 . 55 . 55 . 56
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046C	259 261 259 . 40 . 55 . 55 . 56 . 56
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046C Stingray F-080B	259 261 259 . 40 . 55 . 55 . 56 . 56 . 57
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046C Stingray F-080B Stingray F-080C	259 261 259 . 40 . 55 . 56 . 56 . 57 . 57
disable LEDs software trigger inquiry write, read Software_Trigger (inquiry register) Software_Trigger_Inq Software_Trigger_Inq Software_Trigger_Software Stingray F-033B Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046B Stingray F-046C Stingray F-080B Stingray F-080C Stingray F-145B	259 261 259 . 40 . 55 . 55 . 56 . 56 . 57 . 57 . 59
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046B Stingray F-046C Stingray F-080B Stingray F-080B Stingray F-145B Stingray F-145C	259 261 259 . 40 . 55 . 55 . 56 . 57 . 57 . 59 . 59
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046C Stingray F-080B Stingray F-080C Stingray F-145B Stingray F-145B Stingray F-146B	259 261 259 . 40 . 55 . 56 . 56 . 57 . 57 . 59 . 59 . 60
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046B Stingray F-046C Stingray F-080B Stingray F-080B Stingray F-145B Stingray F-145C	259 261 259 . 40 . 55 . 56 . 56 . 57 . 57 . 59 . 59 . 60
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046B Stingray F-080B Stingray F-080C Stingray F-080C Stingray F-145B Stingray F-145B Stingray F-146B Stingray F-146C Stingray F-201B	259 261 259 . 55 . 55 . 56 . 57 . 57 . 59 . 60 . 60 . 60 . 60
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046B Stingray F-080B Stingray F-080C Stingray F-080C Stingray F-145B Stingray F-145B Stingray F-146B Stingray F-146C Stingray F-201B	259 261 259 . 55 . 55 . 56 . 57 . 57 . 59 . 60 . 60 . 60 . 60
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046B Stingray F-046C Stingray F-080B Stingray F-080B Stingray F-080C Stingray F-145B Stingray F-145B Stingray F-146B Stingray F-146B Stingray F-146C Stingray F-201B	259 261 259 . 55 . 55 . 56 . 57 . 57 . 59 . 60 . 60 . 60 . 60
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046C Stingray F-046C Stingray F-080B Stingray F-080C Stingray F-145B Stingray F-145B Stingray F-146C Stingray F-146C Stingray F-146C Stingray F-201B	259 261 259 . 55 . 55 . 56 . 57 . 59 . 60 . 60 . 62 . 62
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046B Stingray F-046C Stingray F-080B Stingray F-080C Stingray F-145B Stingray F-145B Stingray F-145B Stingray F-146C Stingray F-146C Stingray F-201B	259 261 259 . 55 . 55 . 56 . 57 . 59 . 60 . 60 . 60 . 62 . 81
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046B Stingray F-046C Stingray F-080B Stingray F-080C Stingray F-145B Stingray F-145B Stingray F-145B Stingray F-146C Stingray F-146C Stingray F-201B	259 261 259 . 55 . 55 . 56 . 57 . 57 . 59 . 60 . 60 . 60 . 62 . 81 . 81
disable LEDs software trigger inquiry write,read Software_Trigger (inquiry register) Software_Trigger_Inq specifications spectral sensitivity Stingray F-033B Stingray F-033C Stingray F-046B Stingray F-046B Stingray F-046C Stingray F-080B Stingray F-080C Stingray F-145B Stingray F-145B Stingray F-145B Stingray F-146C Stingray F-146C Stingray F-201B	259 261 259 . 55 . 55 . 55 . 56 . 57 . 57 . 59 . 60 . 60 . 62 . 81 . 81 . 89

standard housing
Stingray Compact
STINGRAY F-033B/C (Specification) 40
STINGRAY F-046B (Specification)
STINGRAY F-046B (Specification) fiber
STINGRAY F-080B/C (Specification) fiber 43
STINGRAY F-125B/C (Specification) 45
STINGRAY F-125B/C (Specification) fiber 45 STINGRAY F-145B/C fiber (Specification) 47
STINGRAY F-145B/C (Specification)
STINGRAY F-146B fiber (Specification)
STINGRAY F-146B (Specification)
STINGRAY F-201B/C fiber (Specification) 51 STINGRAY F-201B/C (Specification) 51
Stingray types
stored settings
user profile311 structure
cycle time
styles 25
sub-sampling
access147 brightness141
b/w and color141
definition141
sy (sync bit)102 symbols25
sync bit (sy)
synchronization value (sync bit)102
system components 81

Т

tag field	.102
target grey level	
corresponds to Auto_exposure	.263
Target grey level (auto exposure) 118,	290
Target grey level (SmartView)	
corresponds to auto exposure	.114
tCode	.102
TEMPERATURE	268
Temperature (CSR register)	.268
test image	.235
Bayer-coded	

b/w cameras	235
color	236
color cameras	236
configuration register	
gray bar	
save	
Test images (advanced register)	
TEST_IMAGE	
tq	
threshold	
defect pixel correction	. 133 287
time base	
exposure time	
setting	
trigger delay	
time base ID	
Time base (advanced register)	
time base (Register)	
time response	
TIMEBASE	
TimeBase (Field)	2/4
TPA-	
IEEE 1394b	84
TPA(R)	
IEEE 1394b	
ТРА+	
TPB-	
IEEE-1394b	
TPB(R)	
IEEE 1394b	
TPB+	
IEEE 1394b	
transaction code (tCode)	102
trigger	
bulk	172, 173
control image capture	172
delay	
edge	
external	
hardware	
impulse	
IntEna	
internal	
latency time	
microcontroller	
one-shot	
sequence mode	
signal	
software	
SUILWAIE	

synchronize186
trigger counter
trigger counter (advanced register)
trigger counter (SIS) 197, 302
trigger delay176
advanced CSR93, 177
advanced register93, 177
off
on
Trigger Delay CSR
trigger delay CSR 177
Trigger delay inquiry register
trigger delay inquiry register
Trigger delay (advanced register)294
trigger function
trigger input
read raw data259
trigger modi172
trigger overrun
trigger source 0
inguiry
triggers
input
TRIGGER_DELAY
TRIGGER_DELAY_INQUIRY92, 176
TRIGGER_MODE
Trigger_Mode
Trigger_Mode_0 (edge mode)94, 172
Trigger_Mode_1 (level mode)
Trigger_Mode_15 (bulk trigger) 172, 173
Trigger_Mode_15 (programmable mode)172
Trigger_Polarity
Trigger_Source174
Trigger_Source0_Inq259
Trigger_Value
tripod adapter
tripod dimensions
types
Stingray cameras

U

UNIT_POSITION_INQ	.217
UNIT_SIZE_INQ	.217
Update timing modes (advanced register)	.299
user profile	
stored settings	.311
user profiles	.309
error code	.310

User profiles (advanced register)	
user sets)9
user value19)7
U/B_Value (Field)11	
U/V slider range11	

V

VCC
IEEE 1394b 84
Vendor Unique Color_Coding154
Vendor unique Features255
vertical binning137
SNR138
vertical sub-sampling (b/w)
drawing144
vertical sub-sampling (color)
drawing144
VG (GND)
IEEE 1394b 84
video data format
IIDC V1.31103
Video data payload102
video format
available bandwidth220
frame rate220
video formats199
video Format_7
A0I217
video information102
video mode
CUR-V-MODE261
Format_7266
inquiry register245
sample C code239
video mode 0223
video mode 2223
VMode_ERROR_STATUS 89
VP
IEEE 1394b 84
VP (Power, VCC)
IEEE 1394b
V/R_Value (Field)110

W

WaitingForTrigger	
ID 0x0A	97
output impulse diagram	98

WaitingForTrigger signal white balance	
auto	112
AUTOFNC_AOI	113
conditions	112, 113
general	
Hue register	163
one-push	111, 112
register 80Ch	110
six frames	
WHITE_BALANCE	110, 112