

DIVIINA LM1 Camera User Manual

e2v semiconductors SAS 2010

e2v

DIVIINA® LM1 Line Scan Camera

Summary

1 CA	IMERA OVERVIEW	
1.1	Features	4
1.2	Key Specifications	4
1.3	Description	
14	Typical Applications	5
1.5	Models & Part numbers	5
2 TN	AAGE SENISOR	6
21	Sensor Structure	6
22	Response of the sensors	6
3 CA	MERA HARDWARE INTERFACE	/
3.1	Mechanical Drawings	
3.2	Sensor alignment	1
3.3	Input/output Connectors and LED	8
3.3	5.1 Power connector	8 Q
3.3	.3 Gigabit Ethernet Connector	
4 51	TANDARD CONFORMITY	
4.1	CE Conformity	
4.2	RoHs Conformity	
4.3	GigE Vision Conformity	
4.4	GenICam Standard	
4.5	Standard Features Naming Convention (SFNC)	10
5 GF	ETTING STARTED	11
51	Out of the box	11
52	Setting up in the system	
· · · ·		12
0 CA	MERA SUFTWARE INTERFACE	
0.1	GIGE VISION CONCEPTS	13 12
0.1. 6 1	2 GenICam Standard	13
6.1.	.3 SFNC	
6.2	Getting started with GigE Vision interface	
6.2	.1 Network setup	13
6.2	.2 Software installation	14
6.2	.3 Interactive camera control	15
	2 1042B -Diviina LM1 11/10 e2v semic	conductors SAS 2010

e2v **DIVIINA® LM1** Line Scan Camera

8.1	Device Information	19
8.2	Image size control	21
8.3	Acquisition and trigger controls	25
8.3	3.1 Camera Trigger synoptics	25
8.3	3.2 Acquisition and Trigger modes	25
8.4	Counters and timers controls	29
8.5	Event generation	30
8.6	Analog controls	31
8.7	GigE vision transport layer	
8.8	User Sets	35
9 Al	PPENDIX A: Test Patterns	
9.1	1024 Pixels Camera	
9.2	2048 Pixels Camera	
9.3	4096 Pixels Camera	36
10	APPENDIX B: Optical Mounts available	
10.1	F-Mount	37
10.2	2 C-Mount	
11	APPENDIX C : LINE TRIGGER MODE	
12	APPENDIX D : Camera Features	
13	APPENDIX E : TROUBLESHOOTING	
14	APPENDIX F: Revision History	

6.3

7

8

e2v

DIVIINA® LM1 Line Scan Camera

1 CAMERA OVERVIEW

1.1 Features

- Sensor: 1024 to 4096 pixels, 10 or 14 µm square
- Data Rate : 40MPixels on two channels
- Line Rate Up to 35,5 KHz
- Bit Depth : 8 bits
- Gigabit Interface (Base)
- Dimensions: 60 x 60 x 65 (w, h, l)
- Anti-blooming
- Cost effective and easy to use.
- Fully configurable with GEVPlayer software.

1.2 Key Specifications

Feature/Specification		Value		Unit
Camera Characteristics				
Resolution	1024	2048	4096	Pixels
pixel size (square)	10 or 14	10 or 14	10	μm
Max line rate	35.7	18.1	9.5	kHz
Bit depth		8		Bits
Radiometric Performance at Maxim	um Pixel R	ate and mini	mum camei	ra gain
	Туріс	al	Max	
Peak Response (14µm pixel size)	12.5	5	-	LSB/(nJ/cm²)8bits
Peak Response (10µm pixel size)	5.8		-	LSB/(nJ/cm²)8bits
Response non linearity	1		2	%
PRNU	5		10	%
Dynamic range	58		-	dB 8bits
Functionality (Programmable via Con	ntrol Inter	face)		
Gain	Up to 30,8	B dB		
Offset	Up to 255	LSB		
Mechanical and Electrical Interfac	e			
Size (w $x h x l$)		60 x 60 x 42	2	mm
Weight	210	<mark>) g</mark> (without m	ount)	9

Lens Mount

M42 x 1 (by default) F (Nikon) or C optional mounts

e2v

DIVIINA® LM1 Line Scan Camera

Sensor alignment	±200	μm
Sensor flatness	±30	μm
Power supply	Single 12 to 24	V
Power dissipation	7 (ma×)	W
General Features		
Operating temperature 0 to 65 (front face)		°C
Storage temperature	prage temperature -40 to 70	
CE and RoHS compliant, GigEVision 1.1 GenICam 1.0 SFNC 1.3		

1.3 Description

DiViiNA LM1 is a cost efficient CCD line scan camera family with GigE Vision interface. Featuring e2v's own high performance linear CCD sensors from 1024 pixels up to 4096 pixels, as used in the world recognized AViiVA cameras; DiViiNA LM1 cameras offer high image quality with user-friendly simplicity. DiViiNA LM1 is the perfect candidate for mid range machine vision applications.

1.4 Typical Applications

- Web Inspection (Wood, Paper, Metallurgy)
- Part inspection and sorting (Cotton, Rice, Food)
- General Machine Vision Inspection

1.5 Models & Part numbers

Table 5-1. Ordering Code

Part Number	Sensor type (Resolution, Pixels size)	Description
Camera		
EV50YLM1GE1010-BA0	1024 pixels, 10µm size	DIVIINA LM1 GE 1010
EV50YLM1GE2010-BA0	2048 pixels, 10µm size	DIViiNA LM1 GE 2010
EV50YLM1GE4010-BA0	4096 pixels, 10µm size	DIVIINA LM1 GE 4010
EV50YLM1GE1014-BA0	1024 pixels, 14µm size	DIViiNA LM1 GE 1014
EV50YLM1GE2014-BA0	2048 pixels, 14µm size	DIVIINA LM1 GE 2014
Accessories		
EV50-MOUNT-F		F-Mount (Nikon)
EV50-MOUNT-C		C-Mount

2 IMAGE SENSOR

2.1 Sensor Structure

The sensor has a odd/even structure in two taps as following :

	N	-1 1	I- 3	Odd Pixels CCD Shift Register		3		1	
Ν	I N-	1 N-2	1-3	Photo Diode Area	4	3	2	1	
	N	N-2		Even Pixels CCD Shift Register	4		2		>

Note: In GEVPLayer, Odd pixels are equivalent to Tap1 and Even pixels are equivalent to Tap2.

2.2 Response of the sensors

3 CAMERA HARDWARE INTERFACE

3.1 Mechanical Drawings

X,Y plan Y axis All dimensions in millimeters

3.2 Sensor alignment

Sensor size (pixels #)	1024	2048	4096
x with 14 μ m sensor (mm)	20.83	13.66	-
x with 10µm sensor (mm)	22.88	17.76	7.52

3.3.1 Power Connector

Camera connector type: Hirose HR10A-7R-6PB (male) Cable connector type: Hirose HR10A-7P-6S (female)

Signal	Pin
PWR	1
PWR	2
PWR	3
GND	4
GND	5
GND	6

Power supply from 12v to 24v

DIVIINA® LM1

3.3.2 Camera control connector

Camera connector type: Cable connector type: Hirose HR10A-7R-55B Hirose HR10A-7P-5P (male)

Signal	Pin
LVDS IN1+ / TTL IN1	1
LVDS IN1-	2
LVDS IN2+ / TTL IN2	3
LVDS IN2-	4
GND	5

Receptacle viewed from camera back

IN1 is connected on LineO and allows to control external line trigger mode. IN2 is connected on Line1 and allows to control external frame trigger mode.

3.3.3 Gigabit Ethernet Connector

Camera connector type:

RJ45 8pin female

Signal	Pin
MDI_0+	1
MDI_0-	2
MDI_1+	3
MDI_2+	4
MDI_2-	5
MDI_1-	6
MDI_3+	7
MDI_3-	8

e2v

4 STANDARD CONFORMITY

The DIVIINA cameras have been tested using the following equipment:

- > A shielded power supply cable
- > A Ethernet straight cable cat. 6.

e2v recommends using the same configuration to ensure the compliance with the following standards.

4.1 CE Conformity

The DIVIINA cameras comply with the requirements of the EMC (European) directive 89/336/CEE (EN 50081-2, EN 61000-6-2).

4.2 RoHs Conformity

DIVIINA cameras comply with the requirements of the RoHS directive

4.3 GigE Vision Conformity

DIVIINA LM1 cameras comply with the requirement of GigE Vision 1.1 standard.

4.4 GenICam Standard

DIVIINA LM1 cameras comply with the requirement of GenICam 1.0 standard.

4.5 Standard Features Naming Convention (SFNC)

DIVIINA LM1 cameras comply with the requirement of SFNC 1.3 standard.

<u>Warning</u>: Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

5 GETTING STARTED

5.1 Out of the box

The contains of the Camera box is the following :

There is no CDROM delivered with the Camera : Both User Manual (this document) and GevPlayer control software have to be downloaded from the web site : This ensure you to have an up-to-date version.

Main Camera page : <u>www.e2v.com/cameras</u>

On the appropriate Camera Page (LM1) you'll find a download link first version of GevPlayer compliant is indicated in the last Chapter GEVEPlayer download requires a login/password :

- > Login : pleora
- > Password : vercors

11 1042B -Diviina LM1 11/10

STOP

e2v semiconductors SAS 2010

5.2 Setting up in the system

Vocabulary :

- w = size of the sensor line (40,96mm for the 4k 10μ m)
- FOV = Field Of View (width of the web inspected by the sensor line) in mm.
- L = Working distance (from the Lens to the Web) in mm.
- f = focal distance of the lens in mm.
- S = Speed of the web in mm/s

We have: $\frac{W}{FOV} = \frac{f}{L}$

The ratio M = w/FOV is called Magnification. The FOV is grabbed by 4096 pixels in the width.

In order to get a ratio of 1 :1 in your image, at the web speed of S, your line rate has to be set :

Line Rate = $(S/FOV) \times 4096$

Ex: if the FOV = 11 cm (110mm) and the speed of the web is S= 0,3 m/s (300mm/s) the line rate will be:

Line Rate = $(300 / 110) \times 4096 = 11170$ Lines/s. If you use a 60mm lens, the working distance will be : L = $(60 \times 110) / 40,96 = 161$ mm. This will certainly require a macro lens.

6 CAMERA SOFTWARE INTERFACE

6.1 GigE Vision concepts

Camera interface is compliant with "Gigabit Ethernet Vision" (GigE Vision) or (GEV). GEV normalizes image transport and camera control communications over usual IP networks. Physical GEV carrier has a bandwidth of one gigabit per second (1Gbit/s). GEV is widely used by camera manufacturers and imaging software suppliers.

6.1.1 GenICam

Camera interface is compliant with "Generic Interface for Cameras" (GenICam).

GenICam normalizes the camera control interface with software application. The target is to have a single application controlling cameras from any model and brand the same way.

It introduces the concept of user manual, not for humans but to software application. Application reads this user manual to control cameras.

GenICam has 2 parts, "GenICam Standard" and "GenICam Standard Features Naming Convention" (SFNC)

6.1.2 GenICam Standard

It normalizes the camera control rules. It can be considered as the grammar of the user manual. From programmer's point of view, all cameras are controlled with the same way by a single Software Developer's Kit (SDK).

6.1.3 SFNC

From vision point of view, camera feature names are standardized by SFNC. It can be considered as the vocabulary of the user manual.

6.2 Getting started with GigE Vision interface

This chapter shows how to connect a GEV camera for the first time. Refer to TBD for more details on GEV interfacing.

6.2.1 Network setup

The following is the simplest example of a Gigabit IP network.

A single Ethernet cable is connected in RG45 receptacles of GEV camera and PC. Select a "CAT6" shielded twisted pair quality to get a reliable 1Gbit/s. This cable is available at any computer shop. Recent PC have a gigabit RG45 plug on the motherboard.

Factory setup has set the camera to the default IP subnet169.254.X.X. The PC interface is set to this default IP subnet as follows:

Open the Network interface properties. Settings are shown on Windows XP.

Set TCP-IP v4 interface properties to IP address 169.254.0.101 and subnet mask to 255.255.0.0

🕹 Local Area Connection Properties 🛛 🕐 🗙	Internet Protocol (TCP/IP) Properties
General Authentication Advanced	General
Connect using: Intel(R) PR0/1000 MT Server Conne	You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.
This connection uses the following items:	O Dbtain an IP address automatically
🗹 具 File and Printer Sharing for Microsoft Networks 🛛 🔼	● Use the following IP address:
Cost Packet Scheduler	IP address: 169 . 254 . 0 . 101
	Subnet mask: 255 . 255 . 0 . 0
	Default gateway:
I <u>n</u> stall <u>U</u> ninstall <u>Properties</u>	O Obtain DNC annua addeus automaticallu
Description	
I ransmission Control Protocol/Internet Protocol. The default wide area network protocol that provides communication	Use the rollowing DNS server addresses:
across diverse interconnected networks.	Preferred DNS server:
Show icon in notification area when connected	Alternate DNS server:
✓ Notify me when this connection has limited or no connectivity	
	Advanced
OK Cancel	OK Cancel

6.2.2 Software installation

A GigE Vision software is required. Use your own or install PureGEV, downloadable from <u>www.e2v.com</u> site. A PureGEV license is included in camera package. Refer to PureGEV installation manual for instructions. The following assumes Pleora's PureGEV is installed. To keep things simple, the firewall should be temporarly turned off.

DIVIINA® LM1

6.2.3 Interactive camera control

PureGEV Player is used to control camera interactively and display images. :

GEV GEVPlayer		<u>_ </u>
<u>File T</u> ools <u>H</u> elp		
Connection	Display	
Select / Connect Disconnect		
IP address		
MAC address		
Manufacturer		
Model		
Name		
Acquisition Control		
Mode		
Channel Data Channel #0		
Play Stop		
Parameters and Controls		
Communication control		
GEV Device control		
Image stream control		

Click "Communication Control" button and in "Communication Control" window, set the "AnswerTimeout" feature to 4000

🗉 Communi	cation		
AnswerTir	neout	4000	•
Command	RetryCount	3	
- Heartbea	t		
Heartbeal	tInterval	1500	
DefaultHe	artbeatTimeout	5000	
Connectio	on		
IPAddress	5	169.254.0.143	
Command	Port	1038	
Messaging	gPort	1039	
Streamin	gPacketSize		
AutoNego	otiation	True	
DefaultPa	cketSize	{Not available}	

"Select / Connect" button opens the GEV Device Selection window. GigE cameras appears.

System	Description	Broadcom NetXtreme Gigabit Ethern
🕞 - / etc 🗔 🛷 eBUS Interface: 00-0a-e4-34-00-0d [160:254:0:143]	MAC	00-0a-e4-34-99-0d
	IP Address	169.254.0.143
mage [numerator nn-11-16-nn-v2-22 [104/524/a0/140]	Subnet Mask	255.255.0.0
	Default Gateway	169.254.0.75
	 GigE Vision Device Inf	ormation
	MAC	00-11-1c-00-75-55
	IP	169.254.96.140
	Subnet Mask	255.255.0.0
	Default Gateway	0.0.0.0
	Vendor	e2v
	Model	DiviinaLM1GE
	Access Status	Open
	Manufacturer Info	e2v (00140622)
	Version	1.0.0 (02.02.06)
	Serial Number	EV50YM1GE2014
	User Defined Name	
	Protocol Version	1.0
	IP Configuration	Valid
	License	Valid
ow upreachable GidE Vicion Devices		
iow unreachable algo vision bevices		

Click on camera and check "License" value id "Valid" and click OK. In GEV Player window, "Gev Device control" and "Play" are now active.

Once connected to the Camera you have an easy access to all its features when you click on "GEV DeviceControl". The visibility of these features can be associated to three types of users: Beginner, Expert or Guru. Then you can make life easy for simple users.

Set Features alphabetically		
	GSV Device Control	
	🗄 🕺 Visibility Begi	inner 🔽 🗙
	□ ImageSizeControl Expe	nner 🔼
Set Features inside	Width Guru	<u> </u>
several items	Height	100
	OffsetX	1
	PixelFormat	Mono8
	TestImageSelector	Off
	AcquisitionAndTriggerCon	itrols 👱
	Device¥endorName This feature provides the name of	the manufacturer of the device.

Beginner : The number of features with "Beginner " visibility should be limited to all basics features of the device, and easy to use.

Expert : features that require a more in-depth knowledge of the camera functionality. This is the preferred visibility level for all advance features in the camera.

Guru : Advanced feature that might bring the camera into a state where it will not work properly anymore if it is set incorrectly for the current mode operation.

Click "Play" to start grab. Check camera image on display.

Connection	Disconnet	Display	
IP address	109.234.90.140		
MAC address	00-11-1c-00-75-55		
Manufacturer	e2v (00140622)		
Model	DiviinaLM1GE		
Name			
Acquisition Conl	rol	-	
Mode	Continuous		
Channel	Data Channel #0		
Play	Stop		
Parameters and	l Controls		
	Communication control		
	GEV Device control		

6.2.4 Camera first power on

At the power on of Diviina LM1 camera, controls are generated inside the camera and images are generated without triggers configuration (like in mode free run for a Camera Link camera).

The Acquisition mode is continuous; camera take continuous frame of 100 lines (value by default of Height feature). Each line is acquired in Continuous mode with Exposure time and acquisition line period defined as the minimum Line period of each sensor.

	Z: VISIONICY Guid	
	AcquisitionMode	Continuous 😑
	AcquisitionStart	AcquisitionStart
	AcquisitionStop	{Command}
	AcquisitionFrameCount	1
	LineTriggerMode	Continuous
	ExposureTime	100
	AcquistionLinePeriod	105 😽
Acq This	juisitionStart feature starts the Acquisition of the de	evice.

6.3 IP address policy tips

Camera IP address is defined by one of the following policies : LLA, DHCP and fixed IP. LLA policy is recommended for dedicated GEV links, as no configuration is required except the default subnet setting in PC Ethernet interface. Default subnet is 169.254.X.X.

DHCP policy is recommended when GEV is shared with other Ethernet traffic or when PC/cameras are moved frequently. DHCP can set a dedicated IP address to a given camera.

Fixed IP policy is a simple policy, but not recommended, as address consistency is not insured in time.

7 More

To get further, refer to the following documents, available from http://www.e2v.com/cameras "iPort PureGEV Quick Start Guide" has more details on network and player.

Frequently Asked Questions (FAQ) are available in our knowledge database.

Reader's comment and customer request are sent to <u>mailto:hotline-cam@e2v.com</u>. Copyright e2v, this paper can be reproduced freely, including this notice. It cannot be sold without written approval.

8 Camera Commands

8.1 Device Information

These values allow identifying the Camera. They can be accessed through the GEVPlayer software in the "GevDeviceControl" button. Information of the camera are separated in two parts :

- At the beginning of the list with the section Device information for the information of the e2v camera
- At the end of the list with information relative to the NXT mini

DeviceVendorName		e2v	
DeviceModelName		DiviinaLM1GE	
DeviceManufacturerInfo		e2v (00140622)	
DeviceVersion		1.0.0 (02.02.06)	
DeviceID		EV50YM1GE4010	
DeviceUserID			
DeviceScanType		Linescan	
DeviceFirmwareVersionMajo	r	1	
DeviceFirmwareVersionMinor	,	0	
DeviceFirmwareVersionSubm	ninor	0	
eviceModelName			

GEV GEVP layer

All these values are fixed in factory except the Camera User ID which can be fixed by the Customer:

- DeviceVendorName "e2v"
 - ⇒ Interface : IString
 - \Rightarrow Can not be written
 - ⇒ Visibility : Beginner
 - DeviceModelName: "DiviinaLM1GE"
 - ⇒ Interface : IString
 - \Rightarrow Can not be written
 - ⇒ Visibility : Beginner
- DeviceManufacturerInfo : Part number of the camera ex: "EV50YLM1GE4010-BA0"
 - ⇒ Interface: IString
 - \Rightarrow Can not be written
 - ⇒ Visibility : Beginner

• **DeviceID** : serial number of the Camera

ex:0908P0001-AB

with :

- "09" : Year of manufacturing
- "08" : week in the year
- "P" as Proto, "M" as Manual, "A" as automatic : type of testing
- "0001" : Identification number
- AB: Fab indice.
- ⇒ Interface : IString
- ⇒ Can not be written
- ⇒ Visibility : Expert
- DeviceUserID: Can be set by the Customer to identify his Camera
 - ⇒ Interface : IString
 - \Rightarrow Can be written
 - ⇒ Visibility : Expert
- **DeviceScanType:** This feature specifies the scan type of the sensor.
 - ⇒ Interface : IEnumeration
 - Choice : "Linescan" is the factory value
 - Choice : "Areascan" is used when customer wants to trig the frame with the Programmable Logic Controleur (PLC) of the camera.
 - ⇒ Can be written
 - ⇒ Visibility : Beginner
- **DeviceFirmwareVersionMajor** : Can be get by the Customer to identify the Major Version of the Firmware Camera.
 - ⇒ Interface : IString
 - ⇒ Can not be written
 - ⇒ Visibility : Beginner
- **DeviceFirmwareVersionMinor**: Can be get by the Customer to identify the Minor Version of the Firmware Camera.
 - ⇒ Interface : IString
 - \Rightarrow Can not be written
 - ⇒ Visibility : Beginner
- **DeviceFirmwareVersionSubMinor**: Can be get by the Customer to identify the SubMinor Version of the Firmware Camera.
 - ⇒ Interface : IString
 - ⇒ Can not be written
 - ⇒ Visibility : Beginner

Note : Some additional information are available at the end of the GEVDeviceControl windows relative to the Pleora IP engine.

•	Yisibility Guru IPEngineFirmwareVersion/Major	2	<
	IPEngineFirmwareVersionMinor	2	
	IPEngineFirmwareVersionSubminor	6	
	IPEngineInitSequenceStatus	0	
	IPEngineVendorID	0	
	IPEngineDeviceID	20	
	IPEngineModuleID	6	
	IPEngineSubModuleID	34	~
Grb Terl first Loo ima	Ch0MetadataMsb0verride iary image-numbering source control. Thi byte (regardless of the number's origin) kup Table (I0-I7) at the moment the IP Er ge.	is control lets you replace the with the state of the PLC's ngine began transmitting the	!

8.2 Image size control

GEV GEVP laye

ImageSizeControl		
SensorWidth	4096	
SensorHeight	1	
SensorDigitizationTaps	Two	
WidthMax	4096	
Width	4096	
Height	100	
OffsetX	0	
BinningHorizontal	1	
DecimationHorizontal	1	
DecimationVertical	1	
PixelFormat	Mono8	
PixelCoding	Mono	
PixelSize	Bpp8	
PixelColorFilter	None	
TestImageSelector	Off	

GEV GEVPlayer

- SensorWidth: Gives the maximum effective width of the sensor. For exemple a 4k sensor has a sensor width of 4096 pixels.
 - ⇒ Interface : IInteger
 - ⇒ Unit : pixels
 - \Rightarrow Can not be written
 - ⇒ Visibility : Expert

- SensorHeight : gives the maximum effective height of the sensor. A linescan camera has only one line.
 - ⇒ Interface : IInterger
 - ⇒ Unit : pixels
 - ⇒ Can not be written
 - ⇒ Visibility : Expert
- SensorDigitalisationTaps : Gives the number of tap of the camera sensor. LM1 Camera has 2 taps. ⇒ Interface: IEnumeration
 - ⇒ Can not be written
 - ⇒ Visibility : Expert
- Width : this feature represents the actual image width expelled by the camera. It can be defined from 1 to the maximal sensor width.
 - ⇒ Interface: IInteger
 - ⇒ Unit : pixels
 - ⇒ Values available: From 1 to SensorWidth
 - ⇒ Can be written
 - ⇒ Visibility : Beginner
- Height : this feature represents the actual image height expelled by the camera.
 - ⇒ Interface: IInteger
 - ⇒ Unit : pixels
 - ⇒ Values available : From 1 to 16384
 - ⇒ Can be written
 - ⇒ Visibility : Beginner
- **OffsetX**: this feature represents the horizontal offset from the origin of the AOI (Area Of Interest). It can be defined from 1 to the maximal sensor width.
 - ⇒ Interface: IInteger
 - \Rightarrow Unit : pixels
 - ⇒ Values available: From 1 to SensorWidth
 - ⇒ Can be written
 - ⇒ Visibility : Beginner
- **BinningHorizontal** : this feature represents the horizontal photo sensitive cells that must be combined together. A value of one indicates that no horizontal binning is performed by the camera.
 - ⇒ Interface: IInteger
 - \Rightarrow Can not be written
 - ⇒ Visibility : Expert
- **DecimationHorizontal:** this feature allows horizontal sub-sampling of the image. A value of one indicates that the camera performs no horizontal decimation.
 - ⇒ Interface: IInteger
 - ⇒ Can not be written
 - ⇒ Visibility : Expert
- **DecimationVertical** : this feature allows vertical sub-sampling of the image. A value of one indicates that the camera performs no horizontal decimation.

- ⇒ Interface: IInteger
- \Rightarrow Can not be written
- ⇒ Visibility : Expert
- **PixelFormat**: this feature indicates the format of the pixel to use during the acquisition. LM1 camera is a 8 bit camera so the available format is Mono8.
 - ⇒ Interface : IEnumeration
 - ⇒ Can not be written
 - ⇒ Visibility : Beginner
- **PixelCoding** : this feature indicates the coding of the pixel in the image. LM1 camera is a 8 bit camera so the available pixel coding is Mono.
 - ⇒ Interface : IEnumeration
 - \Rightarrow Can not be written
 - ⇒ Visibility : Expert
- **PixelSize:** this feature indicates the total size in bits of a pixel of the image. LM1 camera has a bit depth of 8 bits.
 - ⇒ Interface : IEnumeration
 - ⇒ Can not be written
 - ⇒ Visibility : Expert
- **PixelColorFilter** : this feature indicates the type of color filter that is applied to the image. LM1 camera is a black and white linescan camera whitout color filter.
 - ⇒ Interface : IEnumeration
 - ⇒ Can not be written
 - ⇒ Visibility : Expert
- **TestImageSelector** : Defines if the data comes from the Sensor or the FPGA (test Pattern). This command is available in "Image Size Control" section of the GEV Device Control :

Ö	2	Visibility	Beginner	*	7
ΞI	imageSizeCo	ontrol			
	Width			2048	
	Height			2000	
	OffsetX			0	
	PixelFormat			Mono8	
	TestImageSel	ector		Off	*
•	AcquisitionA	ndTrigger	Controls	Off IPEngineTe:	stPattern
F es l This	tImageSeleo feature select	t or s the type o	of test image tha	at is expelled	l by the camera

GEV GEVPlayer

⇒ Interface : IEnumeration

- Choice "Off" to switch to CCD image sensor
- Choice "IPEngineTestPattern" to switch to Test Pattern.
- ⇒ Can be written
- ⇒ Visibility : Expert

The Test pattern is a single ramp. The test pattern is generated in the FPGA: It's used to point out any interface problem with the application.

The test pattern is a 8bit width pattern composed with several ramps from 0 to 255 all along the whole Camera definition. Then the number of ramps depends on the number of pixels of the Camera

Test patterns are detailed in Appendix A.

8.3 Acquisition and trigger controls

8.3.1 Camera Trigger synoptics

External triggers on receptacle pins are feeding PLC line1 and Line2. Q4 and Q5 are driving exposure triggers. Q12 is driving Frame trigger and Q14 is driving acquisition trigger. By convention, Pin1 has the exposure trigger, Pin2 is available for others triggers and data input.

8.3.2 Acquisition and Trigger modes

Acquisition, Frame and Line can be triggered by internal or external signals. Genicam camera has 4 real time controls: Line, exposure, frame and acquisition. An **acquisition** is defined as the capture of a sequence of one or many **frames** witch is also a capture of one or many **lines**. For each line an **exposure** time and an acquisition line period are controlled.

In the example above. We have an acquisition of 2 lines - Frames.

- \Rightarrow Trig 1 is not taken in account because the acquisition was not started.
- ⇒ Trig2 is not taken in account because the Frame 1 is not yet valid.
- ⇒ Trig3 & 4 are OK for the Frame 1
- ⇒ Trig5 is taken in an additional Frame 1 completed in 1 line because the Frame signal ends.
- ⇒ Trig6 is not taken in account because Frame 2 is not yet valid
- ⇒ Trig7 & 8 are OK for the Frame 2
- ⇒ Trig9 & 10 are OK for the Frame 3 : The Frame has started before the acquisition ends then the Frame has to be finished.
- ⇒ Trig 11 is not taken in account because the Frame and the acquisition are not valid.

DIVIINA® LM1

GEV Device Control	\mathbf{X}					
Visibility Guru	▼ ×					
AcquisitionAndTriggerControls	<u>^</u>					
AcquisitionMode	Continuous 😑					
AcquisitionStart	AcquisitionStart					
AcquisitionStop	{Command}					
AcquisitionFrameCount	1					
LineTriggerMode	Continuous					
ExposureTime	100					
AcquistionLinePeriod	105 🖌					
AcquisitionLinePeriod 105						

GEVP layer

- AcquisitionMode : this feature controls the acquisition mode of the device.
 - ⇒ Interface : IEnumeration
 - Choice : "Continuous" : Frames are captured continuous from AcquisitionStart command until AcquisitionStop command.
 - Choice : "Single Frame" to capture one frame
 - Choice : "MultiFrame" the number of frames specified by **AcquisitionFrameCount** is captured Inside Diviina GigE a memory is available to record either one or many frame, the choice below allow customer to use this feature :
 - Choice : "ContinuousRecording" : record continuously frame
 - Choice : "ContinuousReadout" : gives the frame inside the memory continuously
 - Choice : "SingleFrameRecording" : record one frame.
 - Choice : "SingleFrameReadout" : gives the frame stocked inside memory
 - ⇒ Can be written
 - ⇒ Visibility : Beginner

	•	Ż Visibility Gu	Iru	~	2	5
		AcquisitionAndTriggerControls				
		AcquisitionMode		Continuous	¥	-
		AcquisitionStart		Continuous		
		AcquisitionStop SingleFrame MultiFrame		SingleFrame MultiFrame		
VPlayer		AcquisitionFrameCount		ContinuousRecording ContinuousReadout SingleFrameRecording		
		LineTriggerMode				
		ExposureTime		SingleFrameReadout		1
		AcquistionLinePeriod		105		~
	Acq This	uisitionMode feature controls the acquisit	tion mode of tl	he device.		

• AcquisitionStart: this command starts the acquisition of frame.

GEV G

- ⇒ Interface : ICommand
- \Rightarrow Can be written
- ⇒ Visibility : Beginner
- AcquisitionStop: this command stops the acquisition of image(s) at the end of the current frame.
 - ⇒ Interface : ICommand
 - ⇒ Can be written
 - ⇒ Visibility : Beginner
- AcquisitionFrameCount : this feature gives the number of frames to be acquired in MultiFrame mode.
 - ⇒ Interface : IInterger
 - ⇒ Unit : frame
 - ⇒ Values available: from 1 to 255
 - \Rightarrow Can be written
 - ⇒ Visibility : Beginner
- LineTriggerMode : this custom feature set *pre-defined line acquisition mode*. Those modes are the same as those well known of e2v camera link camera.
 - ⇒ Interface : IEnumeration
 - Choice : "Continuous" is like "Free Run mode", Exposure and Line period are set in the camera with features, Exposure and AcquisitionLinePeriod.
 - Choice : "ExtTrigWith ExpTimeSet" : an external trigger starts exposure time and the value of Exposure feature gives the exposition time.
 - Choice : "ExtETCwithOneTrig" : Both exposure time and line period are defined by a Trig signal.
 - Choice : "PlcControlled" gives opportunity to use all Pleora GPIO possibilities available inside Diviina GigE camera.
 - ⇒ Can be written
 - ⇒ Visibility : Beginner

GEVP layer

Line trigger mode is detailed in Appendix C.

- ExposureTime : this feature fixes the exposure time when lineTriggerMode selected is Continuous, or ExtTrigWithExpTimeSet(otherwise it's ignored).
 - ⇒ Interface : IInteger
 - ⇒ Unit : Microseconds
 - ⇒ Values available : From 4 to 65534
 - ⇒ Can be written
 - ⇒ Visibility : Beginner
- **AcquisitionLinePeriod** : this feature fixes the line period when **lineTriggerMode** selected is Continuous (otherwise it's ignored).
 - ⇒ Interface : IInteger
 - \Rightarrow The minimum of Line period depends of sensor width :
 - 28µs for the 1K Pixels cameras (35,714kHz)
 - 55µs for the 2K pixels cameras (18,182kHz)
 - 105µs for the 4k pixels cameras (9,523 kHz)
 - \Rightarrow The maximum line period is 65535.
 - ⇒ Unit : Microseconds
 - ⇒ Can be written
 - ⇒ Visibility : Beginner

The AcquisitionLinePeriod min value is not displayed in GevPlayer for each camera but any attempt to set to a lower value then this will be refused by the camera.

In the same way, it's impossible to set the line period at a lower value than the exposure time. Note that if the exposure time is increased and set at a lower value than the line period, this last one will be automatically adjusted at the value of the exposure time : This modification won't appear in GevPlayer without disconnect/reconnect

8.4 Counters and timers controls

GEV Device (Control			×		
2	Visibility	Guru	~	×		
🗉 CountersAr	ndTimersC	ontrols		^		
CounterSele	ctor		Counter1			
TimerSelecto	or		Timer1			
CounterEve	CounterEventSource		Off			
CounterValu	le		0			
CounterDur	ation		0			
CounterTrig	gerSource		Off			
TimerDuratio	onRaw		4096			
TimerDelayF	law		1024	_		
TimerTrigger	TimerTriggerSource		PLC_Q	_		
TimerTrigger	TimerTriggerActivation		RisingEdge	_		
CounterDec	rementEver	ntSource	Off	_		
CounterRes	etSource		PLC_Q3			
CounterRes	etActivation	ı	Off	_		
TimerGranul	arityFactor		0	_		
TimerPeriod			153630 ns	_		
TimerFreque	ency		6509.15 Hz	~		
AcquisitionStop This feature stops the Acquisition of the device at the end of the current Frame.						

All those parameters are allowed to control the 4 timers available inside the camera. Those timers are available when PlcControlled is selected into LineTriggerMode feature.

To get further, refer to the following documents, available from http://www.e2v.com.

"Programmable Logic Controller, Reference Guide" in section Enhanced Function Block has more details on those parameters.

8.5 Event generation

This Pleora IPEngine is detailed in the "Programmable Logic Controller, Reference Guide".

8.6 Analog controls

Ξ	AnalogControls		^
	GainSelector	All	
	BlackLevelSelector	All	
	Gain	0	
	BlackLevel	0	
Ξ	GigEVisionTransportLayer		
	PayloadSize	409600	~
Acc This Frai	quisitionStop s feature stops the Acquisition of the devi me.	ce at the end of the curren	t

- GainSelector : this feature allows to choice the tap of the sensor where gain is applied :
 - \Rightarrow Interface : IEnumeration
 - Choice : "All" to modify in the same time gain of Tap1 and gain of Tap2 of the sensor.
 - Choice : "Tap1" " to modify only gain of Tap1 (Odd pixels) of the sensor.
 - Choice : "Tap2" to modify only gain of Tap2 (Even pixels) of the sensor.
 - ⇒ Can be written
 - ⇒ Visibility : Beginner
- BlackLevelSelector : this feature allows to choice the tap of the sensor where offset is applied :
 - ⇒ Interface : IEnumeration
 - Choice : "All" to modify in the same time offset of Tap1 and gain of Tap2 of the sensor.
 - Choice : "Tap1" " to modify only offset of Tap1 of the sensor.
 - Choice : "Tap2" to modify only offset of Tap2 of the sensor.
 - ⇒ Can be written
 - ⇒ Visibility : Beginner
 - Gain : This feature controls the selected gain as an absolute physical value.
 - ⇒ Values available from 0 to 880 corresponding to a Gain range of 0 to 31dB (by step of 0,0351dB)
 - ⇒ Interface : IInteger
 - \Rightarrow Unit : None
 - ⇒ Can be written
 - ⇒ Visibility : Beginner
- BlackLevel : This feature controls the selected analog black level as an absolute physical value.
 - ⇒ This represents a DC offset applied to the video signal.
 - ⇒ Interface : IInteger
 - ⇒ Values available are from 0 to 255 which is equivalent to 16 LSB by steps of 0,063 LSB (8 bits)
 - ⇒ Unit : LSB
 - \Rightarrow Can be written
 - ⇒ Visibility : Beginner

- AdaptativeTapBalance : This custom feature enables the Adaptative Tap balance.
 - ⇒ Interface : IBoolean
 - \Rightarrow Can be written
 - ⇒ Visibility : Beginner

The Auto Tap Balance is a <u>Laplace filter</u> which is applied in the FPGA. It automatically solve any odd/even mismatch that can be visible in the image

- Whatever the action you may have on the Odd/even Tap Gains to increase the mismatch between the Taps, the filter will correct if enabled
- > The filter has to be disabled if the inspection is done at **Nyquist** frequency : Then the tap balance has to be performed by using odd and even Tap Gains.

The Camera is delivered with the Adaptative Tap Balance disabled by default.

Gains Management and Auto Tap Balance

The Selected Gain All is a "virtual" global command which affects both Odd and Even Gains in the same time.

Each value set in the Selected Gain All erases Odd and Even Gain values.

This gain has to be used when the Auto Tap balance is activated as a "friendly" mode to set quickly the gain level in the Camera without taking care of the Tap balance which is automatically done by the Laplace filter.

- > The real values of gain applied on each Tap are those set in the odd and even Gain parameters.
- > Whatever the action you may have on the Odd/even Tap Gains to increase the mismatch between the Taps, the filter will correct if enabled
- > In CommCam the odd/gains Values are not refreshed after the setting of the Global gain command : You have to refresh them individually with a right click on the value.

8.7 GigE vision transport layer

All Gigabit Ethernet Vision (GEV) features in this chapter are compliant with GEV version 1.1 and GenICam Standard Feature Naming Convention (SFNC) version 1.3.

The 6 main GEV features described here are enough for successful network configuration. Please refer to SFNC document for more features.

V Device	Control		
2	Visibility	Guru	M 5
GigEVision	TransportL	.ayer	
PayloadSiz	a		409600
GevVersion	Major		1
GevVersion	Minor		0
GevDevice	ModeIsBigEn	dian	True
GevDevice	ModeCharac	terSet	UTF8
GevInterfa	ceSelector		0
GevMACAd	ldress		00:11:1C:00:75:50
GevSuppor	tedIPConfigu	urationLLA	True
GevSuppor	tedIPConfigu	urationDHCP	True
GevSuppor	tedIPConfigu	urationPersistent]	True
GevCurren	tIPConfigura	itionLLA	True
GevCurren	tIPConfigura	itionDHCP	True
GevCurren	tIPConfigura	tionPersistentIP	True
GevCurren	tIPAddress		169.254.180.215
GevCurren	tSubnetMask	<	255.255.0.0
GevCurren	tDefaultGate	eway	0.0.0.0
GevFirstUR	(L		Local:e2v-4010_20091120
GevSecond	JURL		
GevNumbe	rOfInterface	s	1
GevPersist	entIPAddres:	s	255.255.255.255
GevPersist	entSubnetMa	ask	255.255.255.255
GevPersist	entDefaultGa	ateway	255.255.255.255
GevMessaç	jeChannelCo	unt	1
GevStream	ChannelCou	nt	1
GevSuppor	tedOptional(CommandsUserDe	True
GevSuppor	tedOptional(CommandsSerialN	True
GevSuppor	tedOptional(CommandsEVENT[True
GevSuppor	tedOptional(CommandsEVENT	True
GevSuppor	tedOptional(CommandsPACKE [®]	True
GevSuppor	tedOptional(CommandsWRITE	True
GevSuppor	tedOptional(CommandsConcat	True
GevHeartb	eatTimeout		5000
GevTimesta	ampTickFrequ	uency	2083333
GevTimesta	ampControlLa	atch	{Command}
			(c. D.

This feature	stops the A	Acquisition (of the dev	vice at the	e end of t	he current:
Frame.						

GEV Dev	ice Control			
: <u></u> 2	Visibility	Guru	~	×
GevTin	nestampControlRe	eset	{Command}	^
GevTin	nestampValue		0	
GevCC	P		ControlAccess	
GevMC	PHostPort		1049	
GevMC	DA .		169.254.0.78	
GevMC	TT		0	
GevMC	RC		0	
GevStr	eamChannelSeled	tor	0	
GevSC	PInterfaceIndex		0	
GevSC	GevSCPHostPort		1053	
GevSC	PSFireTestPacket		False	
GevSC	GevSCPSDoNotFragment		True	
GevSC	GevSCPSBigEndian		False	
GevSC	GevSCPSPacketSize		1444	
GevSC	GevSCPD		0	
GevSC	GevSCDA		169.254.0.78	
GevIP	GevIPConfigurationStatus		LLA	
GevTin	nestampCounterS	elector	GevTimestamp	
GevTin	nestampSetSource	е	PLC_Q3	
GevTin	nestampSetActiva	ition	Disabled	
GevTin	nestampValueAtSe	et	0	
GevTin	nestampResetSou	irce	PLC_Q3	
GevTin	nestampResetActi	ivation	Disabled	
GevTin	nestampControlSe	et 🛛		~

This feature stops the Acquisition of the device at the end of the current Frame.

- GevCurrentIPConfigurationDHCP : Controls DHCP search. This setting reduces boot time by 12s.
 - ⇒ Interface : IBoolean
 - Choice : "True" only when a local DHCP server will handle camera IP settings.
 - Choice : "False" " otherwise.
 - \Rightarrow Can be written
 - ⇒ Visibility : Beginner
- **GevCurrentIPConfigurationPersistentIP**: Disables hard IP address setting. Camera is automatically set in default IP address subnet : 169.254.X.Y. This setting insures IP subnet consistency, prevents IP address conflicts and prevents camera discovery failure.
 - ⇒ Interface : IBoolean
 - Choice : "True" to enable Persistent IP
 - Choice : "False" " otherwise.
 - \Rightarrow Can be written
 - ⇒ Visibility : Beginner
- **GevSCDA**: Defines the destination IP address of image stream. Default is the control PC address. Adjusts address when grabbing PC is separated from the control. Multicast and broadcast address ranges are available for distributed machine vision
 - ⇒ Interface : IInteger
 - ⇒ Can be written
 - ⇒ Visibility : Guru
- GevSCPHostPort: Destination Port of image stream. Adjusted to fit the grabbing PC port.
 - ⇒ Interface : IInteger
 - \Rightarrow Can be written
 - ⇒ Visibility : Guru

8.8 User Sets

🕶 GEVPlayer

The settings of the Camera can be saved in one User bank. The Factory default settings can be load from its dedicated memory bank.

- UserSetSelector: This feature give choice of witch memory is selected.
 - ⇒ Interface : IEnumeration
 - Choice "Default" : selected for load the factory settings
 - Choice"UserSet1" : selected for save and load customer settings
 - ⇒ Can be written
 - ⇒ Visibility : Beginner
- UserSetLoad : Load the User Set specified by "UserSetSelector" to the device and makes it active.
 - ⇒ Interface : ICommand
 - \Rightarrow Can be written
 - ⇒ Visibility : Beginner
 - UserSetSave : Save the User Set when UserSet1 is specified by "UserSetSelector" to the device.
 - ⇒ Interface : ICommand
 - ⇒ Can be written
 - ⇒ Visibility : Beginner

A synthesis of all camera features is available on APPENDIX D.

9 APPENDIX A: Test Patterns

9.1 1024 Pixels Camera

The test pattern is composed of 4 successive ramps from 0 to 255 LSB gray values :

9.2 2048 Pixels Camera

The test pattern is composed of 8 successive ramps from 0 to 255 LSB gray values :

9.3 4096 Pixels Camera

The test pattern is composed of 16 successive ramps from 0 to 255 LSB gray values :

10 APPENDIX B: Optical Mounts available

10.1 F-Mount

F Mount: (Part number EV50-MOUNT-F)

Drawing for the additional part (except Nikon BR3) :

10.2 C-Mount

C Mount : (Part number EV50-MOUNT-C)

11 APPENDIX C : LINE TRIGGER MODE

This Appendix describes the custom feature of LM1 : LineTriggerMode. Feature allows to easier and quicker control camera. The 3 choices of feature are explained below, if you need more information about these, a FAQ on each mode is available with downloadable file from <u>www.e2v.com</u> site.

Timing Specifications

This table is for all the synchronization modes.

Label	Description	Value
Td	Q4 rising to integration period start delay	350ns
Tdr	Integration period stop to readout	1,8 <i>µ</i> s
Th	Q4 hold time (pulse high duration)	1,1 <i>µ</i> s
td1	Q4/Q5 falling/rising to integration period start delay	350ns
td2	Q4/Q5 rising to integration period stop delay	1,3 <i>µ</i> s

• <u>Continuous</u>

This mode doesn't require an external trigger.

In this case, the line period can be defined in the Camera (see below) but the real line period of the camera depends also on the exposure time set:

> If ExposureTime > AcquisitionLinePeriod, the line period is equal to ExposureTime

> If AcquisitionLinePeriod > ExposureTime, the line period is equal to Acquisition Line Period

• Ext Trig with integration time set in the camera

This mode requires an external trigger (via Q4) but the exposure time is the one defined in the Camera.

> If the line period of the Trig signal provided to the camera is smaller than the exposure time set in the camera, the "short trig pulses" will be ignored: The exposure set in the camera defines the minimum line period possible.

Q4 is based on an external trigger, if trigger used is not completely the same as Q4 described above, the PLC allows to modify it in order to match input signal and Q4 signal needed.

• Ext Trig with Exposure Time Controlled (ETC) with one Trig

This mode requires an external trigger (via Q4). Both exposure time and line period are defined by this Trig signal:

- > The exposure time during the low level of the Trig Signal
- > The line period between two rising edges of the Trig Signal

Q4 is based on an external trigger, if trigger used is not completely the same as Q4 described above, the PLC allows to modify it in order to match input signal and Q4 signal needed.

PLC controlled

STOR

This mode requires two external triggers (via Q4 and Q5):

- > Q5 controls the starting of the exposure time
- > Q4 controls the end of the exposure time.

The line period is defined by the one of the Q5 Trig signal.

Programmable Logic Controller (PLC) management

Signals available at Q4 and Q5 of the PLC have to be as signals described above. To transform trigger like this, a PLC is available between trigger input and Q4 and Q5.

- > At First power on, PLC is like a "wire" were input and Q4 are directly linked without any signal treatment inside PLC.
- Diviina camera has only 2 inputs: one for line trigger and the other for frame trigger; if the PlcControlled mode is used, a new signal has to be created from the line trigger input with PLC help.

For more information please refer to the Pleora documentation: "*Programmable Logic Controller, Reference Guide*".

STOP

12 APPENDIX D : Camera Features

Feature name	access	Value	Interface
AcquisitionFrameCount	R/W	From 1 to 255	IInteger
AcquisitionLinePeriod	R/W	From minimum sensor value to 65535	IInteger
AcquisitionMode	R/W	Continuous SingleFrame MultiFrame ContinuousRecording ContinuousReadout SingleFrameRecording SingleFrameReadout	IEnumeration
AcquisitionStart	W	-	ICommand
AcquisitionStop	W	-	ICommand
AdaptativeTapBalance	R/W	Enable Disable	IBoolean
BinningHorizontal	RO	1	IInteger
BlackLevel	R/W	From 0 to 255	IInteger
BlackLevelSelector	R/W	All Tap1 Tap2	IEnumeration
DecimationHorizontal	RO	1	IInteger
DecimationVertical	RO	1	IInteger
DeviceFirmwareVersionMajor	RO	1	IString
DeviceFirmwareVersionMinor	RO	0	IString
DeviceFirmwareVersionSubMinor	RO	0	IString
DeviceID	RO		IString
DeviceManufacturerInfo	RO	N: .: 1 444	IString
DeviceModelName	RU	DivinaLMI	IString
Device Scan Type	R/W	Linescan Areascan	IString
DeviceUserID	W	-	IString
DeviceVendorName	RO	e2v	IString
Exposure line	R/W	From 4 to 65535	11nteger
Gain	R/W	From 0 to 880	IInterger
Gainselector	R/W	All Tap1 Tap2	IEnumeration
Height	R/W	From 1 to 16384	IInteger
LineTriggerMode	R/W	Continuous ExtTrigWithExpTimeSet ExtETCwithOneTrig PlcControlled	IEnumeration
OffsetX	R/W	From 1 to maximum sensor size	IInteger
PixelCoding	RO	Mono	IEnumeration
PixelColorFilter	RO	None	IEnumeration
PixelFormat	RO	Mono8	IEnumeration

e2v semiconductors SAS 2010

	2.2		
PixelSize	RO	Врр8	IEnumeration
SensorDigitalisationTaps	RO	Two	IEnumeration
SensorHeight	RO	1	IInteger
SensorWidth	RO	Maximum size of the	IInteger
		sensor	-
TestImageSelector	R/W	Off	IEnumeration
_		IPEngineTestPattern	
UserSetLoad	W	-	ICommand
UserSetSave	W	-	ICommand
UserSetSelector	R/W	Default	IEnumeration
		UserSet1	
Width	R/W	From 1 to maximum	IInteger
		pixel size	-

13 APPENDIX E : TROUBLESHOOTING

14 APPENDIX F: Revision History

Doc. Revision	Comments / Details	Camera Ref
Preliminary	Preliminary release	Firmware 1.0.0
A	First Release	Firmware 1.1.0
В	Mount Drawing Correction	Firmware 5.0.0
С	"Out of the Box" chapter	Firmware 5.0.0

1	١.
Γ	1

AcquisitionFrameCount, 26 AcquisitionLinePeriod, 27 AcquisitionMode, 25 AcquisitionStart, 26 AcquisitionStop, 26 AdaptativeTapBalance, 31

B

BinningHorizontal, 21 BlackLevel, 30 BlackLevelSelector, 30

D

DecimationHorizontal, 21 DecimationVertical, 22 Device Manufacturer info, 18 DeviceFirmwareVersionMajor, 19 DeviceFirmwareVersionSubMinor, 19 DeviceID, 19 DeviceManufacturerInfo, 18 DeviceModelName, 18 DeviceUserID, 19 DeviceUserID, 19 DeviceVendorName, 18

Ε

ExposureTime, 27

G

Gain, 30 Gainselector, 30

Н

Height, 21	
L	1
LineTriggerMode, 26	
0)
OffsetX, 21	
P	,
PixelCoding, 22	
PixelColorFilter, 22	
PixelFormat, 22	
PixelSize, 22	
S	
SensorDigitalisationTaps, 21	
SensorHeight, 21	
SensorWidth, 20	
Т	•
TestImageSelector, 22	
U	ſ
UserSetLoad, 34	
UserSetSave, 34	
UserSetSelector, 34	

W

Width, 21

How to reach us

Home page: www.e2v.com

Sales Office: Europe Regional sales office

e2v Itd 106 Waterhouse Lane Chelmsford Essex CM1 2QU England Tel: +44 (0)1245 493493 Fax: +44 (0)1245 492492 mailto: enquiries@e2v.com

e2v sas

16 Burospace F-91572 Bièvres Cedex France Tel: +33 (0) 16019 5500 Fax: +33 (0) 16019 5529 mailto: enquiries-fr@e2v.com

e2v gmbh

Industriestraße 29 82194 Gröbenzell Germany Tel: +49 (0) 8142 41057-0 Fax: +49 (0) 8142 284547 mailto: enquiries-de@e2v.com

Americas

e2v inc 520 White Plains Road Suite 450 Tarrytown, NY 10591 USA Tel: +1 (914) 592 6050 or 1-800-342-5338, Fax: +1 (914) 592-5148 mailto: enquiries-na@e2v.com

Asia Pacific

e2v Itd 11/F., Onfem Tower, 29 Wyndham Street, Central, Hong Kong Tel: +852 3679 364 8/9 Fax: +852 3583 1084 mailto: enquiries-ap@e2v.com

Product Contact:

e2v Avenue de Rochepleine BP 123 - 38521 Saint-Egrève Cedex France Tel: +33 (0)4 76 58 30 00 Hotline: mailto: hotline-cam@e2v.com