

every photon counts

h·ni 128 スピード重視 モデル

低光量イメージング の新基準

Nvü™はEMCCDディテクターの裏で エレクトロニクスを蘇らせます。

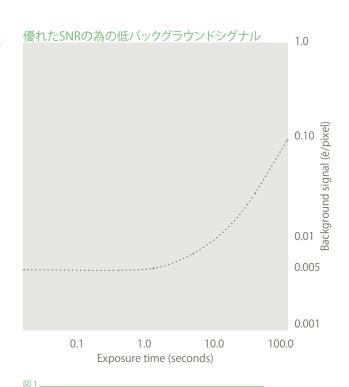
非常に優れたSNR

バックグラウンドシグナルを最小限に抑えて、-85 ± 0.01 ℃までの空冷の安定 したオンチップ熱電冷却

正しいフォトンカウンティングの為、EMCCDカメラ固有ノイズを減少させる特許技術

超低光量条件で最適の結果を得るための反転モード (IMO) で、最低のバックグラウンドシグナルと5000までの最高の電子増倍ゲイン

究極の高感度


1004fps以上のフレームレート(@20 MHz readout rate)で、効率の良い低フラックスイメージングを可能にします。

優れた画質

電荷転送効率の向上による優れた画質

ノイズフィルターアルゴリズム無し

生成されるノイズ量が低くなり、正しい光電子を除去するリスクを排除します。

h・nü 128ダークフレームは、シグナルを露光の機能として表します。 データは・85℃、EMゲイン1000、10MHzで測定.

128 Specification sheet nuvucameras.com

広範囲なソフトウェアシステムへの簡単な組み込み

Nüvüカメラは、小型熱電冷却型カメラで最高水準のEMCCDテクノロジーを提供します。HNüカメラの核心にあるテクノロジーは、もともと最先端技術を必要とする天文用に設計されたものです。現在では幅広いアプリケーション用に最適化と拡張がなされたユーザーフレンドリーなHNüは、購入、セットアップ、検出、公表の間のギャップを効率的に埋める多数の利点を提供します。

- › NüPixelコントロール、取り込み、解析ソフトウェア
- カスタマイズ可能なプログラミング用ソフトウェア 開発キット(SDK)
- → 商用ソフトウェアに利用可能な各種ドライバー
- →世界中にわたる専門の顧客サポート
- > 相談サービスは要求に応じて利用可能

h-ni128

CHARACTERISTICS	SPECIFICATIONS
デジタル化	16 bits
電子倍増ゲイン	1 - 5000
選択可能な安定した冷却温度 (@20MHZ最大フルフレーム読出し)	液体冷却で-90℃まで* ¹ 空冷で-85℃まで
オンチップ温度安定化	± 0,01°C
量子効率	> 90% at 600 nm (図3参照)
EM レジスタピクセルウェル深度*2	800 kē
波長範囲	250 - 1100 nm
トリガー	外部または内部 選択可能な信号極性
露光時間[分解能]	4 ns
露光時間[範囲]*3	25 ns - days
タイムスタンプ分解能	4 ns

表1 HNüカメラの一般的な特長と仕様

特 長	利 点	
EMゲイン範囲 1 - 5000	最も低い有効読み出しノイズ 優れたシングルフォトン検出能力	
最低クロック誘起電荷レベル (CIC)	EMCCDのノイズ源であるCICを低下させた結果 最高のSNR	
正しいフォトンカウティングの為に最適化された 特許技術	EM オペレーションでリニアおよびフォトンカウンティングモードが利用可能	
最高の水平電荷転送効率	クリアな画像。ピクセルリーク無し	
究極の冷却性能	無視できるダークノイズ 優れた電荷転送効率	
最高の量子効率	バックライト付グレード1 EMCCDディテクターにより最高感度を実現 (図3参照)	
20MHzまでのピクセル読出しレート	128 x 128 EMCCD カメラの最速取込み速度	
タイムスタンプ	あらゆる取込みで高精度のタイムトラベリング 絶対時間タグ付け用のGPS入力(オプション)	
mROI	取込み速度向上の為、ディテクター上の複数のカスタマイズ可能な関心領域(ROI)を 選択	
クロップセンサーモード	EMCCD ディテクターの部分マスキングによる高速取込みができ対象領域の 位置とサイズがカスタマイズできる*4	

表 2 HNü の特長と利点

高感度イメージングの為の より高速なフレームレート

EMチャンネルで利用可能な読み出しレートは1MHz、5MHz、10MHz、20MHzです。

ビニング*7		関心領域(ROI)	
	128 × 128	64 × 64	32 × 32
1 × 1	1004	1838	3144
1 × 2	1814	3107	4826
1 × 4	3035	4725	6548
1 × 8	4536	6316	7857
1 × 16	5892	7391	8463
1 × 32	6608	7634	8277
Cropped-se	ensor mode	3161	6699

表3 HNü 128のフレームレート(ビニング・ROI)

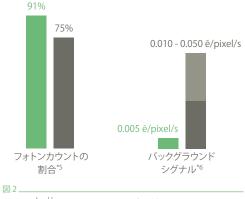
フレームレートはEMモードで20MHzで測定されています。様々なEMCCDディテクターサイズと同様に他の読出し速度とフレームレートも利用可能です。

一般的特性		HNÜ 128
利用可能な最大EMゲイン (リニアまたはPC モード)		5000
読出しノイズ: 電子倍増EMチャンネル		<0.1ē @ 20 MHz
垂直クロック速度	EM	0.1 — 0.5 μs
暗電流* ^{1,8,9} (全オペレーションモード)		0.0006 ē/pixel/s
クロック誘起電荷*6		0.005 ē/pixel/frame
電荷転送効率*10		> 0.999980
シングルフォトン検出確率 (EM ゲイン = 5000)		> 91%
イメージング エリア		128 × 128 pixels 24 μm × 24 μm pixel area 3.1 mm × 3.1 mm 有効エリア

表4 HNü 128 の特性

あらゆるフォトンもカウント

EMCCDテクノロジーは、高EMゲインによって生じる有効 読み出しノイズを抑制するので、バックグラウンドノイズ を最小にしなければならない低光量アプリケーションに 最適です。リニアオペレーションモードは、確率論的な性質があるので、EMゲインをピクセルベースで正確に決定することはできません。しかし、高EMゲインでは過度のノイズ要因(ENF)があるのでSNRの低下に通じます。 実際に量子効率が半分になるのと同様にSNRに影響します。フォトンカウティング(PC)モードでは、NüvüカメラはENFを効率的に抑制し、シングルフォトンの感度を上げます。


Nüvü™の超高感度カメラはEMゲインが高く、バックグラウンドノイズが少ないため、PCモードで適切に動作します。大きいEMゲインを得るのは簡単ですが、電子増倍プロセスには、より多くのクロック誘起電荷(CIC)、支配的EMCCDノイズ源が伴います。HNüカメラを駆動する革新的な電子回路は、市場での最高のゲインを提供しつつ、CICを仮想的に排除して、総バックグラウンドシグナルを低下させます。結果として低光量条件でより良いデータが得られます。

フォトンカウンティング性能比較

- HNü 128 (IMOで測定したすべてのNüvüカメラ)
- 他のEMCCDカメラで得られる最高性能

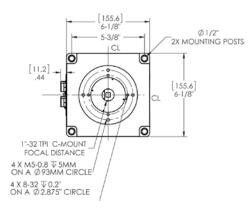
他のメーカーは1つの特性に使用されるオペレーションモードの指定がありませんーIMOまたはNIMO。これらは相互に排他的なEMCCD動作モードで、その利点を組み合わせることはできません。

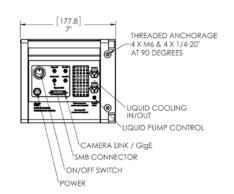
15%以上高い、純粋なフォトンカウント

h ni 128 フォトンカウンティングの利点

品質優先

すべての部品はクラス10,000のクリーンルームで密封された金属も含めて高真空条件に準拠して処理され、メンテナンスなしで最長の真空寿命が保証されています。Nüvüカメラは、最適な画質に不可欠な少なくとも λ/10 の品質ウィンドウを使用しています。

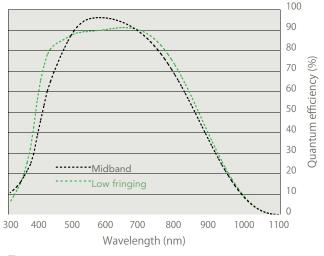

コンピュータ要件:


- 通信インターフェース: PCle Camera Link (最小4X)またはGigE Vision (Gigabit Ethernet)
- → オペレーティングシステム: Windws (XP, 7), LINUX

カメラ環境:

- →動作温度: 0°C~30°C
- → 湿度: < 90 % (結露不可)</p>
- →電源: 100 240 V, 50 60 Hz, max. 3 A

図面



- *1-95°C以下では、電荷転送効率は下がり、暗電流の改善は徐々に低下します。
- *2 EMCCDディテクターのメーカーのデータシートによります。他のコンフィギュレーションも存在することがあります。
- *3 読み出し前にクリアされるピクセルがあるので、コントロールされた照明条件で利用可能な最小露光時間25ns。
- *4 光学マスクは含まれません。
- *5 フォトンカウンティングモードで読み出しノイズより5倍大きいシグナルで検出されたイベント。測定されたデータ。
- *6-85°CでEMゲイン1000で予想されるシグナルレベルと10MHzの連続露光での最大フレームレート。
- *7水平ビニングは10および20MHzのピクセルレートでのEMモードの最大取り込みレートに影響を及ぼしません。
- *8 EMCCDディテクターによって、これらの数はわずかに異なることがあります。
- *9 -85°Cで測定された暗電流。HNüは液体冷却で-90°Cまで動作可能です。
- *10 -85°Cと10 MHzの読み出しレートでEMゲイン1000で測定された平均水平電荷転送効率。

量子効率(typical)

株式会社 〒273-0005 千葉県船橋村 WWW.ads-ima.co.ip

株式会社 アド・サイエンス

千葉県船橋市本町2-2-7船橋本町プラザビル Tel 047-434-2090 Fax 047-434-2097 E-mail ads-contact@ads-img.co.jp